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Localization of One-Photon States
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Single-photon states with arbitrarily fast asymptotic power-law falloff of energy density and
photodetection rate are explicitly constructed. This goes beyond the recently discovered tenth-power
law of the Hellwarth-Nouchi photon which itself superseded the long-standing seventh-power law of
the Amrein photon. [S0031-9007(97)03953-7]

PACS numbers: 03.70.+k

Given any classical solution of the source-freelation of localizability of elementary particles to a gen-
Maxwell's equations it is possible to write down a corre- eralized imprimitivity applicable to photons. It was be-
sponding quantum mechanical one-photon state lieved (without proof) that such a construction gave the

tightest isotropically localized single-photon state. Such a
|¢) = ] Qr )3 f W(k)au)(k) 10), (1) state can be shown to have an asymptofig’|” falloff of
A==l its energy density and photodetection rate [5]. The situ-
where [0) represents the vacuuryiyy(k) is a c-number  ation remained thus for about a decade until recently when
function, anday, (k) is the creation operator for a single a particular explicit solution of Maxwell's equation by
photon state with momentuin and helicityA. Thisis a  Hellwarth and Nouchi [6] led to a one-photon state with
general wave-packet state. The transverse nature of thg asymptotic falloff ofi /|7|'° for the photodetection rate
classical solution is reflected in the photon having only 7] at any finite timer. Consequently, it became clear that
(rather than 3) spin degrees of freedom (i.e., 2 helicities)the state from the generalized imprimitivity construction

In particular, we will show that was not the most isotropically localized possible. How-
. N ever, the question of the existence of a fundamental limit
;8(*)(]‘)]((”(]‘) “\ & Alk) @ tothe sharpness of the power-law falloff remained open.

3 . In this paper we will show that single-photon states with
whereA(k) is the spatial Fourier transform df(, ), the  arbitrarily high powers of asymptotic falloff can be explic-
classical solution for the vector potential, aBgl)(k) is itly constructed.

the polarization vector associated with helicitand wave The EDEPT solutions—Following the same calcula-
vectork. It has been known for a long time that the con-tions as in the paper of Ziolkowski [8], we can obtain the
figuration space representation |@f) cannot have delta- (focused) EDEPT (electromagnetic directed-energy pulse-
function support or support in a finite region of space [1,2] train) solutions for the classical vector potential, expressed
This prompted Jauch and Piron [3] and Amrein [4] toin cylindrical coordinates, as the real and imaginary
make a formal modification of the imprimitivity formu-l parts of

2a o8 éoplgr + iz — 7)]* 7!
[r2 =72 +i(g2 — gz — i(g + g7 + gig2]*t”

Alr,p.2) = 3)

wherea is an integerr> = p2 + z2, 7 = ct, and, in the notation of Ziolkowski, we have get= 0, 8 = go, 20 = g1,
andaB = g,. As we see from (1) and (2) these solutions provide a convenient way of producing normalizable single-
photon states with all the required transversality properties.
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Note that the leading power in distance in the denomifree electromagnetic field in vacuum can be written as
nator of the above is?**2 and that in the numerator
the leading power is onlyy at any finite timet. Thus H,7) = go N[EZ(,, 7) + 621§2(,, M1, (4)
there exist real or imaginary solutions for the vector po- 2

i i i a+2
tential which fall off asymptotically ag/r where a where 1/eopo = and where ' represents normal

is odd for a real solution and even for an imaginary so-

lution. The solution of Hellwarth and Nouchi is obtained operator ordering and and B are free operator fields

from Eq. (1) withe = 1. Since the electric and mag- given, in the Coulomb gauge, by the usual relations
netic fields are the derivatives of the vector potential with - oA

respect to distance and time, these fields will also in- E=- a1 (5)
evitably fall off asymptotically as/r**¢. Herec is some

small integer whose value depends on whether a real @nd
imaginary solution is required. Indeed an explicit cal- B—vxi (©)
culation shows that the electric and magnetic fields fall :

off asymptotically as a power which increases linearlyas ysual, normal ordering is required to remove the

with increasingx. These expressions are rather long, ancﬂivergent energy density of the vacuum. The vector

so we do not give them here. Since we have not impotential (operator) may be written, in vacuum, as
posed an upper bound am, other than it remain finite,

we conclude that there is, in principle, no limit to the A7) = Z j’ d3k o i(@it k)

asymptotic rate of falloff of the electric or magnetic en- ’ ffr (2m)3

ergy densities of theselassical solutions of Maxwell's

equations. w | 7 i)+ He 7
Arbitrarily localized one-photon states:We shall now 2gpwj, sy (Kagy (k) <

demonstrate that there exist one-photon states with the
same electric and magnetic energy densities as the clas§ier the general one-photon stdig) the energy density is
cal EDEPT solutions. First, the Hamiltonian density of| agiven by

