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Only Fermi Liquids Are Metals
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Any singular deviation from Landau Fermi-liquid theory appears to lead, for an arbitrarily small
concentration of impurities coupling to a nonconserved quantity, to a vanishing density of states at the
chemical potential and infinite resistivity as temperature approaches zero. Applications to copper-oxide
metals including the temperature dependence of the anisotropy in resistivity, and to other cases of non
Fermi-liquids are discussed. [S0031-9007(97)03911-2]

PACS numbers: 71.10.Ay

The resistivity in thec direction, p.(T), in the normal has been termed a marginal Fermi liquid [7].
phase of most copper-oxide (CuO) compounds increases The observed linear temperature dependence of the re-
with decreasing temperature while the in-plane resistivitysistivity and corresponding behavior of the frequency de-
pa.(T) has the opposite behavior, which for compositionspendent conductivity implies directly that the momentum
near those for the highegt. is proportional toT down  scattering rater,.. , in Cu-O compounds is proportional
to T =T. [1]. One may be led to suppose that, if to max|w|,T). The imaginary part of the single particle
superconductivity were not to interveng, — « while  self-energy ImX(w, T, kg) cannot have a higher power
pap — finite value asT — 0. For any finite quantum- dependence oftlw|,7) than the momentum scattering
mechanical transfer matrix element between adjacent rate. Through Kramers-Kronig transformation, this im-
planes, the asymptotic low temperature dependence iplies « < 1. The marginal case, Eq. (3), is consistent
different directions must be identical fér < T,,, where  with the measured tunneling conductance [8] as well as
-1 - the deduced electronic heat capacity [9], as is the low tem-
Tin (Txa) - tJ_- (1) P .
o _ _ _ perature resistivity derived here.
Herer;, (T) is the inelastic scattering rate. Anderson and | discuss below théw, T) dependence of the scattering
Zhou [2] conjectured that the renormalized matrix ele-rate from s-wavescattering off impurities for the non-
mentst, () — 0 in CuO compounds at low temperatures Fermi-liquids characterized in the pure limit by the
due to orthogonality effects. An alternative conjecture [3]marginal case as well as other < 1. This can be
(with a supporting calculation whose conditions of va-gone to a considerable extent without reference to any
lidity were not clear) put forward to resolve the issue ismicroscopic theory of the non-Fermi-liquid. Also, for a
that p,;, also— « as7 — 0 due to impurity scattering given «, the dimensionalityd will not be important as
in a non'Fermi'quUid. Recent eXperimentS [4,5] measur‘long asd > 1. Of coursew may depend owl.
ing the resistivity at low temperatures by suppressidg  The problem of impurities in a one-dimensional inter-
in a large magnetic field support this conjecture and findycting system has already been discussed [10]. The strong
pas(T) ~ pe ~ InT at low temperature. Similar behav- gjectronic localization at low energies due to impuri-
ior is also found (without applying a magnetic field) in ties in the noninteracting problem becomes even stronger
samples of the single layer Bi compound [6]. Here theoith interactions unless the interactions are attractive and
retical support for the conjecture that the resistivity of aghove a critical value depending on disorder. Then the
non-Fermi-liquid is infinity for7 — 0 for any finite con-  ground state has long-range superconductive correlations.
centration of impurities as well as the logarithm tempera-The situation I discuss here is different. As seen below

ture dependence is obtained. the leading effect of impurities in a non-Fermi-liquid in
A Landau Fermi liquid has the property that the real; = 2 or higher is not a localization of states but a renor-
part of the single particle self-energy malization of one-particle density of states to zero at the
ReS(w, T, kp) ~ x%, witha =1. (2)  chemical potential.

Consider impurities which in the absence of electron-
electron interactions have finitewave scattering ampli-
L ; . ; téjde [11]. The vertex correction due to the interactions
the quasiparticle, vanishes at the chemical potential and. . : T ; X
will in general introduce scattering into higher partial

is replaced by a branch cuta < 1 may be used to )

- o waves. But there is no reason why thavave scatter-
characterize a non-Fermi-liquid. The gentlest departurlen should vanish. Consider onlv this part for which the
from a Landau Fermi liquid with 9 ) y b

forward scattering limit characterizes the properties. In
3) this limit, a Ward identity provides the vertex including
the effect of electron-electron interactions.

