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Conformal Invariance and Cosmic Background Radiation
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The spectrum and statistics of the cosmic microwave background radiation (CMBR) are investiga
under the hypothesis that scale invariance of the primordial density fluctuations should be promo
to full conformal invariance, allowing for deviations from naive scaling. The spectral index of th
two-point function of density fluctuations is determined by the trace anomaly to be greater than o
implying less power at large distance scales than a Harrison-Zel’dovich spectrum. Conformal invaria
also implies non-Gaussian statistics of the CMBR and determines the large angular dependence o
three-point correlations. [S0031-9007(97)03472-8]
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With the discovery of the anisotropy in the cosmi
microwave background radiation (CMBR) [1], cosmolog
has accelerated its transition from a field based large
on speculation to one in which observational data can
brought to bear on our understanding of the Univers
The CMBR anisotropy is the most sensitive availab
probe of the primordial density fluctuations from whic
the large scale structure of the Universe arose. Since
pioneering work of Harrison and Zel’dovich [2] it has bee
reasonable to suppose that these primordial fluctuatio
were generated with a scale invariant spectrum during
early epoch in the history of the Universe at the threshold
its classical evolution. Inflationary models are a particul
realization of this idea which provide a quantum origin t
the fluctuations with a spectral indexn very close to one
[3]. However scale invariance itself is more general tha
this. As a newly emerging physical science, the time no
seems ripe to examine the broader context and implicatio
of scale invariant behavior for cosmology, as revealed
its more developed sister sciences.

Scale invariance was first introduced into physics
early attempts to understand the apparently universal
havior observed in turbulence and second order phase tr
sitions, which are independent of the particular dynamic
details of the system. The gradual refinement and devel
ment of this simple idea of universality led to the moder
theory of critical phenomena, one of whose hallmarks
well-defined logarithmic deviations from naive scaling re
lations [4]. A second general feature of the theory is th
specification of higher point correlation functions of fluc
tuations according to the requirements of conformal inva
ance at the critical point [5].

In the language of critical phenomena, the observati
of Harrison and Zel’dovich [2] that the primordial density
fluctuations should be characterized by a spectral ind
n ­ 1 is equivalent to the statement that the observab
giving rise to these fluctuations has engineering or nai
scaling dimensionD0 ­ 2. Indeed, because the densit
fluctuations are related to metric fluctuations by Einstein
0031-9007y97y79(1)y14(4)$10.00
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equations, this naive scaling dimension simply reflects th
fact that the relevant coordinate invariant measure
metric fluctuations is the scalar curvaturedR , Gdr,
which is second order in derivatives of the metric. Henc
the fluctuations in the density perturbations are tied
the scalar curvature and the two-point spatial correlatio
of both should behave likejx 2 yj24, or jkj1 in Fourier
space, according to simple dimensional analysis.

One of the principal lessons of the modern unde
standing of critical phenomena is that naive dimension
analysis doesnot fix the transformation properties of ob-
servables under conformal transformations at the fixe
point. On the contrary, one should expect to find wel
defined logarithmic deviations from naive scaling, corre
sponding to a (generally noninteger) dimensionD fi D0.
The deviation from naive scalingD 2 D0 is the “anoma-
lous” dimension of the observable due to critical fluctua
tions, which may be quantum or statistical in origin. Onc
D is fixed for a given observable the requirement of confo
mal invariance determines the form of its two- and three
point correlation functions up to an arbitrary amplitude
without reliance on any particular dynamical model.

Two-point correlations.—Consider first the two-point
function of two observablesOD with dimension D.
Conformal invariance requires [4,5]

kODsx1dODsx2dl , jx1 2 x2j
22D (1)

at equal times in three dimensional flat spatial coordinate
In Fourier space this becomes

G2skd ; kÕDskdÕDs2kdl , jkj2D23. (2)

Thus, we define the spectral index of this observable by

n ; 2D 2 3 . (3)

In the case that the observable is the primordial dens
fluctuation dr, and in the classical limit where its
anomalous dimension vanishes,D ! D0 ­ 2, we recover
the Harrison-Zel’dovich spectral index ofn ­ 1.
© 1997 The American Physical Society
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In order to convert the power spectrum of primordi
density fluctuations to the spectrum of fluctuations in t
CMBR at large angular separations we follow the sta
dard treatment [6] relating the temperature deviation to t
Newtonian gravitational potentialw at the last scattering
surface,dT

