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Strongly Interacting Photons in a Nonlinear Cavity
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We consider the dynamics of single photons in a nonlinear optical cavity. When the Kerr
nonlinearities ofatomic dark resonancesare utilized, the cavity mode is well described by a spin-
1y2 Hamiltonian. We show that it is possible to achieve coherent control of the cavity-mode
wave function usingp pulses for single photons that switch the state of the cavity with very high
accuracy. The underlying physics is best understood as the nonlinearity induced anticorrelation betwe
single-photon injection/emission events, which we refer to asphoton blockade. We also propose
a method which uses these strong dispersive interactions to realize a single-photon turnstile devic
[S0031-9007(97)03903-3]
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It is well known that the observation of strictly quantu
effects in optics relies on the existence of strong nonlin
interactions between photons. Examples of such quan
optical phenomena that have been demonstrated exp
mentally include quadrature squeezing by parametic do
conversion and measurement of nonlocal correlations
entangled photon states [1]. On the other hand, ob
vation of quite a few fascinating phenomena such as
generation of a superposition of macroscopically distin
quantum states, i.e.,Schrödinger cats, have been in
most cases hindered by the difficulty in obtaining lar
nonlinearities in absorption (or decoherence) free me
To overcome this limitation, several groups have be
studying nonlinear optics in thestrong coupling regime
where the coupled-system eigenstates are superposi
of (bare) atom-cavity states [2–4]. Recently, the
Jaynes-Cummings nonlinearities have been utilized
the realization of a Schrödinger cat state in a microwa
cavity [4].

Using an alternative approach, two of us (H.S. a
A.I.) have recently proposed a new scheme which giv
resonantly enhanced Kerr nonlinearities that are limi
only by two-photon absorption [5]. These (essential
absorption-free giant optical nonlinearities are obtained
the weak atom-photon coupling limit and can be extend
to other material systems. Such a scheme can incre
the available nonlinear phase shift by almost 10 orders
magnitude for a given light intensity and loss coefficien
length product of the atomic medium [5].

In this Letter, we consider the problem of a nonline
optical cavity mode in the light of this new developme
and predict novel properties for both the intracavity a
the transmitted light fields. The photon-photon interacti
coefficient in such a nonlinear cavity could easily b
much larger than the cavity decay rate and the linewi
of the driving field, implying that the cavity photon
behave as strongly interacting particles. We show t
the cavity-mode dynamics in this limit is well describe
by a spin-1y2 Hamiltonian. Using the analogy with
0031-9007y97y79(8)y1467(4)$10.00
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atomic systems, we predict that it is possible to reali
p pulses for photons which may be used to switch t
state of the cavity with arbitrary accuracy. To explain th
strong antibunching of transmitted photons, we introdu
the concept ofphoton blockadein close analogy with
the phenomenon of Coulomb blockade for quantum-w
electrons. We also discuss a method which utilizes t
strong dispersive interactions between photons to rea
a single-photon turnstile device [6].

Figure 1 details the nonlinear cavity structure th
we envision: A confocal cavity with finesseF . 104

contains a low density atomic medium, whose ener
level structure may be represented by the four-st
diagram shown in Fig. 2. A nonperturbativecoupling
field resonant with thej2l-j3l transition creates an elec
tromagnetically induced transparency (EIT) or a da
resonance [7] at thenth cavity-mode frequency, which
is in turn assumed to be resonant with thej1l-j3l tran-
sition sv31 ­ vcavd. As a result, the cavity mode see
vanishing one-photon atomic loss but a giant self-pha
modulation coefficient, provided that the atomic transitio
energies satisfyv42 . v31 ¿ v21. The corresponding
real part of the third-order nonlinear susceptibility is [5]

Refx s3dg ­
Njm13j

2jm24j
2

2eh̄3V2
cDv42

, (1)