Herex = o for |w| > T and= #T for T > |w|. For
a < 1, the pole in the single particle Green’s function,

Red(w,T,kp) ~ @ ‘ In&
X
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Let the bare impurity potential be [ j k | i i
A X
Vimp(r) = zvb\(r = ri), (4) , QI . OI R Cbl R Ol . > W —
where {r;} are the position of the impurities assumed (a) (b)

randomly distributed. We will assume also thater <«
1 and the concentration of impuritiesis low enough so i

that the mean-free patf, calculated without electronic /x\ //x\\

renormalizations satisfigsr£y) ' < 1. Thes-wave part AN e // \\ N

of the renormalized scattering from a given impurity is > —— OO
U= |imq_,0 Ak]:,w (q, 0) , (5) () (d

whereAy, . (g, 0) is the irreducible vertex due to electron- P

electron interactions for elastic scattering with momentum X X

transferg. SN

If an impurity couples to a nonconserved quantity SN N

(for instance, for Cu-O compounds, it can change the OG-0

equilibrium charge difference between Cu and O in a unit ()

cell or alter the local kinetic energy in a Cu-O bond), a

Ward identity gives that [12—14] (& = 0), FIG. 1. Graphs describing the calculation of the impurity self-

energy: (a) The impurity self-energy for a given configuration

lim AkF,w(CI,O) = Z‘l(w), (6) (i,j,_...) of impuritie_s. T_he line With_arr_ows is the single
q—0 particle propagator including renormalization due to electron-

electron interaction and the circle connected to the dashed lines
is the impurity vertex renormalized for the effect of interac-
. 9 tions. (b) Vertex corrections due to interactions neglected in
7 (w) = <1 — —Re E(kp,w)>. (7) (a). The wavy line represents electron-electron interactions.
Jw (c) Impurity self-energy (after configuration averaging) in the
The self-energy due to impurities from such a vertex for sself-consistent Born approximation. The thick line includes the

where

iven impurity configuration illustrated in Fig. 1(a) is self-energy due to interactions as well as due to impurities.
9 purity 9 _ g- 1(2) (d) Thet matrix with renormalized vertices of interaction from
Vimp (@) an impurity at sitei. (e) The crossed graphs for interference
Simp (@) = (8) effects between two impurities at siteand at sitej.

1 - Vimp(w)%G(kaw) |

where Vimp (@) = Y, #(0)8(r — R;) andG(k, w) is the essential difference), Eq. (9) gives

exact single particle Green'’s function including the effect 0 (N1 2 €F

of impurities. o o Mm@ =) E S i) @O
In Eqg. (8), vertex renormalization at a given impurity

alone has been considered. Vertex renormalization Whicself-ener and foer/Im 3% () > 1

spans across impurities, such as in Fig. 1(b), are propor- gy F imp 1& ’ )

; ‘ - 1 .

ggnal to(w/er) so that (8) may be considered asymptoti Im E?mp(w) - L <1 4 An _) ‘ (11)
y exact. 27 w

The strategy adopted here is to first evaluate a subsgthis was the result derived earlier [3]. However, this
of the processes in the expression (8), which are expectegosses over in the opposite limit to

to be the most singular. The result so obtained is used to
calculate corrections which show that the expectation is Im 20 (w) = A,/E—F In<&>. (12)
borne out. The most singular processes for the impurity P TT0 w
averaged self-energy are expected to be given by the selfhe above results, Egs. (11) and (12), are valid for
consistent Born approximation represented by Fig. 1(c): o > T. For o < T, wT should be substituted fo®

in Egs. (10) and (11). The crossover from (11) to (12)

2
Im E?mp(w) = c<%> ImZG’(k,w), (9)  occurs for
k

Where 170 = €o/vEr. For z evaluated from the marginal

| W, g __ 2€rTo 13

where we include inG'(k, w) the self-energy2’ which n maXw,, 7Ty) ) A2 (13)
includesX(w, k) as well aSE?mp(w).

