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Classification of Time Series Data with Nonlinear Similarity Measures
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We address the problem of unsupervised classification of time series recordings. The aim is t
groups of sequences or segments of a longer sequence which show similar dynamical behavior.
measures of similarity between two time series are considered. Groups or clusters are then form
minimizing a suitable cost function using simulated annealing. Apart from the classification of sys
the method can be applied to the monitoring of abrupt or continuous changes in nonstationary s
We further discuss the inclusion of supervision and propose the use of similarity measures in te
nonlinearity based on surrogate data. [S0031-9007(97)03799-X]
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In many areas of science and engineering, systems
be studied through the characteristic time evolution of o
servable properties. Different types of systems, or diff
ent states of a single system, can then be distinguis
by analyzing appropriate time sequences. Electrocar
graphic recordings, for example, are routinely classifi
by the cardiologist who looks for typical patterns ass
ciated with certain diseases. Malfunction in mechani
equipment can be detected in a time series by compa
the system’s dynamics during different periods of ope
tion. Usually, time series classification is done by co
puting some characteristic parameter (or a small num
of such parameters) for each time series in question. T
the actual classification is done on the base of this table
parameters. Often, this has to be done in anunsupervised
fashion since it is not knowna priori which measured pa-
rameters correspond to which class. In the case of a sc
characteristicg, g has to follow aK-humped distribution
in order to distinguishK different classes.

In this paper we propose a different approach wh
avoids the severe loss of information which occurs wh
a time series is summarized by one or a few characteri
numbers. Rather than comparing such numbers, we
compare the time series themselves. Such an appro
has been taken in the context of stationarity testing
Refs. [1–3], where it has been demonstrated that si
larity measures like cross predictions contain importa
additional information as compared to the correspond
measures for single time series. Here we show how
use the knowledge about similarities of time series to s
the set of sequences into meaningful groups, orclusters.
With the usual reduction to a single characteristic nu
ber, this separation has to be done in the one-dimensi
space spanned by this quantity. A set of mutual sim
larities allows us to work in an abstract space of dynam
cal properties without having to specify a base or even
dimension. A similar approach leads to promising resu
in the special context of the classification of the morph
ogy of electroencephalographic recordings [1].

Our purpose is to partition a collection ofJ time se-
quences intoK groups (or clusters) of series with sim
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lar dynamics. Of course, the sequences can also be s
ments of one long recording. There is rich literature o
the general classification problem (see, e.g., Ref. [4]). W
are here interested in the case that the objects (these
in our case time sequences) have to be grouped on
base of a table ofdissimilaritiesonly. Proper coordinates
in a metric space are not available [5]. We cannot expe
that the dissimilaritiesgij between seriesi andj are proper
distances fulfilling the triangle inequality. They will how-
ever be taken to be (or made) symmetric. For “simila
objects,gij should be smaller than for “dissimilar” objects
In this paper we will use cross-prediction errors (Ref. [2
or normalized cross-correlation sums (Ref. [6]) as dissim
larities. Note that two time series realizations respecti
the same dynamics cannot be expected to havegij ­ 0
exactly.

In order to classify theJ objects intoK clusters let us
define a membership indexu

snd
i which is 1 if objecti is

in clustern and 0 otherwise [7]. We have
PK

n­1 u
snd
i ­ 1

and a cluster is defined asCsnd ­ hi: u
snd
i ­ 1j. We want

to form clusters such that the average dissimilarity of o
jectswithin each cluster is minimal. If we definejCsndj ­PJ

i­1 u
snd
i to be the number of objects in clustern, then the

average dissimilarity of objecti to the objects in clustern
can be written as

D
snd
i ­

1
jCsndj

JX
j­1

u
snd
j gij . (1)

The average dissimilarity of objects within clustern

is then Dsnd ­ s1yjCsndjd
PJ

i­1 u
snd
i D

snd
i . For the total

average dissimilarity we take a sum over all cluster
weighted by their numbers of members,D ­ s1yKd 3PK

n­1 jCsndjDsnd. Thus an optimal partitioning into clus-
ters can be found by minimizing the cost function

E ­ KD ­
KX

n­1

1
jCsndj

JX
i,j­1

u
snd
i u

snd
j gij . (2)

In this motivation, some arbitrary choices have bee
made. In particular we could have weighted the cluste
with higher powers of their size, thereby introducing
© 1997 The American Physical Society 1475
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bias towards clusters with equal size. Other alternativ
are discussed in the literature [4].

