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Dynamical Scaling Anomaly for a Two Dimensional Polymer Chain in Solution
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Extensive molecular dynamics simulations indicate that for time scates,, wherer, « N37, the
dynamical scaling exponent= 2 + v /v for a polymer chain in solution is anomalous € 2) in two
dimensions, contrary to the well known prediction=¢ 3) of the Zimm model. A numerical solution
of the 2D hydrodynamic Zimm model equations, which extends into the regimer,, supports this
value, suggesting a breakdown of dynamical scaling in 2D. [S0031-9007(97)03873-8]

PACS numbers: 36.20.Ey, 61.20.Ja, 61.25.Hq, 66.20.+d

The properties of thin film polymers and polymer inter- polymer whose dynamical structure factik, ¢) is given
faces are of great interest for both practical and theoreticdly
reasons. There is currently much research in areas such as |
reactions across the interface [1], sheer and slip properties Sk, 1) = — > (JolkIR:(1) — R;(0)])), (1)
of such interfaces [2], especially where diblock polymers N 43 '
are used to control adhesion [3], liquid crystals [4], and . . "
wetting [5]. These different systems share the property\/NhereN IS the number of monomers; their positions,

that most of the polymer dynamical behavior is occur-JO(x) is the zeroth order Bessel function, anid is
ring within a very thin layer with thickness less than thethe scattering wave vector amplitude, dynamical scaling

radius of gyrationR,. In this “Helfand-Tagami” regime arguments [13] predict tha§(k.s) has the following

[6], motion within the layer is thus essentially two dj- Unctional form:

mensional (2D). Clearly, to predict the behavior of such S(k,t) = NF(kRg,th/Rg), 2)
systems one needs to understand 2D polymer dynamics.

This area has generally been overlooked in the past, pravhere R, is the radius of gyration of the chain am,
sumably because a purely 2D polymer system is experl-he center of mass diffusion constant. In the scaling
mentally difficult to access and because it was thoughtegime kR, > 1, S(k,t) should be independent oW

the dynamics would be well described by similar theorysince local chain motion is expected to be independent
in 3D. The experimental difficulties, however, are nowof the total chain length. If we assume tiigt = N” and
being overcome, with various methods available to creD, < N~ "7, thenS(k, 1) must have the form

ate essentially 2D monolayers [7,8]. Gao and Rice [9] s _ .

have proposed a method of evanescent light scattering to S(k,1) = N(kRy) Y F(iDgR, 2(kRé’) ) (3)
analyze such layers, this procedure being used by Lin anghere

Rice [8] to study a diblock copolymer on an air/water in-

terface. Since this technique involves light scattering, the =024 22 (4)
polymer structure factor, both static and dynamic, is the v
essential quantity of interest. Thus a plot ofk'/”S(k, r) vs tk* is expected to give one

The purpose of this Letter is to report on extensivenjyersal curve for all values df in the scaling regime.
molecular dynamics (MD) simulation studies for the The Zimm model [14] predicts that = vp, thusx = 3
2D polymer in solution. An analysis of the structure hile the Rouse model [15] predicts, = 1, » = 1/2
factor data has revealed anomalous dynamical scaling,,s , — 4 assuming no excluded volume effect, while
behavior currently not predicted by theory. Subsequently, < 37in 3D andx ~ 3.33 in 2D with excluded volume
a closer scrutiny of the Zimm model predl_ctlons reveals[13]_ Other than through the static critical exponent
a breakdown of the preaveraging approximation due tgne scaling argument used to derive these relations is
the logarithmic infinite range structure of the 2D Oseerindependent of dimension and is expected to hold in both
tensor. Numerical studies of the Zimm equations upobp and 3D.
introducing the 2D Oseen tensor yield results in accord The Zimm model attempts to predict the dynamics of a
with the MD simulations in the scaling regime. While gjngle polymer chain in solution by including the effects
this offers some insight into the observed anomaly, oug the hydrodynamic interaction. Writing this in the form

results show that the scaling arguments in 2D are in neegs 5 Langevin equation for theth monomer we have
of a careful reexamination.

