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Dynamical Scaling Anomaly for a Two Dimensional Polymer Chain in Solution

S. R. Shannon and T. C. Choy
Department of Physics, Monash University, Clayton, Victoria, Australia

(Received 8 November 1996)

Extensive molecular dynamics simulations indicate that for time scalest , tg, wheretg ~ N3n , the
dynamical scaling exponentx ­ 2 1 nDyn for a polymer chain in solution is anomalous (x ­ 2) in two
dimensions, contrary to the well known prediction (x ­ 3) of the Zimm model. A numerical solution
of the 2D hydrodynamic Zimm model equations, which extends into the regimet . tg, supports this
value, suggesting a breakdown of dynamical scaling in 2D. [S0031-9007(97)03873-8]

PACS numbers: 36.20.Ey, 61.20.Ja, 61.25.Hq, 66.20.+d
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The properties of thin film polymers and polymer inte
faces are of great interest for both practical and theoreti
reasons. There is currently much research in areas suc
reactions across the interface [1], sheer and slip proper
of such interfaces [2], especially where diblock polyme
are used to control adhesion [3], liquid crystals [4], an
wetting [5]. These different systems share the prope
that most of the polymer dynamical behavior is occu
ring within a very thin layer with thickness less than th
radius of gyrationRg. In this “Helfand-Tagami” regime
[6], motion within the layer is thus essentially two di
mensional (2D). Clearly, to predict the behavior of suc
systems one needs to understand 2D polymer dynam
This area has generally been overlooked in the past, p
sumably because a purely 2D polymer system is expe
mentally difficult to access and because it was thoug
the dynamics would be well described by similar theo
in 3D. The experimental difficulties, however, are no
being overcome, with various methods available to cr
ate essentially 2D monolayers [7,8]. Gao and Rice [
have proposed a method of evanescent light scattering
analyze such layers, this procedure being used by Lin a
Rice [8] to study a diblock copolymer on an air/water in
terface. Since this technique involves light scattering, t
polymer structure factor, both static and dynamic, is t
essential quantity of interest.

The purpose of this Letter is to report on extensiv
molecular dynamics (MD) simulation studies for th
2D polymer in solution. An analysis of the structur
factor data has revealed anomalous dynamical sca
behavior currently not predicted by theory. Subsequen
a closer scrutiny of the Zimm model predictions revea
a breakdown of the preaveraging approximation due
the logarithmic infinite range structure of the 2D Osee
tensor. Numerical studies of the Zimm equations up
introducing the 2D Oseen tensor yield results in acco
with the MD simulations in the scaling regime. While
this offers some insight into the observed anomaly, o
results show that the scaling arguments in 2D are in ne
of a careful reexamination.

Dynamical scaling theory is now a well-established to
which has been applied to many areas [10–12]. For a
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polymer whose dynamical structure factorSsk, td is given
by

Ssk, td ­
1
N

X
ij

kJ0skjRistd 2 Rjs0djdl , (1)

whereN is the number of monomers,Ri their positions,
J0sxd is the zeroth order Bessel function, andk is
the scattering wave vector amplitude, dynamical scali
arguments [13] predict thatSsk, td has the following
functional form:

Ssk, td ­ NFskRg, tDgyR2
gd , (2)

where Rg is the radius of gyration of the chain andDg

the center of mass diffusion constant. In the scali
regime kRg ¿ 1, Ssk, td should be independent ofN
since local chain motion is expected to be independ
of the total chain length. If we assume thatRg ~ Nn and
Dg ~ N2nD , thenSsk, td must have the form

Ssk, td ­ NskRgd21ynFssstDgR22
g skRgdxddd , (3)

where

x ­ 2 1
nD

n
. (4)

Thus a plot ofk1ynSsk, td vs tkx is expected to give one
universal curve for all values ofk in the scaling regime.
The Zimm model [14] predicts thatn ­ nD, thusx ­ 3,
while the Rouse model [15] predictsnD ­ 1, n ­ 1y2,
thus x ­ 4 assuming no excluded volume effect, whil
x ø 3.7 in 3D andx ø 3.33 in 2D with excluded volume
[13]. Other than through the static critical exponentn,
the scaling argument used to derive these relations
independent of dimension and is expected to hold in bo
2D and 3D.

