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Classification of Time Series Data with Nonlinear Similarity Measures
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We address the problem of unsupervised classification of time series recordings. The aim is to form
groups of sequences or segments of a longer sequence which show similar dynamical behavior. Several
measures of similarity between two time series are considered. Groups or clusters are then formed by
minimizing a suitable cost function using simulated annealing. Apart from the classification of systems,
the method can be applied to the monitoring of abrupt or continuous changes in nonstationary signals.
We further discuss the inclusion of supervision and propose the use of similarity measures in tests for
nonlinearity based on surrogate data. [S0031-9007(97)03799-X]

PACS numbers: 05.45.+b

In many areas of science and engineering, systems cdar dynamics. Of course, the sequences can also be seg-
be studied through the characteristic time evolution of obments of one long recording. There is rich literature on
servable properties. Different types of systems, or differthe general classification problem (see, e.g., Ref. [4]). We
ent states of a single system, can then be distinguisheate here interested in the case that the objects (these are
by analyzing appropriate time sequences. Electrocardidn our case time sequences) have to be grouped on the
graphic recordings, for example, are routinely classifiecbase of a table adissimilaritiesonly. Proper coordinates
by the cardiologist who looks for typical patterns asso-in a metric space are not available [5]. We cannot expect
ciated with certain diseases. Malfunction in mechanicathat the dissimilaritiey;; between seriesand; are proper
equipment can be detected in a time series by comparingdjstances fulfilling the triangle inequality. They will how-
the system’s dynamics during different periods of operaever be taken to be (or made) symmetric. For “similar”
tion. Usually, time series classification is done by com-objects,y;; should be smaller than for “dissimilar” objects.
puting some characteristic parameter (or a small numben this paper we will use cross-prediction errors (Ref. [2])
of such parameters) for each time series in question. Theor normalized cross-correlation sums (Ref. [6]) as dissimi-
the actual classification is done on the base of this table darities. Note that two time series realizations respecting
parameters. Often, this has to be done iruasupervised the same dynamics cannot be expected to hgye= 0
fashion since it is not knowa priori which measured pa- exactly
rameters correspond to which class. In the case of a scalarIn order to classify the/ objects intoK clusters let us

characteristicy, y has to follow ak-humped distribution  define a membership mde/z{ which is 1 if objectz is

in order to distinguistk different classes. in cluster» and 0 otherwise [7]. We ha\EV 1 u, -1

In this paper we propose a different approach which d a clust defined a&") — @) _ 1w N

avoids the severe loss of information which occurs wherft ¢ & ClUSter is define = liiu . }'. Ve wan
form clusters such that the average dissimilarity of ob-

a time series is summarized by one or a few characteristi® e o )]
numbers. Rather than comparing such numbers, we Wi,pctsw:tyi)nn each cluster is mlnlmal. If_we defire™”| =
compare the time series themselves. Such an approaehi-i %~ to be the number of objects in clusterthen the
has been taken in the context of stationarity testing irfverage dissimilarity of objectto the objects in cluster
Refs. [L—3], where it has been demonstrated that simican be written as

larity measures like cross predictions contain important D(V) B J

additional information as compared to the corresponding |C(V Z ”J %1 )
measures for single time series. Here we show how to - o

use the knowledge about similarities of time series to splitthe average dissimilarity of objects within cluster
the set of sequences into meaningful groupsglasters  is then D™ = (1/|c* )Y, ', For the total
With the usual reduction to a single characteristic num-average dissimilarity we take a sum over all clusters,
ber, this separation has to be done in the one-dimensionaleighted by their numbers of membem, = (1/K) X
space spanned by this quantity. A set of mutual simi> %_, |C®)|D™). Thus an optimal partitioning into clus-
larities allows us to work in an abstract space of dynamiters can be found by minimizing the cost function

cal properties without having to specify a base or even its

dimension. A similar approach leads to promising results E =KD = Z IC(”>| Z @) _v i (2)
in the special context of the classification of the morphol- ij=1
ogy of electroencephalographic recordings [1]. In this motivation, some arbitrary choices have been