Dynamical scaling theory is now a well-established tool 9 n _ <_ﬂ + )
which has been applied to many areas [10-12]. For a 2D Ry % Hum R Sn®) ) ®)
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whereU is the intermonomer potentiall ., the hydrody-  build up, the remaining data being used for the analysis of
namic Oseen tensor, anf),(r) a random Brownian noise the dynamics. The average end-to-end distaRgevas
force. It is assumed thakll,, = I/, whereI is the found to bel4.50, so there are no polymer self-overlap
unit tensor and/ is the friction coefficient [13]. Since effects.
this model leads to a set of coupled differential equations, Taking the: = 0 limit of Eq. (3), one predicts that
H,, being a nonlinear function ak, — R,,, itis not in  in the largek limit the static structure factos(k) has
general solvable. Zimm [14] introduced the preaveraginghe form S(k) = k'/*. Figure 1 shows a log-log plot
approximation, which simplifies the problem and allowsof S(k) and ko, the slope of the linear region being
guantities such as the diffusion constant and relaxation/». This allows one to estimate a value fer and
times to be calculated. simultaneously to predict a range bfvalues for which
The most direct method, however, of verifying the dynamic scaling should hold. From the gradient we
predicted dynamical scaling behavior of a polymer chaircalculate v = 0.70, slightly less than the known exact
in solution is to perform a MD simulation. This approach exponentr = 0.75 [25]. From similar data for a 60 link
has been taken by numerous workers in the past [16,17] tthain, and by analyzing the dependence of the mean end-
study 3D systems. However, the few studies which havéo-end distancery with N for several values ofV, we
been concerned with 2D polymer chains have been latticealculate v = 0.72, indicating the exact value is being
based, and have analyzed highly concentrated melts [18jeached, but is influenced by finite size effects and slow
or have used cellular automata methods [19]. The 2Delaxation. Figure 2 shows the resultant structure factor
dynamic structure factor has been overlooked. We havdata plotted with a scaling exponent= 2, a value not
performed 2D MD simulations for a single polymer and apredicted by the Rouse or Zimm models. Also shown
many particle fluid in a square cell with periodic boundary(inset) are the same data plotted with the Zimm exponent
conditions, using the velocity form of the Verlet algorithm x = 3. Clearly, the data scale correctly only for the
[20] to solve the equations of motion. Our program,former exponent. Similar data were also checked for a
running on a Connection Machine CM-5, allocates virtual20, 30, and 60 link chain, sufficiently long considering the
processors to individual particles to calculate and stor@xpected scaling is reproduced in 3D for shorter chains
their positions and velocities, as well as to square subcelld7], and also for a reduced density @B88. These cases
of size 2'/°¢, o being the typical Leonard-Jones (LJ) also scaled with the = 2 exponent. If we assume the
length parameter, to determine particle collisions [21].form of Eq. (4) is valid, then our result could imply that
The patrticles interact via a truncated LJ potential [22]  vp = 0 for the chain diffusion constant. This, however,
1 is not the case. For when we ran simulations for various
ULi(r) =46[(U/V)12 —(a/r)°+ Z}’ r=2"Yg chain lengths betweel = 15 andN = 100 to determine
vp (see Fig. 3), the data were indicative of, > 0,
(6)  thus not in conflict with the expected diffusive behavior
—0 ~ 51/6 7 [19], although its exact value was difficult to establish
’ "= o, 7 due to similar difficulties encountered by previous studies

where € is the LJ energy parameter. This provides a[17]. In addition, one can easily show [22] that while
purely repulsive interaction’ |mp|y|ng the presence of athe interaction of the chain with its images may alter the
good solvent and avoiding complications arising fro@ a diffusion constant from that predicted by the Kirkwood
transition. We use a reduced density @f= 0.5810 3  theory [13,26], it shouldhot effect the scaling exponent of
and temperaturégT = 1.2€. A 40 link polymer chain

is introduced into the system by including an attractive 4
FENE [23] potential between the monomers given by

Uen(r) = —%aR%In(l ~ 2/RY), (8)

wherea = 7eo 2 and Ry = 20. The monomer mass
is set to2m, wherem is the mass of the fluid particles,
and used a time step akr = 0.0057.,;, where 7. ; =

In[S(x)]

o(m/€)'/2. The square box edge length was set at 0]

L = 64 x 2'/%¢. Up to 90 starting configurations were

generated for the combined system of a 40 link chain -1 : :

and 2960 solvent particles, each of these running for -3.0 -1.5 0.0 1.5
approximately3507,;. This is less than the Zimm time In[ko]

