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Soluble Model of Evolution and Extinction Dynamics in a Rugged Fitness Landscape

Paolo Sibani*
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(Received 14 January 1997)

We consider a continuum version of a previously introduced and numerically studied model of
macroevolution [P. Sibani, M. R. Schimdt, and P. Alstrøm, Phys. Rev. Lett.75, 2055 (1995)] in which
agents evolve by an optimization process in a rugged fitness landscape and die due to their competitive
interactions. We first formulate dynamical equations for the fitness distribution and the survival
probability. Secondly, we analytically derive thet22 law which characterizes the lifetime distribution of
biological genera. Thirdly, we discuss other dynamical properties of the model as the rate of extinction
and conclude with a brief discussion. [S0031-9007(97)03769-1]

PACS numbers: 87.10.+e, 02.50.Fz, 05.40.+j, 03.20.+i
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Aspects of evolution and extinction can be described
emergent behavior in a large set of interacting agents [
4] moving stochastically in a rugged fitness landscape [5
The behavior of the models of Refs. [2–4] stems from flu
tuations in a time homogeneous stochastic process. T
agrees with a commonly held perception, e.g., implie
when a birth-death process with constant rates [6] is used
fit survivorship data and when the size of extinction even
is presented as a “kill curve” [7]. A quite different para
digm is also frequently met in the literature: Raup an
Sepkoski [8] noted that the apparent decrease of the exti
tion rate through geological times could be “. . . predictab
from first principles if one argues that general optimizatio
of fitness through evolutionary time should lead to pro
longed survival.” Gould [9] uses an unexpected sour
of statistical data to illustrate evolutionary nonhomogen
ity as it reveals itself in the “unreversed, but constant
slowing, improvement in mean fielding average throug
the history of baseball.” Concurring observations from
experimental studies of bacterial evolution in a consta
environment can be found in Ref. [10] as well as from nu
merical experiments on the “long jump dynamics” of th
NK model in Ref. [11].

In this Letter we consider stochastic evolution in
rugged fitness landscape. The assumptions are the s
in spirit as those of a previously introduced and numer
cally studied “reset” model [1]. However, here they ar
expressed in a further simplified way, allowing a (mainly
analytical rather than (mainly) numerical treatment an
leading to close form expressions for the survivorsh
curves and life-span distributions, which are of general i
terest in the study of complex evolving systems, biologic
or not. We use two—somewhat extreme—assumptio
in line with a nonstationary evolution paradigm: Firstly
the progeny of individual mutants less fit than the cu
rently dominating genotypeneverestablishes itself within
the population. Then, as a macroscopic evolutionary st
can only be triggered by a fitnessrecordwithin the popula-
tion, the current typical genotype always codes the best
lution found “so far.” Secondly, competitive interactions
among species depend on fitness in a nonsymmetric w
0031-9007y97y79(7)y1413(4)$10.00
as
1–
].
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as evolving species only kill their less fit neighbors. T
predictions of the present model resemble the behavio
the reset model and are in good agreement with empir
data describing biological genera [6,7,12–15].

In the sequel we first derive equations for the fitne
distribution of the systemPsx, td and for the probability
Wtstd that a tagged species born at timet survive time
t. We then analytically find thet21 dependence ofW
and the ensuingt22 dependence of the lifetime distribu
tion Rtstd. Next we discuss the parametrict dependence,
which is not, in general, analytically available, the effe
of averaging overt, and the long time asymptotic behav
ior of Psx, td for different parameter values. We conclud
with a brief assessment of the robustness of the mode

To construct a dynamical equation forPsx, td we
proceed in two steps, starting with the limiting case whe
no extinctions take place and where, as a conseque
of hill climbing in a random fitness landscape, a suitab
defined [1,16,17] average fitness grows logarithmically

Dstd ­ lnst 1 1d . (1)

With no interactions, an initial fitness distribution wou
be rigidly shifted in (ln) time. AsD solves the equa-
tion of motionysxd ­ dxydt ­ exps2xd with initial con-
dition Ds0d ­ 0, the time evolution of a distribution o
noninteracting agentsPsx, td solves the transport equatio
≠Psx, tdy≠t 1 ≠fysxdPsx, tdgy≠x ­ 0. Interactions enter
via an additional term2gPsx, tdKfPsx, tdg, whereK is an
effective killing rate and where the constantg describes
what fraction of the system is affected by an evolutiona
event.