Assuming a constant density of statdg0) over a

bandwidth = 2eg in the pure limit (other assumptions . @c -1

about the pure density of states do not produce any L T exp=A " Wkelo) (14)

oratw =0 at
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Note that beloww, the density of states near the Fermifects between scattering at different impurities. Consider
energy the former. For Fermi liquids the singular scattering from
1 a given impurity in the Born approximation is remedied
;Im%G’(k, w) = N0)/In(w./w), (15) by evaluating the matrix [Fig. 1(d)]:
which approaches zero at the chemical potential. I = fi/z .
The real part of the self-energy corresponding to I =iz %G(k’ )
Eq. (12) is a constant whose value depends on the low, _ ) ) .
and high-energy cutoffs and particle-hole asymmetry of N€ I matrix obeys the unitary limit77N(0) — 1 asz
the band structure. This can be absorbed as a change Jgcomes very small (but not zero), as in heavy fermions.
the chemical potential, just as for impurity scattering in | NS iS because for Fermi liquids G(k,0) = imN(0),
Fermi liquids, and does not affect the results. The twdN€ bare density of states, independent of the value of
major omissions in evaluating (9) in the self-consistent W€ may check the validity of the self-consistent Born
Born approximation are (i) possible strong renormalized@PProximation by evaluating the corrections to the self-

scattering from a given impurity and (ii) interference ef- €Nergy due to (16) by using = G in (16). Now we
| note that on impurity averaging, one gets correction terms

(16)

2 4
IM Simp (@) = Im E?mp(w)|:1 -+ (%ZG/(k,w)> -+ (%ZG/(k,a))) + } (17)
k k

Using (15), we see that the singularity due 0! is | Consider now the anisotropic resistivity of quasi-two-
canceled out to all orders leaving an analytic correctiordimensional materials. Two distinct temperature scales
of 0(vN(0)) < 1. need to be defined to discuss the anisotropic resistivity of
We may similarly consider correction due to crossednon-Fermi-liquids. One of them i&, , defined in Eq. (1),
graphs [Fig. 1(e)]. Again the renormalized density ofand the other i, defined in Eq. (14).7,, is enough to
state cancels the singularity im/z and the corrections discuss Fermi liquids. Fdf > T, ,, the layers are mutu-
are successive powers afuN(0). Since interference ally phase incoherent and momentum in is not conserved
between scatterers is not important, the wave functions the process of electron transfer between the planes. One
are not localized; the important effect is the vanishingcan calculatep ! by a tunneling rate calculation. The
of the density of states at the chemical potential, as inunneling rate (if the tunneling matrix element has some

Eq. (15). momentum dependence) is proportional to the (in-plane)
Fora < 1, Eq. (12) is modified to inelastic scattering rate. Them, '(T) ~ p,,(T). For
l—a T <« T,, a coherent propagation must prevail in a Fermi
Im E?mp(w) =~ /\JzéTF <%> , (18)  liquid andp.(T) ~ pa,(T). This behavior is indeed ob-
0

served, for example, in RuQ, [15].
so the effects of impurities are more singular. For non-Fermi-liquids two limiting cases can easily

The most important effect neglected above is thebe distinguished: (iY., < T,, which occurs for highly
renormalization by impurities of the fluctuation which anisotropic and fairly dirty materials. The resistivity in the
produced the non-Fermi-liquid state in the pure limit.c direction increases with decreasing temperature for all
This cannot be discussed without a microscopic theory fotemperatures but belo®, ,. Bothp,;, andp. have simi-
such fluctuations. A theory of such fluctuations has beetar temperature dependences belbw, but for7T > T, ,,
constructed [9]. The corrections to the fluctuations due tp ! ~ p,,. (i) T. > T.,: very high quality samples
impurities have been briefly examined which appear not t@f YBa,Cu;Og9 appear to fall in this class if we as-
change the results here in an essential way. This mattsume that in this low anisotropy materidl , is above
is however far from being settled. At this point it is bestthe measured temperature range. The more anisotropic
to leave this as an assumption and to point out that thdirty materials are consistent with class (i) but in the high
results thus obtained appear to agree with experiments, asiality samples studied, is quite low, not too far from
discussed below. T... Forinstance, in the measurements of Boebimgei.

A prediction following from Eq. (15) is that the spe- [15] on La g5SK.15CuQy, ket is estimated to be about 15
cific heatC(T) and the magnetic susceptibiligg(7T) have  which with w. = 2 X 10° K and A = 1, estimated from
the formsC(T)/T ~ x(T) ~ (InT)" !, forT < T,. For the slope of the linear resistivity and the optical conductiv-
s-wave scattering by impurities, there are no backwardty [7] gives T, = 0(20 K) from Eq. (17). This is consis-
scattering (vertex) corrections for the calculation of re-tent with the temperature at whigh, ,(7) has a minima
sistivity. The resistivity can then be calculated from thein the experiments and asymptotically below which a loga-
single particle Green’s function alone and is proportionakithmic temperature dependence is observed. Systematic
to In 3 for T < 7. estimations okg{, are not yet available to test Eq. (14).
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