FIG. 1. The nonlinear cavity that we analyze. For simplicit
it is assumed that one of the mirrors has a smaller reflectiv
and provides the output.
© 1997 The American Physical Society 1467
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FIG. 2. The four-level atomic system that generates a re
nantly enhanced two-photon absorption limited Kerr nonline
ity. We assume that the optical transitionsj3l-j2l and j3l-j1l
are resonant.

whereN denotes the atomic density andmij denotes the
dipole matrix element of thejil-jjl transition. Vc is
the Rabi frequency of the coupling field, andDv42 ­
v42 2 vcav . The principal feature of Eq. (1) is that th
effective detuningfrom the first transition is given by
Vc, which can be much smaller than the natural wid
of state j3l. One can therefore obtain a large reson
enhancement in nonlinearity without creating any (sing
photon) loss, provided that dephasing of the (hyperfi
split) j1l-j2l transition is negligible [5]. In steady state
all the atoms will be in the ground statej1l (with small
virtual populations in the excited statesj2l and j4l, and
none in statej3l), implying that the system is two-photo
absorption limited.

The dynamics of the cavity mode is best analyzed
adiabatically eliminating the atomic degrees of freedo
In the limit where the two-photon atomic losses a
much smaller than the cavity decay rate, the effect
Hamiltonian for the cavity modesâd driven by a classica
light source is [1]

Ĥeff ­ h̄vcav âyâ 1 h̄kâyâyââ

1 ih̄
p

2Gcav sbpâ 2 bâyd 2
ih̄Gcav

2
âyâ , (2)

whereGcav ­ DvaxyF denotes the cavity decay rate v
mirror losses. The axial-mode spacingDvax is assumed
to be large compared to atomic and laser linewidths
that only one cavity mode needs to be considered.
third term describes the classical drive, whereb is the
electric field amplitude in natural units [1]. We assum
that the laser amplitude is, in general, time depend
with a corresponding linewidthDvlaser . The reflectivity
of the mirror on which the coherent field is incident
assumed to be higher than the other; however, we will s
use a single decay/coupling coefficientGcav and assume
that the difference in reflectivities is incorporated in
theeffectiveamplitudeb. The complete cavity dynamic
is obtained after quantum fluctuations associated w
1468
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the cavity decay are incorporated using stochastic wa
function methods [8]. The photon-photon interaction ter
k can be obtained fromRefx s3dg,

k ­
3h̄v2

cav

2eVcav
Refx s3dg ­ 3

jg13j
2jg24j

2

V2
cDv42

natom , (3)

wherenatom ­ NVcav andgij ­ s vij

2e h̄Vcav
d1y2mij.

We reiterate that the nonlinear cavity model describ
by the Hamiltonian of Eq. (2) was previously analyze
by several authors, and it was predicted that such a ca
would yield photon antibunching [9]. The novelty in ou
case is in the expression fork which predicts photon-
photon interaction coefficients that are orders of mag
tude larger than what was previously considered possi
(because of the one-photon loss limitation). Befo
presenting simulation results, we will make a roug
numerical estimate ofk: We assume a 2 cm cavity with
Vcav . 1 3 1024 cm3; a 1 cm atomic medium of density
3 3 1011 cm23; and typical dipole matrix elements
for alkali atoms mij . 3 3 10229 C m. If we choose
Dv42 . 2Vc . 1 3 109 radysec, we obtain a nonlinear
interaction coefficientk . 1 3 108 radysec. This is
about 20 times larger than the cavity decay rate, p
vided F ­ 104. For a typical upper state decay rate
G4 ­ 3 3 107 s21, the two-photon absorption rate is
approximately1y5 of the cavity decay rate, justifying the
effective Hamiltonian of Eq. (2). Doppler broadenin
does not affect EIT (i.e.,x s1d) if states j1l and j2l are
hyperfine split states [7]. Kerr nonlinearity is only slightl
modified since typical Doppler widths are comparab
to the assumedDv42. The principal effect of Doppler
broadening in an atomic vapor cell is the enhancem
of two-photon absorptionsImfx s3dgd. Therefore, the
assumption of negligible atomic losses is only valid fo
trapped atoms or beams. We note that Rochet al. [10]
have recently demonstrated a magneto-optical trap w
atomic density and volume that are comparable to tho
assumed here. Since the only nonperturbative coupl
in our scheme is between two unoccupied atomic stat
the trapping process remains unaffected.