Our purpose is to partition a collection dftime se- made. In particular we could have weighted the clusters
quences intak groups (or clusters) of series with simi- with higher powers of their size, thereby introducing a
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bias towards clusters with equal size. Other alternativeslose-by pairs of trajectories [12]. Here the generalization
are discussed in the literature [4]. could be to study pairs with one member from time series
We numerically minimizeE in Eg. (2) by simulated i and the other from series. These are however not
annealing, which is particularly useful for discrete mini- expected to diverge exponentially whence the divergence
mization problems with false minima. The problem israte will become scale dependent.
formulated as a thermodynamic system. The temperature For prediction errors a generalization has been de-
T is decreased slowly to allow the system to settle dowrscribed in Ref. [2]. Nonlinear predictofsy and Fy are
to its ground state. In this analogy the cost functionformed usingX andY, respectively, as databases. Dif-
of a configuration plays the role of the energy of aferent parametric model8y and Fy could in principle
microstate. The goal is to reach the absolute minimumbe distinguished by the difference in the parameters. The
the ground state & = 0. In a Metropolis simulation, a relation between the parameters and the dynamical be-
new configuration is generated by moving an object fromhavior of F, however, is usually quite involved; models
one cluster to another. The new configuration is acceptedith different parameters may be almost equivalent on the
with a probability given by the Boltzmann probability data. Therefore we compute the (nonsymmetric) cross-
distribution p = exp(—AE/T) if AE >0 and p =1  prediction erroroy y, defined as the root mean squared
if AE =0. For a discussion of simulated annealing,error of Fx applied toY:
see, e.g., Ref. [8]. In all examples where the global

ini . 1 L—-1 R )
minimum was known, the annealing scheme converged ohy = — Z | ki1 — Fx(Goll%
fast and reliably to that configuration. Of course, since L Tt

the dissimilarities are subject to fluctuations, the minimum i
of E may not always be given by the desired clustering. WhereL' = L — (m — )7 — 1 is the number of delay
For time series objects, many dissimilarity measure/€ctors available. In principle;” can be taken from any
can be thought of. Since we want to assign a higH:Iass of_tlme series models. We prefer_nonparamet_rlc
degree of similarity to two different realizations of the models like the locally constant or locally linear approxi-
same process, although they might be out of phase witA!ations. The former are known in the statistical literature
each other, we will quantify the closeness of dynamicafS kernel estimators In this paper we use the same lo-
systems or their attractors rather than individual timeCally constant predictor as in Ref. [2]. An alternative way
series. The question of similarity between thgnamics [0 compare two predl_ctl_ve models_ls through the average
of two signals has been addressed previously in Refs. [1difference in the predictions they yield; see Ref. [1].
3,6]. The question if twarajectories are related by a Let us |Iluetrate the use of d|SS|m|Ier|t|es a_nd cluster
mapping of certain properties is discussed in Refs. [9,10f2!90rithms with a couple of example time series. If the
If the time series in question can be adequately deSeries have been generated in groups of similar dynamlcs,
scribed by finite order linear models then it seems mosguccessful clustering can be simply stated by comparison
plausible to define similarity through the coefficients oft0 the correct grouping. Once the clusters have been
this model. In this paper we mainly have applications informed, they can also be used to construct a coordinate
nonlinear settings in mind. Most nonlinear discriminatingSPace for time series objeats The coordinates are simply
statistics which are commonly used are straightforwardlythe average dissimilarities;”’ of objecti to the objects
generalized to similarity measures. L&t= {x;} and in cluster v, as given by Eq. (1). This representation
Y ={y}, k,1 = 1,...,L be two time series we want to Will enable us to judge if there are distinct clusters or
compute the dissimilarity of. First we form delay vectorsif the sequences differ through a continuously changing
as usualxy = (Xg—(m-1)rs Xk—(m—-2)r» - - -, Xx). Following  parameter.
Ref. [6], the Grassberger-Procaccia correlation sum [11] First, consider a generalized baker map
can then be generalized to
L L Uy =l Upy1 = By, Un+l = vn/a,
Cxy(e) = Coka IZI Oe — Il —wl),  @3) Up > gy = 05 + By, vaiy = 252
—Ro Lt b0
where Cxy is the usual correlation sum (apart from theWith @ = 0.4. The parametep can be varied without
fact that entries with smallk — I| have to be excluded changing the positive Lyapunov exponent [13]. We
from the sum),ko =Ilp = (m — 1)r + 1, and C, is a  create 50 sequences with = 0.6 and 50 with g =
normalization constant. We can take eitidgy, directly, 0.8, each of them of length 400. We calculate cross-
or Cxy/~/CxxCyy, or the square of any of these as aprediction errorso; ; and from these form a symmetric
similarity measure. The cross-correlation sum (3) haglissimilarity matrix:y;; = (o;; + 0;:)*/40;07;;. This
been used as a similarity measure for the study oparticular choice was made in order to demonstrate that
nonstationary time series in Ref. [3]. the information contained in the diagonal entries;
One way to estimate the maximal Lyapunov exponents not used {; = 1Vi). Two clusters are formed by
from time series data is by observing the divergence ominimizing E. In Fig. 1, D,@ is plotted againsthl).
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Two distinct groups can easily be seen and the algorithrthis one-element cluster will contain the original data
forms exactly the two desired clusters. by chance with probabilityl/J. Thus, if we find that
The second example is also a baker map time series, bthie classification singled out the original data, we can
now B is changing continuously frorf to 1. It is split  reject the null hypothesis at tHé — 1/J) X 100% level
into 20 segments of length 2000 and between them crossf significance. It is obvious that this scheme can be
correlation sums [6(;; are calculated. As a dissimilarity modified by the use of dissimilaritieg;;. In order to
measure we choose;; = |1 — C;;/,/CiiC;;| which is  check how this modification affects the discrimination
symmetric ini and;j. In Fig. 2, distance®” are plotted POWer of the test, we perform 600 tests with data sets
for two clustersy = 1,2 and in Fig. 3 for three clusters, ©f length 1000 from an NMR laser experiment [15] which
» = 1,2,3. From these two plots we can see that therd'ave been contaminated by 80% additive in-band noise.

