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Any singular deviation from Landau Fermi-liquid theory appears to lead, for an arbitrarily s
concentration of impurities coupling to a nonconserved quantity, to a vanishing density of states
chemical potential and infinite resistivity as temperature approaches zero. Applications to copper
metals including the temperature dependence of the anisotropy in resistivity, and to other cases
Fermi-liquids are discussed. [S0031-9007(97)03911-2]
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The resistivity in thec direction,rcsT d, in the normal
phase of most copper-oxide (CuO) compounds increa
with decreasing temperature while the in-plane resistiv
ra,bsTd has the opposite behavior, which for composition
near those for the highestTc is proportional toT down
to T . Tc [1]. One may be led to suppose that,
superconductivity were not to intervene,rc ! ` while
ra,b ! finite value asT ! 0. For any finite quantum-
mechanical transfer matrix elementt' between adjacent
planes, the asymptotic low temperature dependence
different directions must be identical forT ø Txa, where

t21
in sTxad . t' . (1)

Heret
21
in sT d is the inelastic scattering rate. Anderson an

Zhou [2] conjectured that the renormalized matrix el
mentst'sT d ! 0 in CuO compounds at low temperature
due to orthogonality effects. An alternative conjecture [
(with a supporting calculation whose conditions of va
lidity were not clear) put forward to resolve the issue
that ra,b also ! ` as T ! 0 due to impurity scattering
in a non-Fermi-liquid. Recent experiments [4,5] measu
ing the resistivity at low temperatures by suppressingTc

in a large magnetic field support this conjecture and fi
ra,bsTd , rc , ln T at low temperature. Similar behav
ior is also found (without applying a magnetic field) i
samples of the single layer Bi compound [6]. Here the
retical support for the conjecture that the resistivity of
non-Fermi-liquid is infinity forT ! 0 for any finite con-
centration of impurities as well as the logarithm temper
ture dependence is obtained.

A Landau Fermi liquid has the property that the re
part of the single particle self-energy

Re Ssv, T , kFd , xa , with a ­ 1 . (2)

Herex ­ v for jvj ¿ T and­ pT for T ¿ jvj. For
a , 1, the pole in the single particle Green’s function
the quasiparticle, vanishes at the chemical potential a
is replaced by a branch cut.a , 1 may be used to
characterize a non-Fermi-liquid. The gentlest departu
from a Landau Fermi liquid with

Re Ssv, T , kFd , v

Ç
ln
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x

Ç
(3)
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has been termed a marginal Fermi liquid [7].
The observed linear temperature dependence of the

sistivity and corresponding behavior of the frequency d
pendent conductivity implies directly that the momentu
scattering rate,t21

mom, in Cu-O compounds is proportiona
to maxsjvj, T d. The imaginary part of the single particle
self-energy ImSsv, T , kFd cannot have a higher powe
dependence onsjvj, T d than the momentum scattering
rate. Through Kramers-Kronig transformation, this im
plies a , 1. The marginal case, Eq. (3), is consiste
with the measured tunneling conductance [8] as well
the deduced electronic heat capacity [9], as is the low te
perature resistivity derived here.

I discuss below thesv, T d dependence of the scatterin
rate from s-wavescattering off impurities for the non-
Fermi-liquids characterized in the pure limit by th
marginal case as well as othera , 1. This can be
done to a considerable extent without reference to a
microscopic theory of the non-Fermi-liquid. Also, for
given a, the dimensionalityd will not be important as
long asd . 1. Of coursea may depend ond.

The problem of impurities in a one-dimensional inte
acting system has already been discussed [10]. The str
electronic localization at low energies due to impur
ties in the noninteracting problem becomes even stron
with interactions unless the interactions are attractive a
above a critical value depending on disorder. Then t
ground state has long-range superconductive correlatio
The situation I discuss here is different. As seen belo
the leading effect of impurities in a non-Fermi-liquid in
d ­ 2 or higher is not a localization of states but a reno
malization of one-particle density of states to zero at t
chemical potential.

Consider impurities which in the absence of electro
electron interactions have finites-wave scattering ampli-
tude [11]. The vertex correction due to the interactio
will in general introduce scattering into higher partia
waves. But there is no reason why thes-wave scatter-
ing should vanish. Consider only this part for which th
forward scattering limit characterizes the properties.
this limit, a Ward identity provides the vertex including
the effect of electron-electron interactions.
© 1997 The American Physical Society 1535
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Let the bare impurity potential be

Vimpsrd ­
X

i

ydsr 2 rid , (4)

where hrij are the position of the impurities assume
randomly distributed. We will assume also thatyyeF ø
1 and the concentration of impuritiesc is low enough so
that the mean-free path,0 calculated without electronic
renormalizations satisfiesskF,0d21 ø 1. Thes-wave part
of the renormalized scattering from a given impurity is

ỹ ­ y limq!0 LkF ,vsq, 0d , (5)

whereLkF ,vsq, 0d is the irreducible vertex due to electron
electron interactions for elastic scattering with momentu
transferq.