T , dw, which is related to the density pertur
bation in turn by

=2dw ­ 4pGdr . (4)

Hence, in Fourier space,

dT
T

, dw ,
1
k2

dr

r
, (5)

and the two-point function of CMBR temperature fluctua
tions is determined by the conformal dimensionD to be

C2sud ;
ø

dT
T

sr̂1d
dT
T

sr̂2d
¿

,
Z

d3k

µ
1
k2

∂2

G2skdeik?r12

, Gs2 2 Dd sr2
12d22D, (6)

wherer12 ; sr̂1 2 r̂2dr is the vector difference between
the two positions from which the CMBR photons orig
nate. They are at equal distancer from the observer by the
assumption that the photons were emitted at the last s
tering surface at equal cosmic time. Sincer2

12 ­ 2s1 2

cosudr2, we find then

C2sud , Gs2 2 Dd s1 2 cosud22D (7)

for arbitrary scaling dimensionD.
Expanding the functionC2sud in multipole moments,

C2sud ­
1

4p

X̀
,­0

s2, 1 1dcs2d
, sDdP,scosud , (8)

c
s2d
, sDd , Gs2 2 Dd sinfps2 2 Ddg

Gs, 2 2 1 Dd
Gs, 1 4 2 Dd

,

(9)

shows that the pole singularity atD ­ 2 appears only in
the , ­ 0 monopole moment. This singularity is just th
reflection of the fact that the Laplacian in (4) cannot b
inverted on constant functions, which should be exclude
Since the CMBR anisotropy is defined by removing th
isotropic monopole moment (as well as the dipole m
ment), the, ­ 0 term does not appear in the sum, an
the higher moments of the anisotropic two-point correl
tion function are well defined forD near2. Normalizing
to the quadrupole momentc

s2d
2 sDd, we find

c
s2d
, sDd ­ c

s2d
2 sDd

Gs6 2 Dd
GsDd

Gs, 2 2 1 Dd
Gs, 1 4 2 Dd

, (10)

which is a standard result [6,7]. Indeed, ifD is replaced by
D0 ­ 2 we obtain,s, 1 1dcs2d

, sD0d ­ 6c
s2d
2 sD0d, which is

the well-known predicted behavior of the lower momen
(, # 30) of the CMBR anisotropy where the Sachs-Wolf
effect should dominate.
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Our conformal symmetry considerations up to this poi
are quite general and leaveD undetermined. Let us dis-
cuss now a physical source of quantum fluctuations
cosmological distance scales that can lead to a deviat
from the classical scale dimensionD0 ­ 2. As has been
known for some time, the quantum zero-point energy
massless fields is modified in curved space and gives r
to a nonvanishing trace of the energy-momentum tens
called the trace anomaly [8]. This nonzeroT

m
m couples

to the spin-0 or conformal part of the spacetime metri
and causes it to fluctuate as well. Physically this mea
that the local standard of distance in the line elementds2

varies from point to point in space. By the equivalenc
principle there is no strictly local coordinate invariant ob
servable that is sensitive to these conformal fluctuatio
However the correlations between the fluctuations atdif-
ferent spacetime points grow logarithmically, and on th
characteristic scale of the horizon their magnitude becom
comparable with the classical gravitational potential in (4
At still larger scales these fluctuations dominate and le
to a renormalization group fixed point of gravity which i
infrared stable [9]. Conformal invariance is thereby re
stored by these very large scale gravitational fluctuatio
but the correlations and statistics of the CMBR entering o
horizon should bear their imprint in the form of logarith
mic deviations of the scaling relations from their classic
counterparts, i.e.,D fi D0.

This line of reasoning determines the scaling dimensi
of an observable with classical dimensionD0 to be [10]

D ­ 4

p
1 2 2s4 2 D0dyQ2 2

p
1 2 8yQ2

1 2
p

1 2 8yQ2
. (11)

whereQ2 is the relevant coefficient of the original trace
anomaly (the Gauss-Bonnet term). Hence considerat
of the trace anomaly generated by the zero-point fluctu
tions of massless fields leads necessarily to well-defin
quantum corrections to the naive scaling dimensions of o
servables in cosmology. In the limitQ2 ! `, the effects
of fluctuations in the metric are suppressed and one rec
ers the classical scaling dimensionD0,

D ­ D0 1
1

2Q2
D0s4 2 D0d 1 . . . . (12)

We estimateQ2 in light of what is presently known about
the trace anomaly of massless fields in Eq. (13) below, b
for practical purposesQ22 may be regarded as simply a
parameter characterizing the universality class of the co
formal metric fluctuations, which has no reason to vani
and should be determined from the observations. Fro
this slightly more general perspective, the conformal i
variance considerations that lead to (11) are quite indep
dent of any particular model of their origin.