The Zimm model attempts to predict the dynamics of
single polymer chain in solution by including the effec
of the hydrodynamic interaction. Writing this in the form
of a Langevin equation for thenth monomer we have

≠

≠t
Rn ­

X
m

Hnm

µ
2

≠U
≠Rn

1 fmstd
∂

, (5)
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whereU is the intermonomer potential,Hnm the hydrody-
namic Oseen tensor, andfmstd a random Brownian noise
force. It is assumed thatHnn ­ Iyz , where I is the
unit tensor andz is the friction coefficient [13]. Since
this model leads to a set of coupled differential equatio
Hnm being a nonlinear function ofRn 2 Rm, it is not in
general solvable. Zimm [14] introduced the preaverag
approximation, which simplifies the problem and allow
quantities such as the diffusion constant and relaxa
times to be calculated.

The most direct method, however, of verifying th
predicted dynamical scaling behavior of a polymer ch
in solution is to perform a MD simulation. This approac
has been taken by numerous workers in the past [16,17
study 3D systems. However, the few studies which h
been concerned with 2D polymer chains have been lat
based, and have analyzed highly concentrated melts [
or have used cellular automata methods [19]. The
dynamic structure factor has been overlooked. We h
performed 2D MD simulations for a single polymer and
many particle fluid in a square cell with periodic bounda
conditions, using the velocity form of the Verlet algorith
[20] to solve the equations of motion. Our progra
running on a Connection Machine CM-5, allocates virtu
processors to individual particles to calculate and st
their positions and velocities, as well as to square subc
of size 21y6s, s being the typical Leonard-Jones (L
length parameter, to determine particle collisions [2
The particles interact via a truncated LJ potential [22]

ULJ srd ­ 4e

∑
ssyrd12 2 ssyrd6 1

1
4

∏
, r # 21y6s

(6)

­ 0, r $ 21y6s , (7)

where e is the LJ energy parameter. This provides
purely repulsive interaction, implying the presence o
good solvent and avoiding complications arising from aQ

transition. We use a reduced density ofr ­ 0.581s23

and temperaturekBT ­ 1.2e. A 40 link polymer chain
is introduced into the system by including an attract
FENE [23] potential between the monomers given by

UChsrd ­ 2
1
2

aR2
0 lns1 2 r2yR2

0 d , (8)

where a ­ 7es22 and R0 ­ 2s. The monomer mass
is set to2m, wherem is the mass of the fluid particles
and used a time step ofDt ­ 0.005tLJ , where tLJ ­
ssmyed1y2. The square box edge length was set
L ­ 64 3 21y6s. Up to 90 starting configurations wer
generated for the combined system of a 40 link ch
and 2960 solvent particles, each of these running
approximately350tLJ . This is less than the Zimm time
tg ø R2

gyDg although long enough to reach into th
intermediate time regimes [24]. The initial50tLJ was
discarded to allow time for hydrodynamic correlations
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build up, the remaining data being used for the analysis
the dynamics. The average end-to-end distanceRN was
found to be14.5s, so there are no polymer self-overla
effects.