If an impurity couples to a nonconserved quanti
(for instance, for Cu-O compounds, it can change t
equilibrium charge difference between Cu and O in a u
cell or alter the local kinetic energy in a Cu-O bond),
Ward identity gives that [12–14] (atT ­ 0),

lim
q!0

LkF ,vsq, 0d ­ z21svd , (6)

where

z21svd ­

µ
1 2

≠

≠v
Re SskF, vd

∂
. (7)

The self-energy due to impurities from such a vertex for
given impurity configuration illustrated in Fig. 1(a) is

Simpsvd ­
Ṽimpsvd

1 2 Ṽimpsvd
P
k

Gsk, vd
, (8)

whereṼimpsvd ­
P

i ỹsvddsr 2 Rid andGsk, vd is the
exact single particle Green’s function including the effe
of impurities.

In Eq. (8), vertex renormalization at a given impurit
alone has been considered. Vertex renormalization wh
spans across impurities, such as in Fig. 1(b), are prop
tional to svyeFd so that (8) may be considered asympto
cally exact.

The strategy adopted here is to first evaluate a sub
of the processes in the expression (8), which are expec
to be the most singular. The result so obtained is used
calculate corrections which show that the expectation
borne out. The most singular processes for the impur
averaged self-energy are expected to be given by the s
consistent Born approximation represented by Fig. 1(c)

Im S0
impsvd ­ c

µ
y

z

∂2

Im
X

k

G0sk, vd , (9)

where we include inG0sk, vd the self-energyS0 which
includesSsv, kd as well asS0

impsvd.
Assuming a constant density of statesNs0d over a

bandwidth ø 2eF in the pure limit (other assumptions
about the pure density of states do not produce a
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FIG. 1. Graphs describing the calculation of the impurity self
energy: (a) The impurity self-energy for a given configuration
(i, j, . . .) of impurities. The line with arrows is the single
particle propagator including renormalization due to electron
electron interaction and the circle connected to the dashed lin
is the impurity vertex renormalized for the effect of interac
tions. (b) Vertex corrections due to interactions neglected
(a). The wavy line represents electron-electron interaction
(c) Impurity self-energy (after configuration averaging) in the
self-consistent Born approximation. The thick line includes th
self-energy due to interactions as well as due to impuritie
(d) Thet matrix with renormalized vertices of interaction from
an impurity at sitei. (e) The crossed graphs for interference
effects between two impurities at sitei and at sitej.

essential difference), Eq. (9) gives

Im S0
impsvd ­

µ
1

2t0

∂
1
z2

2
p

tan21

µ
eF

Im S0svd

∂
, (10)

where t0 ­ ,0yyF. For z evaluated from the marginal
self-energy and foreFyIm S

0
impsvd ¿ 1,

Im S0
impsvd ø

1
2t0

µ
1 1 l ln

vc

v

∂2

. (11)

This was the result derived earlier [3]. However, this
crosses over in the opposite limit to

Im S0
impsvd ø l

r
eF

pt0
ln

µ
vc

v

∂
. (12)

The above results, Eqs. (11) and (12), are valid fo
v ¿ T . For v ø T , pT should be substituted forv
in Eqs. (10) and (11). The crossover from (11) to (12
occurs for √

ln
vc

maxsvx , pTxd

!2

ø
2eFt0

l2 (13)

or atv ­ 0 at

Tx ø
vc

p
exps2l21

p
kF,0d . (14)



VOLUME 79, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 25 AUGUST 1997

t
o

e
i

n
e
f

er
m
d

s.

n
lf-
Note that belowvx the density of states near the Ferm
energy

1
p

Im
X

k

G0sk, vd ­ Ns0dy lnsvcyvd , (15)

which approaches zero at the chemical potential.
The real part of the self-energy corresponding

Eq. (12) is a constant whose value depends on the l
and high-energy cutoffs and particle-hole asymmetry
the band structure. This can be absorbed as a chang
the chemical potential, just as for impurity scattering
Fermi liquids, and does not affect the results. The tw
major omissions in evaluating (9) in the self-consiste
Born approximation are (i) possible strong renormaliz
scattering from a given impurity and (ii) interference e
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fects between scattering at different impurities. Consid
the former. For Fermi liquids the singular scattering fro
a given impurity in the Born approximation is remedie
by evaluating thet matrix [Fig. 1(d)]:

t̃i ­
yiyz

1 2 yiz21
P
k

Gsk, vd
. (16)

The t̃ matrix obeys the unitary limitip t̃Ns0d ! 1 as z
becomes very small (but not zero), as in heavy fermion
This is because for Fermi liquids

P
k Gsk, 0d ­ ipNs0d,

the bare density of states, independent of the value ofz.
We may check the validity of the self-consistent Bor

approximation by evaluating the corrections to the se
energy due to (16) by usingG ­ G0 in (16). Now we
note that on impurity averaging, one gets correction term
Im Simpsvd ­ Im S0
impsvd

"
1 1

√
y

z

X
k

G0sk, vd

!2

1

√
y

z

X
k

G0sk, vd

!4

1 · · ·

#
. (17)
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Using (15), we see that the singularity due toz21 is
canceled out to all orders leaving an analytic correct
of 0sssyNs0dddd ø 1.