~ P2 .
7¢ = R,/D, although long enough to reach into the fic 1 plot of HS()] vs ko], 0.050! = k = 4.00",

intermediate time regimes [24]. The initidD7.; was  for the 40 link chain 2D MD data. The linear section gradient
discarded to allow time for hydrodynamic correlations toequalsl/».
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I I[In(ln — m|b?) —
<Hnm>eq = - [ 7]
8T 8T

= h(ln — m|)I. (10)

whereb is the mean distance between monomers sl
the Euler constant. The diffusion constdnt can thus be
calculated [13]

(k0)’(t/7)

kBT N N
D, = — h(ln — ml)dn dm (11)
. N=Jo Jo
0 10 20 30 40
ko)t + 2y — 2In(b*N
(ko) (t/7) it (b*N) 12
FIG. 2. Scaling plot of(ko)'/*S(k,1) vs (ko)*t, 0.60~! = 1677

k = 24071, for the 40 link chain 2D MD data. The inset is ; ; ‘ ‘e i
the same data plotted with the Zimm exponent 3. Analysis showing a logarithmic dependence & This is clearly

is performed over the same time period for differ@ntthus ~ ONly valid for N less than some critical value & = 0,
smallerk display shorter data lines. indicating the limitations of this approach. Thus Eq. (12)

is not the true form for the diffusion of a real 2D polymer

Eq. (4). We also performed a 3D MD simulation with our IN Solution because of the approximations implied by the
program, using a 40 link chain in 4960 solvent particles Préaveraging approach and since the diffusion coefficient

and found our data scaled with= 3, in agreement with calculated using Eq. (11) gives only the leading long
the Zimm model and previous simulation [22]. wavelength diffusive mode. However, it does show the

To explore the anomalous scaling behavior of the opPathological nature of the 2D hydrodynamic interaction,
MD data, we have to reexamine the theory of a opand thus one may expect dynamical anomalies in 2D that

polymer in a fluid. It appears that the unusual form of&'® not present in sb. . .
the hydrodynamic (Oseen) tensé¥,, in 2D has been To avoid the approximations associated with the preav-

overlooked in the past. It can be shown [27] that this isSrading approach, we have used the more direct method of
given by solving the Zimm model equations numerically to observe

the dynamics of the polymer chain. This approach has the
L[—Iln(an — R,l) + Pamfam]., (9) advantage over MD that boundary conditions are elimi-
4mn nated, and thus diffusive behavior is not affected by self
where 7 is the viscosity and#,, is a unit vector interactions due to long range hydrodynamic effects, and

from monomerm to n. The distance independence of that the long time scale chain dynamics are reproduced
the last term leads to an infinite range hydrodynamidmmediately. We solved Eq. (5) for a 40 link chain using
interaction unique to 2D. The simplest way to predictthe 2D hydrodynamic tensor of Eq. (9). We kept the same
the effective diffusion from such an interaction is to uselJ repulsive potential as before, while introducing an
the preaveraging approximation [14] where we take théttractive harmonic potentiall = (kzT/b*)x* between
average ofH,, over a Gaussian distribution in th@ nearest neighbor monomers required by detailed balance

condition. Assuming that#,,.#...) = I/2 one can easily [13]. We used a friction constant ¢f = 10/7.,, a vis-
show that cosityn = m{ /2w [28], and a time stepr = 0.0017.;,

collecting data over several thousang so thatr > ,.
From the log-log plot of the resultant static structure fac-
tor data we estimated a static exponent= 0.84, which

is higher than the expected 2D hard sphere value. This
is an artifact of the long range hydrodynamic forces in

H,, =

200

1504

R Eqg. (5) which lead to an additional net repulsive force be-
N?100- tween monomers. The resultant dynamical scaling data,
v see Fig. 4, clearly show the same scaling behavior as the

MD data. This agreement is most significant as it shows
that the scaling behavior is governed by the form of the
hydrodynamic interaction for both cases, and that the MD

501

0 : . . data are not a result of incorrect diffusive behavior caused
0 50 100 150 200 by the use of periodic boundary conditions. It also sug-
/7 gests the result = 2 is valid over all time regimes. For
FIG. 3. Chain center of mass diffusion for 2D MD data for COmparison, we also solved Eqg. (5) for a 40 link 3D poly-
chain lengthsv = 15,20, 30, 60, and 100. mer chain using the well known form of the 3D Oseen
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