The single-mode description of the cavity that we u
is valid provided that the nonlinear interaction coefficie
k is much smaller than the axial-mode spacing. Wh
k ­ 0, the applied field couples all states in the harmon
ladder of cavity-mode eigenstates. On the other ha
for k ¿ Gcav , b

p
Gcav , Dvlaser , the applied field may only

couple the vacuum statej0l to the Fock state with a single
photon j1l resonantly. The higher lying photon-numbe
states may be neglected since they are out of resona
The cavity mode in this limit is well described by the spin
1y2 Hamiltonian

Ĥapp . h̄vcavŝ11 1 ih̄
p

2Gcav sbpŝ01 2 bŝ10d

2
ih̄Gcav

2
ŝ11 , (4)
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where we have introduced the projection operatorsŝij ­
jil k jj for photon-number eigenstates. Clearly, this effe
tive model is analogous to an atom driven by a reson
laser field, where a two-level description is satisfactory d
spite the presence of infinitely many excited states. Thi
one of the principal results of our Letter: Using the nonli
earities ofatomic dark resonances, we can create strongly
interacting photons in a cavity mode. The dynamics of t
cavity mode is in turn governed by the simple coheren
driven spin-1y2 Hamiltonian of Eq. (4); this is justified by
the numerical simulations we discuss below.

Before proceeding, we note that thetwo-level behavior
of a strongly coupled atom-field system has been predic
in Ref. [2]: Tian and Carmichael have demonstrated th
when a classical drive field is tuned on resonance w
one of thevacuum Rabi resonances, the atom cavity-mode
molecule[2] oscillates coherently between the statesjg, 0l
and jl, 1l ­ sje, 0l 1 jg, 1ldy

p
2, wherejgl sjeld denotes

the atomic ground (excited) state andjil denotes the Fock
state with i photons. The principal difference betwee
the spin-1y2 behavior that we predict and this previou
result is that our predictions are obtained for a pure c
ity mode by adiabatically eliminating the atomic degre
of freedom. This feature, together with the large nu
ber of atomss.1 3 107d participating in the nonlinear in-
teraction, makes our scheme independent of atom-num
fluctuations and decoherence in the atomic system.
addition, the realization of two-level behavior of a pu
(nonentangled) cavity mode enables us to coherently c
trol the cavity dynamics as we shall describe shortly.

The physics behind the effective Hamiltonian of Eq. (
is best understood by considering the strong phot
photon interactions. When the cavity is inj0l, a photon
from the driving field is injected with a probability
determined by the drive strength. However, injection
a second photon will be blocked, since the presence
two photons in the cavity will require an additionalh̄k

energy, which cannot be provided by the incoming la
photons. Only after the first photon leaves the cav
can a second one be injected. The strong interacti
between the photons therefore cause aphoton (Kerr)
blockadeof cavity transmission, in direct analogy with th
Coulomb blockade of resonant tunneling in mesosco
semiconductors [11]. We remark that this discussion
valid for both thermal and coherent driving fields.

First, we consider the limit of a weak continuou
wave (cw) coherent driving field: Figure 3(a) show
the results of a single quantum Monte Carlo wa
function (MCWF) simulation [8] for the atom-cavity
parameters given earlier. We observe that the num
of cavity photons varies between0 and 1, but never
exceeds unity due to the photon blockade effect.
times immediately following a photon loss event (via th
imperfect cavity mirrors), the cavity mode is necessar
in the vacuum state. Therefore the detector that cou
the photons emitted from the cavity will never regist
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FIG. 3. MCWF simulation results under cw excitatio
(a) the time evolution of the expectation value of the cavi
mode photon number for a single quantum trajectory, a
(b) the second-order coherence function (solid line). T
dashed line in (b) shows the same calculation carried out u
the approximate spin-1y2 Hamiltonian.