We may similarly consider correction due to cross
graphs [Fig. 1(e)]. Again the renormalized density
state cancels the singularity inyyz and the corrections
are successive powers ofcyNs0d. Since interference
between scatterers is not important, the wave functi
are not localized; the important effect is the vanishi
of the density of states at the chemical potential, as
Eq. (15).

For a , 1, Eq. (12) is modified to

Im S0
impsvd ø l

r
eF

2t0

µ
vc

v

∂12a

, (18)

so the effects of impurities are more singular.
The most important effect neglected above is t

renormalization by impurities of the fluctuation whic
produced the non-Fermi-liquid state in the pure lim
This cannot be discussed without a microscopic theory
such fluctuations. A theory of such fluctuations has be
constructed [9]. The corrections to the fluctuations due
impurities have been briefly examined which appear no
change the results here in an essential way. This ma
is however far from being settled. At this point it is be
to leave this as an assumption and to point out that
results thus obtained appear to agree with experiments
discussed below.

A prediction following from Eq. (15) is that the spe
cific heatCsT d and the magnetic susceptibilityxsT d have
the formsCsTdyT , xsTd , sln T d21, for T ø Tx. For
s-wave scattering by impurities, there are no backwa
scattering (vertex) corrections for the calculation of r
sistivity. The resistivity can then be calculated from t
single particle Green’s function alone and is proportion
to ln vc

T for T ø Tx.
n
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Consider now the anisotropic resistivity of quasi-tw
dimensional materials. Two distinct temperature sca
need to be defined to discuss the anisotropic resistivity
non-Fermi-liquids. One of them isTx,a defined in Eq. (1),
and the other isTx defined in Eq. (14).Tx,a is enough to
discuss Fermi liquids. ForT ¿ Tx,a, the layers are mutu-
ally phase incoherent and momentum in is not conser
in the process of electron transfer between the planes.
can calculater21

c by a tunneling rate calculation. Th
tunneling rate (if the tunneling matrix element has som
momentum dependence) is proportional to the (in-pla
inelastic scattering rate. Thenr21

c sTd , ra,bsT d. For
T ø Tx,a a coherent propagation must prevail in a Fer
liquid andrcsTd , ra,bsT d. This behavior is indeed ob
served, for example, in Sr2RuO4 [15].

For non-Fermi-liquids two limiting cases can easi
be distinguished: (i)Tx,a ø Tx , which occurs for highly
anisotropic and fairly dirty materials. The resistivity in th
c direction increases with decreasing temperature for
temperatures but belowTx,a. Bothra,b andrc have simi-
lar temperature dependences belowTx,a but forT ¿ Tx,a,
r21

c , ra,b. (ii) Tx ¿ Tx,a: very high quality samples
of YBa2Cu3O6.9 appear to fall in this class if we as
sume that in this low anisotropy materialTx,a is above
the measured temperature range. The more anisotr
dirty materials are consistent with class (i) but in the hi
quality samples studiedTx is quite low, not too far from
Tx,a. For instance, in the measurements of Boebingeret al.
[15] on La1.85Sr0.15CuO4, kF,0 is estimated to be about 1
which with vc ø 2 3 103 K and l ø 1, estimated from
the slope of the linear resistivity and the optical conduct
ity [7] gives Tx ø 0s20 Kd from Eq. (17). This is consis-
tent with the temperature at whichra,bsT d has a minima
in the experiments and asymptotically below which a log
rithmic temperature dependence is observed. System
estimations ofkF,0 are not yet available to test Eq. (14)
1537
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The results here have possible applications to oth
situations where interactions lead to non-Fermi-liqu
properties in the pure limit. These include the quantu
critical points in itinerant ferromagnets and antiferroma
nets as well as the mysterious transitions in CeCu62xAux

[16]. It would appear from the results here that disord
is strongly relevant at metal-insulator transitions otherwi
driven by electronic correlations. The effect of disord
in driving Ns0d ! 0 appears stronger than the localizatio
effect which sets in only forkF,0 , Os1d. The pseu-
doparticle Green’s function at then ­

1
2 quantum Hall

effect also has a marginal Fermi-liquid form [17]. Bu
since in this case the Green’s function is a gauge dep
dent object, a separate investigation is required for phy
cal quantities.
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