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Soluble Model of Evolution and Extinction Dynamics in a Rugged Fitness Landscape
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We consider a continuum version of a previously introduced and numerically studied model of
macroevolution [P. Sibani, M. R. Schimdt, and P. Alstram, Phys. Rev. 8t2055 (1995)] in which
agents evolve by an optimization process in a rugged fitness landscape and die due to their competitive
interactions. We first formulate dynamical equations for the fitness distribution and the survival
probability. Secondly, we analytically derive the? law which characterizes the lifetime distribution of
biological genera. Thirdly, we discuss other dynamical properties of the model as the rate of extinction
and conclude with a brief discussion. [S0031-9007(97)03769-1]

PACS numbers: 87.10.+e, 02.50.Fz, 05.40.+j, 03.20.+i

Aspects of evolution and extinction can be described aas evolving species only kill their less fit neighbors. The
emergent behavior in a large set of interacting agents [1predictions of the present model resemble the behavior of
4] moving stochastically in a rugged fitness landscape [5]the reset model and are in good agreement with empirical
The behavior of the models of Refs. [2—4] stems from fluc-data describing biological genera [6,7,12—15].
tuations in a time homogeneous stochastic process. This In the sequel we first derive equations for the fithess
agrees with a commonly held perception, e.g., implieddistribution of the systenP(x,¢) and for the probability
when a birth-death process with constant rates [6] is used tw,(7) that a tagged species born at timeurvive time
fit survivorship data and when the size of extinction events. We then analytically find the ! dependence oW
is presented as a “kill curve” [7]. A quite different para- and the ensuing > dependence of the lifetime distribu-
digm is also frequently met in the literature: Raup andtion R;(7). Next we discuss the parametriclependence,
Sepkoski [8] noted that the apparent decrease of the extingrhich is not, in general, analytically available, the effect
tion rate through geological times could be “. . . predictableof averaging over, and the long time asymptotic behav-
from first principles if one argues that general optimizationior of P(x, ¢) for different parameter values. We conclude
of fitness through evolutionary time should lead to pro-with a brief assessment of the robustness of the model.
longed survival.” Gould [9] uses an unexpected source To construct a dynamical equation faP(x,t) we
of statistical data to illustrate evolutionary nonhomogeneproceed in two steps, starting with the limiting case where
ity as it reveals itself in the “unreversed, but constantlyno extinctions take place and where, as a consequence
slowing, improvement in mean fielding average throughof hill climbing in a random fitness landscape, a suitably
the history of baseball.” Concurring observations fromdefined [1,16,17] average fitness grows logarithmically:
experimental studies of bacterial evolution in a constant D() = In(t + 1) (1)
environment can be found in Ref. [10] as well as from nu- )
merical experiments on the “long jump dynamics” of the ~With no interactions, an initial fitness distribution would
NK model in Ref. [11]. be rigidly shifted in (In) time. AsD solves the equa-

In this Letter we consider stochastic evolution in ation of motionv(x) = dx/dr = exp(—x) with initial con-
rugged fitness landscape. The assumptions are the samhigion D(0) = 0, the time evolution of a distribution of
in spirit as those of a previously introduced and numerinoninteracting agent8(x, r) solves the transport equation
cally studied “reset” model [1]. However, here they aredP(x,t)/dt + d[v(x)P(x,t)]/dx = 0. Interactions enter
expressed in a further simplified way, allowing a (mainly)via an additional term-gP(x, t)K[P(x, )], wherekK is an
analytical rather than (mainly) numerical treatment andeffective killing rate and where the constantdescribes
leading to close form expressions for the survivorshipwhat fraction of the system is affected by an evolutionary
curves and life-span distributions, which are of general inevent.
terest in the study of complex evolving systems, biological Species going extinct vacate a niche, which is refilled
or not. We use two—somewhat extreme—assumptionat a later time. This inflow and outflow is expediently
in line with a nonstationary evolution paradigm: Firstly, accounted by introducing a “limbo” state, which absorbs
the progeny of individual mutants less fit than the cur-extinct species, and from which new species emerge at the
rently dominating genotypeeverestablishes itself within low fithess boundary of the system. A finite upper bound
the population. Then, as a macroscopic evolutionary stefo the total number of species which can coexist implies
can only be triggered by a fitnesscordwithin the popula-  a conservation law¥N (r) + fff P(y,t)dy = 1. With the
tion, the current typical genotype always codes the best s@hosen normalizationy¥(¢) is the fraction of species in
lution found “so far.” Secondly, competitive interactions the limbo state, whileP(x,t) is the probability density
among species depend on fitness in a nonsymmetric wagf finding a living species with fithess. The above
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considerations lead us to the differential equations

dl:;—ft) = —bN(t) + gjo P(z,)K(P)dz, (2)

