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Strongly Interacting Photons in a Nonlinear Cavity
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We consider the dynamics of single photons in a nonlinear optical cavity. When the Kerr
nonlinearities ofatomic dark resonanceare utilized, the cavity mode is well described by a spin-
1/2 Hamiltonian. We show that it is possible to achieve coherent control of the cavity-mode
wave function usingr pulses for single photons that switch the state of the cavity with very high
accuracy. The underlying physics is best understood as the nonlinearity induced anticorrelation between
single-photon injection/emission events, which we refer tophston blockade We also propose
a method which uses these strong dispersive interactions to realize a single-photon turnstile device.
[S0031-9007(97)03903-3]

PACS numbers: 42.50.Dv, 03.65.Bz, 42.50.Lc

It is well known that the observation of strictly quantum atomic systems, we predict that it is possible to realize
effects in optics relies on the existence of strong nonlineasr pulses for photons which may be used to switch the
interactions between photons. Examples of such quantustate of the cavity with arbitrary accuracy. To explain the
optical phenomena that have been demonstrated expestrong antibunching of transmitted photons, we introduce
mentally include quadrature squeezing by parametic dowrthe concept ofphoton blockadein close analogy with
conversion and measurement of nonlocal correlations ahe phenomenon of Coulomb blockade for quantum-well
entangled photon states [1]. On the other hand, obseelectrons. We also discuss a method which utilizes the
vation of quite a few fascinating phenomena such as thetrong dispersive interactions between photons to realize
generation of a superposition of macroscopically distinci single-photon turnstile device [6].
quantum states, i.e.Schrédinger cats have been in Figure 1 details the nonlinear cavity structure that
most cases hindered by the difficulty in obtaining largewe envision: A confocal cavity with finess§ = 10*
nonlinearities in absorption (or decoherence) free mediacontains a low density atomic medium, whose energy
To overcome this limitation, several groups have beertevel structure may be represented by the four-state
studying nonlinear optics in thetrong coupling regime diagram shown in Fig. 2. A nonperturbativeupling
where the coupled-system eigenstates are superpositiofisld resonant with thg2)-|3) transition creates an elec-
of (bare) atom-cavity states [2—4]. Recently, thesdromagnetically induced transparency (EIT) or a dark
Jaynes-Cummings nonlinearities have been utilized imesonance [7] at theth cavity-mode frequency, which
the realization of a Schrodinger cat state in a microwaveés in turn assumed to be resonant with tHe-|3) tran-
cavity [4]. sition (w31 = weay). AS a result, the cavity mode sees

Using an alternative approach, two of us (H.S. andvanishing one-photon atomic loss but a giant self-phase
A.l.) have recently proposed a new scheme which givesnodulation coefficient, provided that the atomic transition
resonantly enhanced Kerr nonlinearities that are limitecgenergies satisfyws, = w3 > wy;. The corresponding
only by two-photon absorption [5]. These (essentially)real part of the third-order nonlinear susceptibility is [5]

absorption-free giant optical nonlinearities are obtained in Nl sl
the weak atom-photon coupling limit and can be extended Re[ y?] = e Awn” 1)
to other material systems. Such a scheme can increase € cRO2
the available nonlinear phase shift by almost 10 orders of )
magnitude for a given light intensity and loss coefficient- coupling
length product of the atomic medium [5]. 0, QN \beam
In this Letter, we consider the problem of a nonlinear w

optical cavity mode in the light of this new development
and predict novel properties for both the intracavity and
the transmitted light fields. The photon-photon interaction

. trans.
coefficient in such a nonlinear cavity could easily be an'm beam
much larger than the cavity decay rate and the linewidth ca F ~104 cavity
of the driving field, implying that the cavity photons mode

behave as strongly interacting particles. \We show tha1{:IG. 1. The nonlinear cavity that we analyze. For simplicity,

the cavity-mode dynamics in this limit is well described it is assumed that one of the mirrors has a smaller reflectivity
by a spini/2 Hamiltonian. Using the analogy with and provides the output.
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l4> the cavity decay are incorporated using stochastic wave-
Ay, :|; function methods [8]. The photon-photon interaction term
k can be obtained frorke[ y ],
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We reiterate that the nonlinear cavity model described
by the Hamiltonian of Eq. (2) was previously analyzed
by several authors, and it was predicted that such a cavity
would yield photon antibunching [9]. The novelty in our
case is in the expression far which predicts photon-
photon interaction coefficients that are orders of magni-
FIG. 2. The four-level atomic system that generates a resoyde larger than what was previously considered possible
nantly enhanced two-photon absorption limited Kerr nonhnear-(because of the one-photon loss limitation). Before
ity. We assume that the optical transitiof$s-|2) and |3)-|1) . . . .
are resonant. presenting simulation results, we will make a rough

