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Single-photon states with arbitrarily fast asymptotic power-law falloff of energy density a
photodetection rate are explicitly constructed. This goes beyond the recently discovered tenth-p
law of the Hellwarth-Nouchi photon which itself superseded the long-standing seventh-power law
the Amrein photon. [S0031-9007(97)03953-7]
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Given any classical solution of the source-fr
Maxwell’s equations it is possible to write down a corr
sponding quantum mechanical one-photon state

jfl ­
X

l­61

Z d3k
s2pd3 fslds $kday

slds$kd j0l , (1)

where j0l represents the vacuum,fslds $kd is a c-number
function, anda

y
slds $kd is the creation operator for a sing

photon state with momentum$k and helicityl. This is a
general wave-packet state. The transverse nature o
classical solution is reflected in the photon having only
(rather than 3) spin degrees of freedom (i.e., 2 helicitie
In particular, we will show thatX

l

$́ slds $kdfslds$kd ­

r
´0v $k

h̄
$̃As $kd , (2)

where $̃As $kd is the spatial Fourier transform of$Ast, $rd, the
classical solution for the vector potential, and$́ slds $kd is
the polarization vector associated with helicityl and wave
vector $k. It has been known for a long time that the co
figuration space representation ofjfl cannot have delta
function support or support in a finite region of space [1,
This prompted Jauch and Piron [3] and Amrein [4]
make a formal modification of the imprimitivity formu
0031-9007y97y79(9)y1585(3)$10.00
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lation of localizability of elementary particles to a gen
eralized imprimitivity applicable to photons. It was be
lieved (without proof) that such a construction gave th
tightest isotropically localized single-photon state. Such
state can be shown to have an asymptotic1yj $rj7 falloff of
its energy density and photodetection rate [5]. The sit
ation remained thus for about a decade until recently wh
a particular explicit solution of Maxwell’s equation by
Hellwarth and Nouchi [6] led to a one-photon state wit
an asymptotic falloff of1yj $rj10 for the photodetection rate
[7] at any finite timet. Consequently, it became clear tha
the state from the generalized imprimitivity constructio
was not the most isotropically localized possible. How
ever, the question of the existence of a fundamental lim
to the sharpness of the power-law falloff remained ope
In this paper we will show that single-photon states wit
arbitrarily high powers of asymptotic falloff can be explic-
itly constructed.

The EDEPT solutions.—Following the same calcula-
tions as in the paper of Ziolkowski [8], we can obtain th
(focused) EDEPT (electromagnetic directed-energy puls
train) solutions for the classical vector potential, express
in cylindrical coordinates, as the real and imaginar
parts of
ingle-
$Ast, r, zd ­
2am0ga

0 $eurf g1 1 isz 2 tdga21

fr2 2 t2 1 is g2 2 g1dz 2 is g2 1 g1dt 1 g1g2ga11
, (3)

wherea is an integer,r2 ­ r2 1 z2, t ­ ct, and, in the notation of Ziolkowski, we have setb ­ 0, b ­ g0, z0 ­ g1,
andab ­ g2. As we see from (1) and (2) these solutions provide a convenient way of producing normalizable s
photon states with all the required transversality properties.
© 1997 The American Physical Society 1585
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Note that the leading power in distance in the denom
nator of the above isr2a12 and that in the numerato
the leading power is onlya at any finite timet. Thus
there exist real or imaginary solutions for the vector p
tential which fall off asymptotically as1yra12 wherea

is odd for a real solution and even for an imaginary s
lution. The solution of Hellwarth and Nouchi is obtaine
from Eq. (1) with a ­ 1. Since the electric and mag
netic fields are the derivatives of the vector potential w
respect to distance and time, these fields will also
evitably fall off asymptotically as1yra1c. Herec is some
small integer whose value depends on whether a rea
imaginary solution is required. Indeed an explicit ca
culation shows that the electric and magnetic fields f
off asymptotically as a power which increases linea
with increasinga. These expressions are rather long, a
so we do not give them here. Since we have not i
posed an upper bound ona, other than it remain finite,
we conclude that there is, in principle, no limit to th
asymptotic rate of falloff of the electric or magnetic e
ergy densities of theseclassical solutions of Maxwell’s
equations.

Arbitrarily localized one-photon states.—We shall now
demonstrate that there exist one-photon states with
same electric and magnetic energy densities as the cla
cal EDEPT solutions. First, the Hamiltonian density of
c
a
i
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free electromagnetic field in vacuum can be written as

H st, $rd ­
´0

2
N f $E2st, $rd 1 c2 $B2st, $rdg , (4)

where 1y´0m0 ­ c2 and whereN represents normal
operator ordering and$E and $B are free operator fields
given, in the Coulomb gauge, by the usual relations

$E ­ 2
≠ $A
≠t

(5)

and

$B ­ $= 3 $A . (6)

As usual, normal ordering is required to remove th
divergent energy density of the vacuum. The vect
potential (operator) may be written, in vacuum, as

$Ast, $rd ­
X

l­61

Z d3k
s2pd3

e2isv $k t2$k?$rd

3

s
h̄

2´0v$k

$́ slds $kdaslds $kd 1 H.c. (7)

For the general one-photon statejfl the energy density is
given by
uqmst, $rd ­ kfjH st, $rdjfl