Species going extinct vacate a niche, which is refill
at a later time. This inflow and outflow is expedient
accounted by introducing a “limbo” state, which absor
extinct species, and from which new species emerge at
low fitness boundary of the system. A finite upper bou
to the total number of species which can coexist impl
a conservation law:Nstd 1

R`

0 Ps y, tddy ­ 1. With the
chosen normalization,Nstd is the fraction of species in
the limbo state, whilePsx, td is the probability density
of finding a living species with fitnessx. The above
© 1997 The American Physical Society 1413
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considerations lead us to the differential equations
dNstd

dt
­ 2bNstd 1 g

Z `

0
Psz, tdKsPddz , (2)

≠Psx, td
≠t

­ 2
≠fysxdPsx, tdg

≠x
2 gPsx, tdKsPd , (3)

where b is the rate at which species are generated
the low fitness end of the system. The correspon
ing initial and boundary conditions areNst ­ 0d ­
N0 , ;x : Psx, t ­ 0d ­ P0sxd, ;t :

R`
0 Psx, tddx ­ 1 2

Nstd , `, and finally;t : Psx ­ 0, td ­ bNstd.
We consider below a form of the killing rateK which

is as close as possible to the reset model: The killing
fitnessx is taken to depend on the rate of evolutionar
change of agents with fitness larger thanx: low-fitness
agents suffer if high-fitness agents evolve—but not vic
versa. This leads to

KsssysxdPsx, tdddd ­

∑
2

Z `

x
≠syPdy≠x

∏a

dx

­ fysxdPsx, tdga , (4)

simply expressing the killing rate as the evolutionar
current raised to a power. The exponenta just introduced
allows more generality without unduly complicating the
analysis: It accounts in a simplified way for possibl
(spatial) correlation effects in a model where informatio
about individual species is retained. Ifa , 1 s.1d, a
move by an old, slowly evolving species triggers a larg
(smaller) cascade of extinctions than one by a youn
fast evolving species. Figure 1 shows six snapshots
the fitness distribution resulting from the above equation
at times equally spaced on a logarithmic scale and f
a ­ 1, b ­ 1, andg ­ 40.

A quantity often used to characterize paleontologic
data is the survivorship curve of a cohort or the close
related life-span distribution [6]. In our treatment th
former quantity corresponds to the probabilityWtstd that
an agent appearing at timet survives timet, while the
latter can be found fromWtstd by differentiation:

Rtstd ­ 2
dWtstd

dt
. (5)

As an agent born att and alive at timet 1 t invariably
has fitnessDstd ­ lnst 1 1d and as the probability of
being killed in the intervaldt is KhPfDstd, t 1 tgjdt,
W must obey the differential equation

d ln Wtstd
dt

­ 2gKhPfDstd, t 1 tgj, t . 0 , (6)

with initial conditionWtst ­ 0d ­ 1.
Finally, the model extinction rate is simply the fraction

of species which die per unit of time, at timet:

rstd ­ g
Z `

0
Psx, tdKsssPsx, tdddddx

­ dNydt 1 bN . (7)

Note that ifb ! `, then extinct species are immediatel
replaced, as in Ref. [1]. Furthermore, for anyb and large
1414
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FIG. 1. For1 # n # 6 the n’th plot in the figure depicts the
fitness distributionPsx, td at timet ­ 10n The parameters used
area ­ 1, b ­ 1 andg ­ 40.

bt, dNydt is negligible andbNstd ! rstd so that the
extinction closely balances the inflow.

As a first step towards the solution of Eq. (3), we s
q ­ yP and notice thatq can be written asqfzsx, tdg
with

dqydz ­ 2gqa11 (8)

and wherezsx, td satisfies

≠zy≠t 1 ysxd≠zy≠x ­ 1 . (9)

The solution of Eq. (8) is simplyq ­ sagzd21ya. To
solve Eq. (9) we letA and B be any two functions of a
single real variablex that are continuous forx . 0 and
that vanish identically forx , 0. For y ­ exps2xd, the
general solution has the formzsx, td ­ e expsxd 1 s1 2

edt 1 Aft 1 1 2 expsxdg 1 Bfexpsxd 2 st 1 1dg for
some constante , 1. Utilizing the initial and bound-
ary conditions, we find As yd ­ fbNs ydg2a , y . 0
and Bs yd ­ s y 1 1daP0flns y 1 1dg2a 2 gay, y . 0
leading to

Psx, td ­
ex

h gat 1 sex 2 tdaP2a
0 flnsex 2 tdgj1ya

(10)

for x . Dstd, while for x , Dstd we have

Psx, td ­
ex

h gasex 2 1d 1 fbNst 1 1 2 exdg2aj1ya
.