We numerically minimizeE in Eq. (2) by simulated
annealing, which is particularly useful for discrete min
mization problems with false minima. The problem
formulated as a thermodynamic system. The temperat
T is decreased slowly to allow the system to settle dow
to its ground state. In this analogy the cost functio
of a configuration plays the role of the energy of
microstate. The goal is to reach the absolute minimu
the ground state atT ­ 0. In a Metropolis simulation, a
new configuration is generated by moving an object fro
one cluster to another. The new configuration is accep
with a probability given by the Boltzmann probability
distribution p ­ exps2DEyT d if DE . 0 and p ­ 1
if DE # 0. For a discussion of simulated annealin
see, e.g., Ref. [8]. In all examples where the glob
minimum was known, the annealing scheme converg
fast and reliably to that configuration. Of course, sin
the dissimilarities are subject to fluctuations, the minimu
of E may not always be given by the desired clustering

For time series objects, many dissimilarity measur
can be thought of. Since we want to assign a hi
degree of similarity to two different realizations of th
same process, although they might be out of phase w
each other, we will quantify the closeness of dynamic
systems or their attractors rather than individual tim
series. The question of similarity between thedynamics
of two signals has been addressed previously in Refs.
3,6]. The question if twotrajectories are related by a
mapping of certain properties is discussed in Refs. [9,1

If the time series in question can be adequately d
scribed by finite order linear models then it seems mo
plausible to define similarity through the coefficients o
this model. In this paper we mainly have applications
nonlinear settings in mind. Most nonlinear discriminatin
statistics which are commonly used are straightforward
generalized to similarity measures. LetX ­ hxkj and
Y ­ h ylj, k, l ­ 1, . . . , L be two time series we want to
compute the dissimilarity of. First we form delay vector
as usual,$xk ­ sxk2sm21dt , xk2sm22dt, . . . , xkd. Following
Ref. [6], the Grassberger-Procaccia correlation sum [1
can then be generalized to

CXY sed ­ C0

LX
k­k0

LX
l­l0

Qse 2 k $xk 2 $ylkd , (3)

where CXX is the usual correlation sum (apart from th
fact that entries with smalljk 2 lj have to be excluded
from the sum),k0 ­ l0 ­ sm 2 1dt 1 1, and C0 is a
normalization constant. We can take eitherCXY directly,
or CXY y

p
CXXCYY , or the square of any of these as

similarity measure. The cross-correlation sum (3) h
been used as a similarity measure for the study
nonstationary time series in Ref. [3].

One way to estimate the maximal Lyapunov expone
from time series data is by observing the divergence
1476
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close-by pairs of trajectories [12]. Here the generalizati
could be to study pairs with one member from time seri
i and the other from seriesj. These are however no
expected to diverge exponentially whence the divergen
rate will become scale dependent.

For prediction errors a generalization has been d
scribed in Ref. [2]. Nonlinear predictorsFX and FY are
formed usingX and Y , respectively, as databases. Di
ferent parametric modelsFX and FY could in principle
be distinguished by the difference in the parameters. T
relation between the parameters and the dynamical
havior of F, however, is usually quite involved; model
with different parameters may be almost equivalent on t
data. Therefore we compute the (nonsymmetric) cro
prediction errorsX,Y , defined as the root mean square
error ofFX applied toY :

s2
X,Y ­

1
L0

L21X
k­sm21dt11

k $yk11 2 FXs $ykdk2,

where L0 ­ L 2 sm 2 1dt 2 1 is the number of delay
vectors available. In principle,F can be taken from any
class of time series models. We prefer nonparame
models like the locally constant or locally linear approx
mations. The former are known in the statistical literatu
as kernel estimators. In this paper we use the same lo
cally constant predictor as in Ref. [2]. An alternative wa
to compare two predictive models is through the avera
difference in the predictions they yield; see Ref. [1].

Let us illustrate the use of dissimilarities and clust
algorithms with a couple of example time series. If th
series have been generated in groups of similar dynam
successful clustering can be simply stated by comparis
to the correct grouping. Once the clusters have be
formed, they can also be used to construct a coordin
space for time series objectsi. The coordinates are simply
the average dissimilaritiesD

snd
i of object i to the objects

in cluster n, as given by Eq. (1). This representatio
will enable us to judge if there are distinct clusters
if the sequences differ through a continuously changi
parameter.