­
h̄
2

X
ll0

Z d3kd3k0

s2pd6
fp

slds $kdfsl0ds$k0deisv $k2v $k0 dt2is $k2$k0d?$rpv$kv$k0

3 f $́ p
slds $kd ? $́ sl0ds $k0d 1 $̂k 3 $́ p

slds $kd ? $̂k
0

3 $́ sl0ds$k0dg . (8)
se

of
Furthermore, we require a single-photon state to
normalizable and so

kfjfl ­
X
l

Z d3k
s2pd3

jfslds $kdj2 , ` . (9)

Now, since Ziolkowski uses a classical theory, w
would like to find a one-photon state,fslds $kd, such that
it has the same energy density as the Hellwarth-Nou
solutions. So we must find a suitable momentum-sp
expression for a classical energy density. The class
version of (4) is the energy density

uclst, $rd ­
´0

2
f $E2st, $rd 1 c2 $B2st, $rdg , (10)

where $E and $B are now classical fields, so do not requi
normal ordering. Now, defining the Fourier transforms
the (real) electric field by

$Est, $rd ­
Z d3k

s2pd3
$̃Es $kde2isv$kt2 $k?$rd

­
Z d3k

s2pd3
$̃E

p

s $kdeisv$kt2$k?$rd, (11)
be

e

hi
ce
cal

e
f

and similarly for the magnetic field, and using the
expressions in (10), we find

uclst, $rd ­
´0

2

Z d3kd3k0

s2pd6 eisv$k 2v $k0 dt2is $k2$k0d?$r

3 f $̃E
p

s $kd ? $̃Es$k0d 1 c2 $̃B
p

s$kd ? $̃Bs $k0dg . (12)

On substituting the definition of the Fourier transform
$Ast, $rd

$Ast, $rd ­
Z d3k

s2pd3
$̃As$kde2isv$k t2$k?$rd (13)

into (5) and (6) we obtain

$̃Es $kd ­ iv$k
$̃As$kd (14)

and

c $̃Bs $kd ­ iv$k
$̂k 3 $̃As $kd , (15)

where we have written$k ­ j $kj $̂k and v$k ­ cj $kj. So,
substituting (14) and (15) into (12) we find
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uclst, $rd ­
´0

2

Z d3kd3k0

s2pd6
v$kv$k0eisv $k2v $k0 dt2is $k2$k0d?$r

3 f $̃A
p

s $kd ? $̃As$k0d 1 $̂k 3 $̃A
p

s$kd ? $̂k0 3 $̃As$k0dg .
(16)

On using the Coulomb gauge condition in (13) we find
momentum space

$k ? $̃As $kd ­ 0 , (17)

that is, $̃As $kd is always orthogonal to$k. Thus, we may

expand $̃As$kd in the basis of two orthonormal polarization
c

t
l
a

e

c

e

n

vectors $́ s61ds $kd such that

$́ slds $kd ? $́ sl0ds $kd ­ dll0 (18)

and, of course,

$́ slds $kd ? $̂k ­ 0 . (19)

So, we may write

$̃As $kd ­
X

l­61

Ãslds $kd $́ slds $kd . (20)

Substituting this into (16) we find
uclst, $rd ­
´0

2

X
ll0

Z d3kd3k0

s2pd6
Ãp

slds $kdÃsl0ds $k0dv$kv$k0 eisv$k 2v $k0 dt2is$k2$k0d?$r

3 f $́ p
slds $kd ? $́ sl0ds$k0d 1 $̂k 3 $́ p

slds $kd ? $̂k0 3 $́ sl0ds $k0dg . (21)
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Thus, comparing (8) and (21) we see that the classi
and quantum electric and magnetic energy densities w
be equal if the single-photon state is given in momentu
space by

fslds $kd ­

r
´0v$k

h̄
Ãslds $kd . (22)

It can be shown for EDEPT solutions that suchfslds $kd
are normalizable. Thus, we have shown that there inde
exist single-photon states which have an arbitrarily fa
power-law falloff of their energy densities.

We shall now demonstrate that the detection rate for
localized one-photon states also fall off with an arbitrari
fast power law. The detection rate of a single-photon st
jfl for an ideal, pointlike photon detector at$r may be
shown to be proportional to

SijkfjE
s2d
i st, $rdEs1d

j st, $rdjfl , (23)

where Sij is the detector sensitivity; see, for exampl
Glauber [9]. Let us note from the paper of Ziolkowski tha
the electric field of the doughnut solutions is polarized su
that its classical electric field is in the$eu direction. It may
similarly be shown that the “photodetection amplitude
k0j $Es1dst, $rdjfl for the corresponding photon statejfl will
be in this direction. Using this observation, we find that th
detection rate is proportional to the electric energy dens

´0kfj $Es2dst, $rd ? $Es1dst, $rdjfl . (24)

Now, since the electric energy densities of our singl
photon states are equal to those of the correspond
al
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EDEPT solutions, the single-photon detection rates
simply proportional to the classical electric energy de
sities, which fall off asymptotically with an arbitrarily fas
power law. Hence, we have demonstrated that by cho
ing a the detection rates of these single-photon states
be made to have a power-law falloff which is arbitrari
rapid.
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