(11)

Note that P is continuous inx, although its derivative
will, in general, be discontinuous atx ­ Dstd.

The survival probability of a species born at timet
(the survivorship curve of a cohort [6]) can be obtaine
analytically by solving Eq. (6). This is so because whe
insertingDstd in lieu of x in Eq. (11) thet dependence
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in the argument of the (unknown) functionN drops out.
The solution is

Wtstd ­

(
fbNstdg2a

fbNstdg2a 1 gat

)1ya

. (12)

As W vanishes for larget, all species eventually die,
regardless of the value ofa. This behavior is very
desirable from a modeling point of view, as it agrees wi
the fact that by far the largest number of species whi
ever lived are now extinct [14]. The distribution of life
spans can be obtained from Eq. (12) by differentiatio
as expressed in Eq. (5). Ifa is close to unity, we find
a t21 behavior forWtstd, and, hence, at22 for Rtstd,
independently oft.

Averaging these distributions with respect tot over
a time window T is needed if the time of appearanc
of species is not precisely known, or if data are scarc
Weighing Rtstd by the normalized rate at which new
species flow into the system we obtain

Rstd ­

RT2t

0 NstdRtstddtRT
0 Nstddt

. (13)

Of course, averaging does not change the behavior s
nificantly if T is short compared to the typical lifetime
of the species. In the opposite limit, the behavior is al
maintained ifNstd does not vanish “too rapidly” in the
limit t ! `. To better appreciate this last point, we us
Eq. (13) in conjunction with Eqs.(12) and (5) and expre
N2a by Wtstd, obtaining

Rstd ­ gs gatd2121ya

RT2t

0 f1 2 Wa
y stdg111yadyRT2t

0 bNs yddy
.

(14)

Even though this integral cannot be evaluated expl
itly, Eq. (12) shows that thet dependence of the inte-
grand is negligible if the inequalityagt . fbNs ydg2a

holds throughout the integration interval. Thet depen-
dence stemming from the limits of the integrals can al
be ignored fort ø T . HenceR ~ t2121ya , similarly
to the nonaveraged case. As shown later, whena is
close to unity andg is sufficiently large, the model yields
rstd ø bNstd $ t2d, with d close to0.5, which means
that even thought ø T the relationt . Tda can be ful-
filled.

We now restrict ourselves to a limiting case in whic
Nst ­ 0d ­ 1, which is formally at variance with our
boundary conditions. However, a limiting process show
that the relevant expression forPsx, td for x , Dstd re-
mains Eq. (11), whileP ­ 0 for x . Dstd. A nonlin-
ear equation forNstd is now obtained by integration of
Eq. (11), followed by a change of variables. The result

1 2 Nstd ­
Z t

0

dy
hgast 2 yd 1 fbNs ydg2aj1ya

. (15)

Differentiating Eq. (15) with respect to time and utilizing
Eq. (7), we find the extinction rate
th
ch
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rstd ­
Z t

0

g dy
hgast 2 yd 1 fbNs ydg2aj111ya

. (16)

A closed form solution of these (equivalent) integra
equations could not be found in the general case. W
notice, however, a major difference in the asymptoti
behavior fora , 1 and a $ 1. In both cases the time
independent functionP`sxd obtained by takingt ! ` and
by settingNstd ­ N` fi 0 in Eq. (11) formally satisfies
the model equations. However, only fora , 1 is P`sxd
normalizable and thus a true solution. The correspondin
steady state value ofN , N` is then implicitly given by the
relation1 2 N` ­ sbN`d12ayf gs1 2 adg, which always
has a solution in the unit interval.