is a continuous change of parameter; instead of a shar_%a‘:h test is done at the 90% level of significance, that

“jump” in the distances they form a continuous path. iS, using nine surroga'te.data sets, created according to
As a third example we consider an ensemblenof Ref. [16]. ('Zross.-pre'dmtlon errors are used as above.
uncoupled Ulam maps; +1; = 2 — x,%i i = 1.m. For If the classification is done using diagonal termg

eachm = 1.....M we create ten time series each ofONnly (this corresponds to the usual surrogate data test),
length 1000 by ,recording,, w =" x,: and normaliz- nonlinearity is correctly detected #1.5% = 2.5% of the

5 1= ’ . . .
ing to unit variance. Cross-prediction errors with embed€2s€s. Using the full matriy;; and forming two clusters
ding dimensionm = 3 and cluster analysis are used in of size 1 and 9, respectively, correctly singled out the data

order to distinguish how many maps have been summelf 69% * 2% of all trials. Thus the discrimination power
together. Up toM = 19, the algorithm separates the IS Significantly higher.

groups without mistakes. AW = 20 the first 15 faults The usefulness of similarity measures from nonlinear
(out of 200 segments) occur. The algorithm was apldynamical systems theory has k_)een recen_tly pointed out
to distinguish two groups of ten series each with= b_y_ several aL_Jthprg, [1.—3]. We dlscugsed d!fferent propo-
M — 1andm = M maps up ta¥ = 30 without error. sitions for dissimilarity measures, in particular, cross-

Let us finally show how the concept of classification Prediction errors [2] and cross-correlation integrals [6].
based on dissimilarities can be used in a surrogate daty® demonstrated how a table of dissimilarities can be
test for nonlinearity [14]. The idea of such a test isused for the unsuperwseq classification of time series with
to create a Monte Carlo sample of “surrogate” data setd® help of cluster algorithms. In the scheme adopted
which are constrained to have the same linear propertidd this paper, learning can be supervised to any desired
as the data to be tested but are otherwise random. Thé&itent by fixing the cluster memberships of any number
a nonlinear statistiey is computed on the data and the of objects which then constitute the training set. These

surrogates and a statistical test is performed to decid&@®mberships are simply excluded from the minimization
if v of the data is significantly different from the procedure. We showed that unsupervised classification

distribution of y; measured on the surrogates. In other®@n also be used to increase the power of Monte Carlo
words, the total set of sequences containing data and(€Sts for nonlinearity. _

surrogates is classified into two groups one of which has A desirable generalization of the approach taken in
just one member. In the absence of nonlinear structurd!iS Paper is to allow a smooth change of coordinates
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D FIG. 2. DistancesD}”) of objects from two clusters generated
FIG. 1. Distances of objects from two clusters generated fofor a time series split into 20 segments. The membership to the
100 time series in two groups of 50. Baker map with= 0.6 two clusters is denoted by different symbols. Baker map with
in the first group ang3 = 0.8 in the second group. B varying continuously from 0 to 1.
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