Taking the t ­ 0 limit of Eq. (3), one predicts that
in the largek limit the static structure factorSskd has
the form Sskd ~ k1yn . Figure 1 shows a log-log plot
of Sskd and ks, the slope of the linear region bein
1yn. This allows one to estimate a value forn and
simultaneously to predict a range ofk values for which
dynamic scaling should hold. From the gradient w
calculaten ø 0.70, slightly less than the known exac
exponentn ­ 0.75 [25]. From similar data for a 60 link
chain, and by analyzing the dependence of the mean e
to-end distanceRN with N for several values ofN , we
calculaten ø 0.72, indicating the exact value is being
reached, but is influenced by finite size effects and sl
relaxation. Figure 2 shows the resultant structure fac
data plotted with a scaling exponentx ­ 2, a value not
predicted by the Rouse or Zimm models. Also show
(inset) are the same data plotted with the Zimm expon
x ­ 3. Clearly, the data scale correctly only for th
former exponent. Similar data were also checked fo
20, 30, and 60 link chain, sufficiently long considering th
expected scaling is reproduced in 3D for shorter cha
[17], and also for a reduced density of0.38. These cases
also scaled with thex ­ 2 exponent. If we assume the
form of Eq. (4) is valid, then our result could imply tha
nD ­ 0 for the chain diffusion constant. This, howeve
is not the case. For when we ran simulations for vario
chain lengths betweenN ­ 15 andN ­ 100 to determine
nD (see Fig. 3), the data were indicative ofnD . 0,
thus not in conflict with the expected diffusive behavi
[19], although its exact value was difficult to establis
due to similar difficulties encountered by previous studi
[17]. In addition, one can easily show [22] that whil
the interaction of the chain with its images may alter t
diffusion constant from that predicted by the Kirkwoo
theory [13,26], it shouldnot effect the scaling exponent o

FIG. 1. Plot of lnfSskdg vs lnfksg, 0.05s21 # k # 4.0s21,
for the 40 link chain 2D MD data. The linear section gradie
equals1yn.
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FIG. 2. Scaling plot ofsksd1ynSsk, td vs sksd2t, 0.6s21 #
k # 2.4s21, for the 40 link chain 2D MD data. The inset i
the same data plotted with the Zimm exponentx ­ 3. Analysis
is performed over the same time period for differentk, thus
smallerk display shorter data lines.

Eq. (4). We also performed a 3D MD simulation with o
program, using a 40 link chain in 4960 solvent particl
and found our data scaled withx ­ 3, in agreement with
the Zimm model and previous simulation [22].

To explore the anomalous scaling behavior of the
MD data, we have to reexamine the theory of a 2
polymer in a fluid. It appears that the unusual form
the hydrodynamic (Oseen) tensorHnm in 2D has been
overlooked in the past. It can be shown [27] that this
given by

Hnm ­
1

4ph
f2I lnsjRn 2 Rmjd 1 r̂nmr̂nmg , (9)

where h is the viscosity andr̂nm is a unit vector
from monomerm to n. The distance independence
the last term leads to an infinite range hydrodynam
interaction unique to 2D. The simplest way to pred
the effective diffusion from such an interaction is to u
the preaveraging approximation [14] where we take
average ofHnm over a Gaussian distribution in theQ
condition. Assuming thatkr̂nmr̂nml ­ Iy2 one can easily
show that

FIG. 3. Chain center of mass diffusion for 2D MD data f
chain lengthsN ­ 15, 20, 30, 60, and 100.
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kHnmleq ­
I

8ph
2

Iflnsjn 2 mjb2d 2 gg
8ph

; hsjn 2 mjdI . (10)

whereb is the mean distance between monomers andg is
the Euler constant. The diffusion constantDg can thus be
calculated [13]

Dg ­
kBT
N2

Z N

0

Z N

0
hsjn 2 mjd dn dm (11)

­ kBT
5 1 2g 2 2 lnsb2Nd

16ph
, (12)

showing a logarithmic dependence onN . This is clearly
only valid for N less than some critical value asDg $ 0,
indicating the limitations of this approach. Thus Eq. (12
is not the true form for the diffusion of a real 2D polyme
in solution because of the approximations implied by th
preaveraging approach and since the diffusion coefficie
calculated using Eq. (11) gives only the leading lon
wavelength diffusive mode. However, it does show th
pathological nature of the 2D hydrodynamic interaction
and thus one may expect dynamical anomalies in 2D th
are not present in 3D.