numerical estimate ok: We assume a 2 cm cavity with

whereN denotes the atomic density apd; denotes the Veay = 1 X 107* cm?’; a 1 cm atomic medium of density
dipole matrix element of thdi)-|j) transition. Q. is 3 X 10" cm™; and typical dipole matrix elements
the Rabi frequency of the coupling field, antw,, =  for alkali atoms u;; =3 X 107 Cm. If we choose
Wi — wew. The principal feature of Eq. (1) is that the Aws, = 2Q. = 1 X 10° rad/sec, we obtain a nonlinear
effective detuningrom the first transition is given by interaction coefficientx = 1 X 10° rad/sec. This is
Q., which can be much smaller than the natural widthabout 20 times larger than the cavity decay rate, pro-
of state|3). One can therefore obtain a large resonanvided F = 10*. For a typical upper state decay rate,
enhancement in nonlinearity without creating any (singlels = 3 X 107 s™!, the two-photon absorption rate is
photon) loss, provided that dephasing of the (hyperfin@pproximatelyl /S of the cavity decay rate, justifying the
split) |1)-|2) transition is negligible [5]. In steady state, effective Hamiltonian of Eq. (2). Doppler broadening
all the atoms will be in the ground staté) (with small ~ does not affect EIT (i.e.x ") if states|1) and [2) are
virtual populations in the excited stat¢® and |4), and  hyperfine split states [7]. Kerr nonlinearity is only slightly
none in statd3)), implying that the system is two-photon modified since typical Doppler widths are comparable
absorption limited. to the assumedwy4,. The principal effect of Doppler
The dynamics of the cavity mode is best analyzed byproadening in an atomic vapor cell is the enhancement
adiabatically eliminating the atomic degrees of freedomof two-photon absorption(Im[y¥]). Therefore, the
In the limit where the two-photon atomic losses areassumption of negligible atomic losses is only valid for
much smaller than the cavity decay rate, the effectivdrapped atoms or beams. We note that Retlal. [10]

Hamiltonian for the cavity modé) driven by a classical have recently demonstrated a magneto-optical trap with
light source is [1] atomic density and volume that are comparable to those

assumed here. Since the only nonperturbative coupling
- in our scheme is between two unoccupied atomic states,
e AT pts sty Mlcav g the trapping process remains unaffected.

il (B0 = pa) 2 4" @ The single-mode description of the cavity that we use
whereT .., = Aw,/F denotes the cavity decay rate via is valid provided that the nonlinear interaction coefficient
mirror losses. The axial-mode spacif@,, is assumed « is much smaller than the axial-mode spacing. When
to be large compared to atomic and laser linewidths s& = 0, the applied field couples all states in the harmonic
that only one cavity mode needs to be considered. Th&dder of cavity-mode eigenstates. On the other hand,
third term describes the classical drive, whedeis the  for k > Tcay, Bv/Icav, Awiaser, the applied field may only
electric field amplitude in natural units [1]. We assumecouple the vacuum state) to the Fock state with a single
that the laser amplitude is, in general, time dependerithoton|1) resonantly. The higher lying photon-number
with a corresponding linewidtA wy,;. The reflectivity —States may be neglected since they are out of resonance.
of the mirror on which the coherent field is incident is The cavity mode in this limit is well described by the spin-
assumed to be higher than the other; however, we will stilll /2 Hamiltonian
use a single decay/coupling coefficidnt,, and assume . Y .
that the difference in reflectivities is incorporated into ~ Happ = fiwcayO11 + iiV2lcay (B" 001 — B10)
the effectiveamplitude8. The complete cavity dynamics il .
is obtained after quantum fluctuations associated with T T, du (4)