two photons in time intervals much shorter than the cav
decay time. The physics is completely analogous
that of a single (two-level) atom, where antibunching
resonance fluorescence has been observed. Figure
shows the normalized second-order coherence func
gs2dstd, calculated using the MCWF method and t
effective Hamiltonian of Eq. (2): We clearly observ
that gs2ds0d ­ 0, demonstrating the antibunching of th
emitted photons. The dashed curve shows the s
calculation carried out using the approximate Hamilton
of Eq. (4): We observe in all cases that the predictio
of the Hamiltonians are identical. The slight differen
in gs2dstd predicted by the two models is complete
due to finite averaging effects; in fact, when we use
same set of random numbers for the two simulations,
corresponding curves are indistinguishable.

Next, we consider the pulsed excitation of the cavi
It is well known in atomic physics that the state of a tw
level atom can be set with arbitrary accuracy using
herent laser pulses that have a givenarea ­

R
dtVstd,

whereVstd ­ 2
p

2Gcav b is the time-dependent Rabi fre
quency. Since the nonlinear cavity that we are envisi
ing is governed by the same effective Hamiltonian a
1469
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FIG. 4. MCWF simulation of the time evolution of the
expectation value of the cavity-mode photon number un
pulsed excitation. The plot shows a single quantum trajecto
For the chosen “area” of the classical drive field, one hasp-
pulse excitation of the cavity mode. (Inset: closeup of a sin
photonicp pulse.)

driven two-level atom, we expect to be able to switch t
state of the cavity mode fromj0l to j1l using a laser pulse
of (dimensionless) areap. In fact, by adjusting this area
any coherent superpositionaj0l 1 bj1l of the two Fock
states may be generated.

Figure 4 shows the time evolution of the cavity
mode photon number under pulsed laser excitation. O
again, simulations are carried out using the MCW
method with the effective Hamiltonian of Eq. (2). Fo
simplicity, we have chosen square pulses with pulse wi
tlaser ­ 0.4G21

cav and peak amplitudebmax ­ 2.8
p

Gcav .
We once again takek ­ 20Gcav , which satisfiesk ¿

t
21
laser ,

p
Gcav bmax . Gcav . The quantum trajectory [8]

result shown in theinset demonstrates that the cavit
mode evolves fromj0l to j1l after each applied lase
pulse. By increasingk and/or choosing optimal pulse
shapes, one can further increase the degree of cohe
control of the cavity wave function.

It is also shown in Fig. 4 that when a train ofM
such p pulses with a periodTp ­ 10G21

cav is utilized,
the generated output light field consists of optical puls
that contain one, and only one, photon. These heral
single photons in a given observation-time window for
a special class ofmultimode number states: They
have well-defined number and emission time informatio
which is achieved at the expense of increased ph
and energy uncertainty. This is a nonclassical state
light with a characteristic second-order coherence funct
which, in the ideal case, exhibits peaks att ­ nTp , n ­
1470
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1, 2, . . . , and vanishes elsewhere [6]. The turnstile devi
described above has an uncertainty in the photon detec
time that is given byG21

cav . An alternative approach, which
can decrease the time uncertainty, is to introduce cav
dumping events that follow thep pulses by means of
an intracavity modulator which decreases the reflectiv
of one of the mirrors fromø1 to ø0. The generated
heralded single photons in this case have a pulse wi
that is determined by the cavity round-trip time.

In summary, we have shown that resonantly enhanc
absorption-free Kerrr nonlinearities open up a new d
main for nonlinear optics in which the interaction streng
of single photons is larger than all the other relevant e
ergy scales. We have demonstrated that this property
lows for the treatment of the cavity mode as a spin-1y2
system and opens up the possibility of realizing stron
antibunching and deterministic photon injection into
cavity mode. The realization of a single-photon turnsti
device and the generation of an arbitrary superposition
zero- and one-photon states may be useful in quant
computation applications.
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