First, consider a generalized baker map

yn # a: un11 ­ bun, yn11 ­ ynya ,

yn . a: un11 ­ 0.5 1 bun , yn11 ­
yn2a

12a ,

with a ­ 0.4. The parameterb can be varied without
changing the positive Lyapunov exponent [13]. W
create 50 sequences withb ­ 0.6 and 50 with b ­
0.8, each of them of length 400. We calculate cros
prediction errorssi,j and from these form a symmetric
dissimilarity matrix:gij ­ ssi,j 1 sj,id2y4si,isj,j . This
particular choice was made in order to demonstrate t
the information contained in the diagonal entriessi,i

is not used (gii ­ 1;i). Two clusters are formed by
minimizing E. In Fig. 1, D

s2d
i is plotted againstD

s1d
i .
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Two distinct groups can easily be seen and the algorit
forms exactly the two desired clusters.

The second example is also a baker map time series
now b is changing continuously from0 to 1. It is split
into 20 segments of length 2000 and between them cro
correlation sums [6]Cij are calculated. As a dissimilarity
measure we choosegij ­ j1 2 Cijy

p
CiiCjj j which is

symmetric ini andj. In Fig. 2, distancesD
snd
i are plotted

for two clustersn ­ 1, 2 and in Fig. 3 for three clusters
n ­ 1, 2, 3. From these two plots we can see that the
is a continuous change of parameter; instead of a sh
“jump” in the distances they form a continuous path.

As a third example we consider an ensemble ofm
uncoupled Ulam maps,xn11,i ­ 2 2 x2

n,i , i ­ 1, m. For
each m ­ 1, . . . , M we create ten time series each
length 1000 by recordingsn,m ­

Pm
i­1 xn,i and normaliz-

ing to unit variance. Cross-prediction errors with embe
ding dimensionm ­ 3 and cluster analysis are used
order to distinguish how many maps have been summ
together. Up toM ­ 19, the algorithm separates th
groups without mistakes. AtM ­ 20 the first 15 faults
(out of 200 segments) occur. The algorithm was a
to distinguish two groups of ten series each withm ­
M 2 1 andm ­ M maps up toM ­ 30 without error.

Let us finally show how the concept of classificatio
based on dissimilarities can be used in a surrogate d
test for nonlinearity [14]. The idea of such a test
to create a Monte Carlo sample of “surrogate” data s
which are constrained to have the same linear proper
as the data to be tested but are otherwise random. T
a nonlinear statisticg is computed on the data and th
surrogates and a statistical test is performed to dec
if g0 of the data is significantly different from the
distribution of gi measured on the surrogates. In oth
words, the total set ofJ sequences containing data an
surrogates is classified into two groups one of which h
just one member. In the absence of nonlinear structu

FIG. 1. Distances of objects from two clusters generated
100 time series in two groups of 50. Baker map withb ­ 0.6
in the first group andb ­ 0.8 in the second group.
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this one-element cluster will contain the original dat
by chance with probability1yJ. Thus, if we find that
the classification singled out the original data, we ca
reject the null hypothesis at thes1 2 1yJd 3 100% level
of significance. It is obvious that this scheme can b
modified by the use of dissimilaritiesgij . In order to
check how this modification affects the discrimination
power of the test, we perform 600 tests with data se
of length 1000 from an NMR laser experiment [15] which
have been contaminated by 80% additive in-band nois
Each test is done at the 90% level of significance, th
is, using nine surrogate data sets, created according
Ref. [16]. Cross-prediction errors are used as abov
If the classification is done using diagonal termsgii

only (this corresponds to the usual surrogate data tes
nonlinearity is correctly detected in61.5% 6 2.5% of the
cases. Using the full matrixgij and forming two clusters
of size 1 and 9, respectively, correctly singled out the da
in 69% 6 2% of all trials. Thus the discrimination power
is significantly higher.

The usefulness of similarity measures from nonlinea
dynamical systems theory has been recently pointed o
by several authors [1–3]. We discussed different prop
sitions for dissimilarity measures, in particular, cross
prediction errors [2] and cross-correlation integrals [6
We demonstrated how a table of dissimilarities can b
used for the unsupervised classification of time series w
the help of cluster algorithms. In the scheme adopte
in this paper, learning can be supervised to any desir
extent by fixing the cluster memberships of any numb
of objects which then constitute the training set. Thes
memberships are simply excluded from the minimizatio
procedure. We showed that unsupervised classificati
can also be used to increase the power of Monte Ca
tests for nonlinearity.

A desirable generalization of the approach taken
this paper is to allow a smooth change of coordinate

FIG. 2. DistancesD
snd
i of objects from two clusters generated

for a time series split into 20 segments. The membership to t
two clusters is denoted by different symbols. Baker map wit
b varying continuously from 0 to 1.
1477
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FIG. 3. Same as Fig. 2, except that now three clusters a
formed.

between dynamical systems considered similar. Howev
the construction of a reliable measure of dissimilarit
with that property is still an open problem and subjec
to ongoing research.
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