1>

Her = howenyata + natataa
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where we have introduced the projection operatbs= L A
|i) { j| for photon-number eigenstates. Clearly, this effec- (a) k=20T
tive model is analogous to an atom driven by a resonant
laser field, where a two-level description is satisfactory de-
spite the presence of infinitely many excited states. This is
one of the principal results of our Letter: Using the nonlin-
earities ofatomic dark resonancesve can create strongly
interacting photons in a cavity mode. The dynamics of this
cavity mode is in turn governed by the simple coherently
driven spini/2 Hamiltonian of Eq. (4); this is justified by oy v v v YT
the numerical simulations we discuss below. 0 2 4 6 8 10
Before proceeding, we note that ttveo-level behavior t[r
of a strongly coupled atom-field system has been predicted
in Ref. [2]: Tian and Carmichael have demonstrated that, 2 T T
when a classical drive field is tuned on resonance with - (b) k=20T
one of thevacuum Rabi resonancdbe atom cavity-mode - eav
molecule[2] oscillates coherently between the staig®) - a2
and|l, 1) = (le,0) + |g, 1))/+/2, where|g) (le)) denotes - o
the atomic ground (excited) state afigldenotes the Fock
state withi photons. The principal difference between i
the spini/2 behavior that we predict and this previous 05 [
result is that our predictions are obtained for a pure cav- I
ity mode by adiabatically eliminating the atomic degrees I
of freedom. This feature, together with the large num- S —
ber of atomg=1 X 107) participating in the nonlinear in- M
teraction, makes our scheme independent of atom-number cav
fluctuations and decoherence in the atomic system. IgiG. 3. MCWF simulation results under cw excitation:
addition, the realization of two-level behavior of a pure(a) the time evolution of the expectation value of the cavity-
(nonentangled) cavity mode enables us to coherently cofpode photon number for a single quantum trajectory, and
trol the cavity dynamics as we shall describe shortly. 4 ) the second-order coherence function (solid line). The
. . . . - ashed line in (b) shows the same calculation carried out using
. The physics behind the eﬁeptlve_ Hamiltonian of Eq. (4) e approximate spim/2 Hamiltonian.
is best understood by considering the strong photon-
photon interactions. When the cavity is @), a photon
from the driving field is injected with a probability two photons in time intervals much shorter than the cavity
determined by the drive strength. However, injection ofdecay time. The physics is completely analogous to
a second photon will be blocked, since the presence dhat of a single (two-level) atom, where antibunching in
two photons in the cavity will require an additionak  resonance fluorescence has been observed. Figure 3(b)
energy, which cannot be provided by the incoming laseshows the normalized second-order coherence function
photons. Only after the first photon leaves the cavityg?(r), calculated using the MCWF method and the
can a second one be injected. The strong interactionsffective Hamiltonian of Eq. (2): We clearly observe
between the photons therefore causepteton (Kerr) that g?(0) = 0, demonstrating the antibunching of the
blockadeof cavity transmission, in direct analogy with the emitted photons. The dashed curve shows the same
Coulomb blockade of resonant tunneling in mesoscopicalculation carried out using the approximate Hamiltonian
semiconductors [11]. We remark that this discussion iof Eq. (4): We observe in all cases that the predictions
valid for both thermal and coherent driving fields. of the Hamiltonians are identical. The slight difference
First, we consider the limit of a weak continuous-in g®(r) predicted by the two models is completely
wave (cw) coherent driving field: Figure 3(a) showsdue to finite averaging effects; in fact, when we use the
the results of a single quantum Monte Carlo wavesame set of random numbers for the two simulations, the
function (MCWF) simulation [8] for the atom-cavity corresponding curves are indistinguishable.
parameters given earlier. We observe that the number Next, we consider the pulsed excitation of the cauvity.
of cavity photons varies betweeh and 1, but never It is well known in atomic physics that the state of a two-
exceeds unity due to the photon blockade effect. Alevel atom can be set with arbitrary accuracy using co-
times immediately following a photon loss event (via theherent laser pulses that have a givera = [ d7Q(7),
imperfect cavity mirrors), the cavity mode is necessarilywhereQ) (7) = 2+/2I'.,y B is the time-dependent Rabi fre-
in the vacuum state. Therefore the detector that countguency. Since the nonlinear cavity that we are envision-
the photons emitted from the cavity will never registering is governed by the same effective Hamiltonian as a

<n>

0.5 - N

g'® (1)
T
o
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e LA B 1,2,..., and vanishes elsewhere [6]. The turnstile device

14 k=20T described above has an uncertainty in the photon detection
ﬂ cav time that is given byl'.,!. An alternative approach, which

1.5
can decrease the time uncertainty, is to introduce cavity

\ dumping events that follow ther pulses by means of

Ty 40 408 B an intracavity modulator which decreases the reflectivity
of one of the mirrors from=1 to =0. The generated
0.5 heralded single photons in this case have a pulse width
b L  NLA
20 30 40

<n>

that is determined by the cavity round-trip time.

In summary, we have shown that resonantly enhanced
absorption-free Kerrr nonlinearities open up a new do-
main for nonlinear optics in which the interaction strength
tir,,, " of single photons is larger than all the other relevant en-

FIG. 4. MCWF simulation of the time evolution of the & Y ?calis. We have dfenl?]onstra}ted thgt this prop'erty al-
expectation value of the cavity-mode photon number undefoWs for the treatment of the cavity mode as a spjia-

pulsed excitation. The plot shows a single quantum trajectorysystem and opens up the possibility of realizing strong
For the chosen “area” of the classical drive field, one flas  antibunching and deterministic photon injection into a

pulse excitation of the cavity mode. (Inset: closeup of a singlecavity mode. The realization of a single-photon turnstile
photonica pulse.) device and the generation of an arbitrary superposition of

driven two-level atom, we expect to be able to switch thezero- and one-photon states may be useful in quantum

state of the cavity mode frofd) to |1) using a laser pulse computation applications. . . _
of (dimensionless) area. In fact, by adjusting this area, Paztgrévgek”\gzzéup;f?étzdl\:glgeg;?ge? ga\ggdand Lucille
any coherent superpositiarl0) + b|1) of the two Fock P '

states may be generated.
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