IP(x,1) _  dlv)Px, 0] P OK(P). (3) ol
at dx

where b is the rate at which species are generated at
the low fitness end of the system. The correspond-

ing initial and boundary conditions ar&(r = 0) =

No ,Vx : P(x,t =0) = Py(x),Vt: [, P(x,0)dx = 1 —
N(t) < =, and finallyVt : P(x = 0,1) = bN(¢). 004

We consider below a form of the killing ra& which
is as close as possible to the reset model: The killing at
fithessx is taken to depend on the rate of evolutionary 0 -
change of agents with fitness larger thanlow-fithess ° fitness
agents suffer if high-fitness agents evolve—but not vicg g 1. For1 = n = 6 the n'th plot in the figure depicts the
versa. This leads to fitness distributionP(x, 7) at imes = 10" The parameters used

%] a o1 - d @ .
Pt = [_[ a(vP>/8X} dx area =1,b = landg = 40

X

fraction of species

L
20 25

= [v(x)P(x,1)]°, (4) bt dN/dt is negligible andbN (1) — r(z) so that the
extinction closely balances the inflow.

simply ex_pressing the killing rate as _the. evolutionary As a first step towards the solution of Eqg. (3), we set
current raised to apo_wer..The exponanjust mt_rod_uced ¢ = vP and notice thaty can be written as[z(x, )]
allows more generality without unduly complicating the wit

analysis: It accounts in a simplified way for possible
(spatial) correlation effects in a model where information dg/dz = —gq*™! (8)
ST L . q/az 849

about individual species is retained. d4f <1 (>1), a

move by an old, slowly evolving species triggers a largerand wherez(x, r) satisfies

(smaller) cascade of extinctions than one by a young,

fast evolving species. Figure 1 shows six snapshots of dz/at + v(x)az/dx = 1. (9)

the fitness distribution resulting from the above equationsrhe solution of Eq. (8) is simply; = (agz) /. To

at times equally spaced on a logarithmic scale and fogolve Eq. (9) we Iet'4 and B be any two functioﬁs of a

. . .__single real variablec that are continuous fox > 0 and

A guantity often used to characterize paleontologica hat vanish identically fox < 0. Forv — exg—x), the

data is the survivorship curve of a cohort or the closely . y ) o '

g o general solution has the fora(x,t) = eexplx) + (1 —
related life-span distribution [6]. In our treatment the )t + Alr + 1 — expx)] + Blexplx) — (¢ + 1)]  for
former quantity c_orrespo_nds to t_he prqbablm(q_-) that some constant < 1. Utilizing the initial and bound-
an agent appearing at tinresurvives timer, while the ’

: AT ary conditions, we findA(y) = [bN(y)]™%, y >0
latter can be found fromV,(r)dt‘))‘)// differentiation: and B(y) = (y + DePIn(y + D] — gay. y >0
_dWi(7) ) (5) leadingto

a =1,b=1,andg = 40.

Ri(1) =
As an agent born atand alive gt time + 7 invariably e~
has fithessD(7) = In(r + 1) and as the probability of P(x,1) = {gat + (e — 1)aPy “[In(ex — D)}/
being killed in the intervaldr is K{P[D(7),t + t]}dr,
W must obey the differential equation (10)

[ for x > D(z), while for x < D(¢) we have
d”d—W’(T) — eklPD(t + 7] >0, () OF 7 PO * <P
T ex
with initial condition W,(r = 0) = 1. P(x,t) = - T alla -
Finally, the model extinction rate is simply the fraction {gale” = 1) + [DN( + 1 — en]e}V
of species which die per unit of time, at tinne 11
e (11)
r(t) = gj P(x, )K(P(x.1))dx Note thatP is continuous inx, although its derivative
0 ’ ’ will, in general, be discontinuous at= D(z).

The survival probability of a species born at time

= dN/dt + DN . (7) (the survivorship curve of a cohort [6]) can be obtained

Note that ifb — oo, then extinct species are immediately analytically by solving Eq. (6). This is so because when
replaced, as in Ref. [1]. Furthermore, for ahand large insertingD(7) in lieu of x in Eq. (11) ther dependence
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in the argument of the (unknown) functiavi drops out.
The solution is
]l/a

As W vanishes for larger, all species eventually die,
regardless of the value oft. This behavior is very

[bN()]
[BN(D)]7* + gar

Wi(r) = [ (12)

t

_ g dy
r(e) = [o {ga(t —y) + [bDN(y)]-epi+l/a’

(16)

A closed form solution of these (equivalent) integral
equations could not be found in the general case. We
notice, however, a major difference in the asymptotic
behavior fora < 1 anda = 1. In both cases the time

desirable from a modeling point of view, as it agrees withindependent functiof®..(x) obtained by taking — o and
the fact that by far the largest number of species whiclby settingN(r) = N.. # 0 in Eq. (11) formally satisfies

ever lived are now extinct [14]. The distribution of life
spans can be obtained from Eg. (12) by differentiation
as expressed in Eq. (5). # is close to unity, we find
a 7~ ! behavior forw,(r), and, hence, a2 for R,(7),
independently of.