In the casea $ 1, normalizability of Psx, td requires
that Nstd ! 0 for t ! `. No steady state solution can
then exist, sincePsx, td vanishes witht at any fixedx, as,
e.g., in the familiar case of simple diffusion on the infinite
line. For a , 1, the steady state solution is, strictly
speaking, only approached logarithmically due to the form
of Dstd. Neglecting this logarithmic correction we see
from Fig. 2 a power-law approach to a quasistationar
behavior over a substantial time range.

For long timesa ­ 1 and bt ¿ 1 the termdNydt in
Eq. (2) is negligible andbNstd ø rstd. In this limit we
can also neglectN compared to 1, thus finding the follow-
ing approximate equation forrstd: 1 ­

Rt
0

gdy
gst2yd1rs yd21 ,

which has the solutionrstd ­ s gtd21.
Figure 2 shows arstd vs t for a ­ 0.95, b ­ 1,

and severalg values. As noted, for a wide time span,
r ~ t2g , whereg decreases with increasingg, similarly
to the result obtained in the simulations of the reset mod
[1]. No qualitative changes are observed when varyinga

in a small range below 1, or when changingb. In sum-
mary, fora slightly below 1, andg sufficiently large, the

FIG. 2. The numerically obtained extinction rate is plotted v
time, for b ­ 1, a ­ 0.95 and for g ­ 5 (s), 10 (.), 20 (p),
30 (1) and 40 (3). The decay is approximately a power-
law with exponents equal to20.89, 20.85, 20.75, 20.69 and
20.56. These slopes are visualized by the full lines.
1415
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life-span distribution (averaged or not) decays alg
braically with an exponent slightly above22 and the rate
of extinction decays with an exponent close to20.5 until
it reaches a regime of hardly detectable change.

The most comprehensive empirical life span distributio
available, comprising about 17 500 extinct genera of m
rine animals has been tabulated by Raup [7] from data co
piled by Sepkoski [18]. These data cover about100 3 106

years and display a very cleart22 dependence in a log-log
plot [1,3] over this range, which concurs with the beha
ior of our Rtstd. More recent analysis by Baumiller [15
of several data sets describing crinoid survivorship—o
Wtstd—over a comparable time span in part concur with
t21 law, and, hence, with at22 law for the lifetime distri-
bution. Finally, survivorship curves for European mam
mals were considered by Stanley [12]. These data sp
approximately3 3 106 years stretching to the Würm pe
riod and include much fewer species. The distributio
of lifetimes deviates from at22 law by having an extra
“hump” approximately in the middle of the time range.

Paleontological data are commonly interpreted usi
a birth and death model [6,15], in which noninteractin
species are born and die with two distinct constant ra
of speciation and extinction,l and m, and where the
genus becomes extinct together with its last speci
Interestingly, the survivorship formula generated by th
model is, forl ­ m and for an initial number of species
equal to 1, identical to our Eq. (12)—witha ­ 1, as
far as its dependence on the life time—our t —goes.
By continuity so are the model predictions in the ofte
recurring situation whenl ø m. The similarity in the
formulas is, however, contingent to the initial conditio
and should be regarded as accidental [19].

In line with the conclusion of the reset model, we hav
shown analytically that a large body of data describin
evolution on coarse scales of time and taxonomical le
can be explained by two very simple ideas: (1) Th
fitness records in random searching trigger evolutiona
events and (2) that the species competition is “asymm
ric,” with high fitness species being more resilient.

The robustness of this approach has already been a
lyzed to some extent: The effect of additional and exte
nally imposed random killings of a fraction of the agents—
mimicking catastrophes—has been studied by Brandt [2
who found that the life-span distribution was not affecte
This is to be expected, as even very large mass extinct
events—in the model as well as in reality—only accou
for a small fraction of all extinctions. We also explore
other choices of the killing term in Eq. (4), finding that th
1yt2 law disappears if the asymmetry of the interspeci
interactions is removed, with the possible exception of sp
cial values of the coupling constants.
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Note added.—After this paper was submitted the autho
became aware of a preprint by Manrubia and Paczu
[22], which also treats evolution and extinctions b
means of a transport equation and finds at22 lifetime
distribution, albeit the basic dynamical mechanism is qu
different from ours.
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Universitet, Campusvej 55, DK5230 Odense M
Denmark.
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