To avoid the approximations associated with the prea
eraging approach, we have used the more direct method
solving the Zimm model equations numerically to observ
the dynamics of the polymer chain. This approach has t
advantage over MD that boundary conditions are elim
nated, and thus diffusive behavior is not affected by se
interactions due to long range hydrodynamic effects, an
that the long time scale chain dynamics are reproduc
immediately. We solved Eq. (5) for a 40 link chain using
the 2D hydrodynamic tensor of Eq. (9). We kept the sam
LJ repulsive potential as before, while introducing a
attractive harmonic potentialU ­ skBTyb2dx2 between
nearest neighbor monomers required by detailed balan
[13]. We used a friction constant ofz ­ 10ytLJ , a vis-
cosityh ­ mzy2p [28], and a time stepDt ­ 0.001tLJ ,
collecting data over several thousandtLJ so thatt . tg.
From the log-log plot of the resultant static structure fac
tor data we estimated a static exponentn ­ 0.84, which
is higher than the expected 2D hard sphere value. Th
is an artifact of the long range hydrodynamic forces i
Eq. (5) which lead to an additional net repulsive force be
tween monomers. The resultant dynamical scaling da
see Fig. 4, clearly show the same scaling behavior as
MD data. This agreement is most significant as it show
that the scaling behavior is governed by the form of th
hydrodynamic interaction for both cases, and that the M
data are not a result of incorrect diffusive behavior caus
by the use of periodic boundary conditions. It also sug
gests the resultx ­ 2 is valid over all time regimes. For
comparison, we also solved Eq. (5) for a 40 link 3D poly
mer chain using the well known form of the 3D Osee
1457
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FIG. 4. Scaling plot ofsksd1ynSsk, td vs sksd2t, 0.2s21 #
k , 1.4s21, for the 2D 40 link chain numerical Zimm mode
data. The inset is the same data plotted with the Zim
exponentx ­ 3, as in Fig. 2.

tensor [13]. These data scaled with the expectedx ­ 3
Zimm model exponent. To check the form of Eq. (12
the diffusion constant was calculated for a variety of 2
chain lengths. Surprisingly, we found thatDg increased
with N, a behavior not predicted by the preaveraging a
proach. This is in contrast to the MD results whereDg

was found to monotonically decrease withN. To re-
duce the effect of the strong hydrodynamic interaction,
viscosity was increased to approximately three times
original value, which incidentally regainsn ­ 0.75. The
diffusion was then found to decrease withN up to N ø
10, but beyond this chain length the diffusion increase
We again checked the scaling behavior of a 40 link cha
and it was in agreement with previous data, scaling w
the anomalousx ­ 2 exponent. However, the 15 link
chain data scaled with an exponent close tox ­ 3, in
agreement with the Zimm prediction. This indicates
crossover in the scaling behavior with increasing ch
length and viscosity from the normal Zimm-like diffu
sive behavior to the anomalous behavior. The 2D Zim
model thus shows a long chain scaling behavior wh
agrees with, and could help to explain, the scaling of o
MD data. However, since our MD data did not displa
a scaling crossover or an increasing diffusion coefficie
with chain length, a purely diffusion based explanati
of the x ­ 2 scaling exponent seems inadequate, thus
entire scaling argument in 2D, which leads to Eq. (4),
brought into question.

In summary, we have performed MD simulations for
2D polymer chain in solution and found that the dynam
structure factor scales with an anomalous exponentx ­
2, in the regimet , tg. A numerical solution of the
2D hydrodynamic Zimm model equations also gives th
exponent for data extending into the regimet . tg,
suggestingx ­ 2 is valid over all time scales. Although
the Zimm model equations may offer some insight in
this result, a reexamination of the scaling argument in
is called for to fully understand and explain the anomalo
exponent.
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