Averaging these distributions with respect toover
a time windowT is needed if the time of appearance

the model equations. However, only far< 1 is P«(x)
normalizable and thus a true solution. The corresponding
steady state value @f, N.. is then implicitly given by the
relationl — N., = (bN..)!"%/[ g(1 — )], which always
has a solution in the unit interval.

In the casex = 1, normalizability of P(x, t) requires
that N(r) — 0 for r — . No steady state solution can

of species is not precisely known, or if data are scarcethen exist, since(x, ) vanishes withr at any fixedx, as,

Weighing R,(7) by the normalized rate at which new
species flow into the system we obtain

o TN@)R,(7)dt
JEN@)ar

R(r) = (13)

Of course, averaging does not change the behavior Sié)-e

nificantly if T is short compared to the typical lifetime
of the species. In the opposite limit, the behavior is als
maintained if N(z) does not vanish “too rapidly” in the

limit 1 — . To better appreciate this last point, we useiNd approximate equation for(z): 1 =

e.g., in the familiar case of simple diffusion on the infinite

line. For a < 1, the steady state solution is, strictly

speaking, only approached logarithmically due to the form
of D(r). Neglecting this logarithmic correction we see

from Fig. 2 a power-law approach to a quasistationary
havior over a substantial time range.

For long timesa = 1 and bt > 1 the termdN/dt in

Fa. (2) is negligible andN(t) = r(r). In this limit we

can also negled¥ compared to 1, thus finding tr}e follow-
fo g

Eqg. (13) in conjunction with Egs.(12) and (5) and expresgvhich has the solution(r) = (gr)~".

N~ by W,(7), obtaining
T—1

R(7) = g(gar) ! "V/a=2 [1 — we(n)] ey

=7 bN(y)dy

(14)

Even though this integral cannot be evaluated explic
itly, Eq. (12) shows that the dependence of the inte-
grand is negligible if the inequalitygr > [bN(y)]™¢
holds throughout the integration interval. Thedepen-

dence stemming from the limits of the integrals can also

be ignored forr < T. HenceR o« 7~ !~!/« similarly
to the nonaveraged case. As shown later, whelis
close to unity and; is sufficiently large, the model yields
r(t) = bN(t) = t~?, with & close t00.5, which means
that even though < T the relationr > T7°¢ can be ful-
filled.

We now restrict ourselves to a limiting case in which
N(t = 0) = 1, which is formally at variance with our

boundary conditions. However, a limiting process shows

that the relevant expression fé(x, ) for x < D(z) re-
mains Eq. (11), whileP = 0 for x > D(¢). A nonlin-
ear equation forv(¢) is now obtained by integration of

Eq. (11), followed by a change of variables. The result is

L= N® /o{ga<r—y)+[bzv<y>]a}1/a'

Differentiating Eqg. (15) with respect to time and utilizing
Eq. (7), we find the extinction rate

(15)

g=y)+r( T

Figure 2 shows ar(t) vst for « =095, b =1,
and severalg values. As noted, for a wide time span,
r « ¢t~ Y, wherey decreases with increasing similarly
to the result obtained in the simulations of the reset model
[1]. No qualitative changes are observed when varying
in a small range below 1, or when changihg In sum-
mary, for« slightly below 1, ande sufficiently large, the

10
X
*

iii ¥ x
* *

+ X

*

+

7

* +X

F O
o

ext. rate

o
10

L 1
5 106

' 10

164 7
time (arb. units)

10 10 10

FIG. 2. The numerically obtained extinction rate is plotted vs
time, forb =1, a« = 0.95 and forg = 5 (O), 10 (), 20 (),
30 (+) and 40 ). The decay is approximately a power-

law with exponents equal te-0.89, —0.85, —0.75, —0.69 and
—0.56. These slopes are visualized by the full lines.
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life-span distribution (averaged or not) decays alge-This work was supported by the Statens Naturvidenska-

braically with an exponent slightly above2 and the rate belige Forskningsrad.

of extinction decays with an exponent close-t6.5 until Note added.-After this paper was submitted the author

it reaches a regime of hardly detectable change. became aware of a preprint by Manrubia and Paczuski
The most comprehensive empirical life span distribution22], which also treats evolution and extinctions by

available, comprising about 17 500 extinct genera of mameans of a transport equation and finds 3 lifetime

rine animals has been tabulated by Raup [7] from data condistribution, albeit the basic dynamical mechanism is quite

piled by Sepkoski[18]. These data cover abtat X 10  different from ours.

years and display a very clear> dependence in a log-log

plot [1,3] over this range, which concurs with the behav-

ior of our R,(7). More recent analysis by Baumiller [15]

of several data sets describing crinoid survivorship—our *On leave of absence from Fysisk Institut, Odense

W,(7)—over a comparable time span in part concur witha ~ Universitet, Campusvej 55, DK5230 Odense M,
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A ’ (1982).
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