Ugm (1, 7) = (S| FH (1, 7)|b)

i Bkd’k ., - T S
=5 Zf 56 LK) fan (ke et 10T forar
2 AN (277)
- - 3 « 7 s/ N -
X [5?}0(1{) * 5(/\1)(](/) + k >< S(A)(k) * k X S(A/)(k/)]. (8)

Furthermore, we require a single-photon state to lbend similarly for the magnetic field, and using these

normalizable and so expressions in (10), we find
d’k >0 35437

= ~ . € kd ki)

(¢le) EA f EIsE |fony ()7 < oo 9) Mcl(tsr):?() oo il@i—w)—ik=k)

Now, since Ziolkowski uses a classical theory, we R ANy
would like to find a one-photon statg,)(k), such that X [E (k) - E(K) + "B (k) - BK)]. (12)
it has the same energy density as the Hellwarth-Nouchbn substituting the definition of the Fourier transform of
solutions. So we must find a suitable momentum-spacg , 7)
expression for a classical energy density. The classical

version of (4) is the energy densit - Bk 3 - . .
“) et A7) = AdpeienEN (13)
wat,7) = LELH + CB@H)L (10) (2m)
R R into (5) and (6) we obtain
whereE and B are now classical fields, so do not require N
normal ordering. Now, defining the Fourier transforms of E(k) = iwzAk) (14)
the (real) electric field by and
3 ~ o ) .. 3 5 3
Eer = [ L5 E@eiwntn cB(k) = iwjk X A(k), (15)
2m)3 .
_ Bk E*(Iz)ei(wﬁ"’;'?) (11) where we have writterk = lk|k and wp = clkl. So,
) ’ substituting (14) and (15) into (12) we find
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. dkd’k! s — oo i E Bk
ua(1.7) = % o w,;w,;,e’(“’k“"k/)"’““k)" vectorse +1(k) suchﬁthat )
L BT L B (k) - B (k) = S (18)
X [A (k) - A(K') + k X - k! X .
[A () - A + & XA () - kX AK)] and, of course,
(16) - 5
On using the Coulomb gauge condition in (13) we find in Ewk) -k =0. (19)
momentum space ) So, we may write
k- A(k) =0, (17) 5 . o
L N Alk) = D> Awk)Bu k). (20)
that is, A(k) is always orthogonal t&. Thus, we may A==1

expand,fl(l;) in the basis of two orthonormal poIarizatioP Substituting this into (16) we find

N &0 d3kd3kl ~w T~ 2 i(w;— .)t_-(];_];/),':
wat.i) = 23 f TR Aoy A () w0 wp el @ e —iG=E)7
¢ ) - (277-)6 (A (A) k“k

X [E6y(k) + Bon(k) + k X &5 (k) - k' X By (k)]. (21)

Thus, comparing (8) and (21) we see that the classic&DEPT solutions, the single-photon detection rates are
and quantum electric and magnetic energy densities wilkimply proportional to the classical electric energy den-
be equal if the single-photon state is given in momentunsities, which fall off asymptotically with an arbitrarily fast

space by power law. Hence, we have demonstrated that by choos-
- g0W] ~ - ing a the detection rates of these single-photon states can
Jolk) = == Aw(). (22)  pe made to have a power-law falloff which is arbitrarily
i > rapid.
It can be shown for EDEPT solutions that su@h (k) One of us (C.A.) was supported by a Junior Research

are normalizable. Thus, we have shown that there indeegy,jentship from the School of Physical Sciences and
exist single-photon states which have an arbitrarily faSEngineering of King's College London.

power-law falloff of their energy densities.

We shall now demonstrate that the detection rate for the
localized one-photon states also fall off with an arbitrarily
fast power law. The detection rate of a single-photon state

|¢) for an ideal, pointlike photon detector &tmay be Radiation(Oxford University Press, London, 1995).
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