In the analysis of physical observables in the conform
sector of gravity, the operator with the lowest nontrivia
scaling dimension corresponds, in the classical limit, to t
scalar curvature withD0 ­ 2 [10]. Since the fluctuations
15
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which dominate at large distances correspond to obs
ables with lowest scaling dimensions, the conformal fa
tor theory in this limit selects precisely Harrison’s origin
choice.

With D0 ­ 2, we find a definite prediction for deviation
from a strict Harrison-Zel’dovich spectrum according
Eqs. (3) and (11) in terms of the parameterQ2. The
resulting spectral indexn is plotted as a function ofQ2 in
Fig. 1. It is always greater than1 (if 8 # Q2 , `), and
for largeQ2 it behaves asn ­ 1 1

4
Q2 1 . . . . Comparing

to the results of the four year cosmic background explo
differential microwave radiometer (COBE DMR) dat
analysis of the power spectrum,0.9 & nobs & 1.5 [11], we
find thatQ2

obs * 12.4 from Fig. 1.
From the theoretical side, the value ofQ2 for free

conformally invariant fields is known to be [8,12]

Q2 ­
1

180
sNS 1

11
2 NF 1 62NV 2 28d 1 Q2

grav , (13)

whereNS, NF , and NV are, respectively, the number o
free scalars, Weyl fermions, and vector fields andQ2

grav
is the contribution of spin-2 gravitons, which has not y
been determined unambiguously. The228 contribution
is that of the conformal or spin-0 part of the metr
itself. The main theoretical uncertainty in determinin
Q2

grav is that the Einstein theory is neither conformal
invariant nor free, so that a method for evaluating t
strong infrared effects of spin-2 gravitons is required whi
is insensitive to ultraviolet physics. Such an analy
may be possible by numerical methods on the latti
which would also provide a nontrivial consistency che
of the existence of the infrared fixed point of quantu
gravity with the predicted scaling relations [10]. A pure
one-loop computation givesQ2

grav . 7.9 for the graviton
contribution [12]. Taking this estimate at face value a
including all known fields of the standard model (SM
of particle physics (for whichNF ­ 45 and NV ­ 12)
we find

Q2
SM . 13.2 and n . 1.45 , (14)

which is intriguingly close to the observational bound.
A deviation of this sort from the Harrison-Zel’dovich

spectrum has implications for galaxy formation. Indee
a determination ofQ2 close to its present observation
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FIG. 1. The spectral indexn as a function ofQ2.

bound together with the COBE quadrupole normalizati
of the spectrum at large scales implies more power
shorter subhorizon scales where galaxies formed. For
value of the spectral indexn . 1.45, the power spectrum
has an enhancement factor ofsH0 3 20 Mpcy2hd20.45 .
4.6 at the20h21 Mpc distance scale, relative to then ­ 1
spectrum. This would lead to earlier formation of structu
at the galactic and galactic cluster scales than in the c
of a primordialn ­ 1 spectrum. However, the form and
normalization of the evolved cluster mass function at the
scales is very much model dependent and would need to
reanalyzedab initio in each model to decide if increase
power in the primordial spectrum of adiabatic densi
fluctuations can be reconciled with the observations
the matter anisotropy on this scale [6]. It is noteworth
that the conformal fixed point for gravity predicts a “blue
spectral indexn . 1 (for Q2 . 8), while most suggestions
for modifying the Harrison-Zel’dovich spectrum, such a
extended or power law inflation (which do so by reducin
the effective inflation rate) lead ton # 1 [13].

Higher point correlations.—Turning now from the two-
point function of CMBR fluctuations to higher point cor
relators, we find a second characteristic and unambigu
prediction of conformal invariance, namely non-Gaussi
statistics for the CMBR. The first correlator sensitive
this departure from Gaussian statistics is the three-po
function of the observableOD, which takes the form [5]

kODsx1dODsx2dODsx3dl

, jx1 2 x2j
2Djx2 2 x3j

2Djx3 2 x1j
2D, (15)

or in Fourier space,
oning
G3sk1, k2d ,
Z

d3pjpjD23jp 1 k1j
D23jp 2 k2j

D23

, Gsss3s1 2
D

2 dddd
Z 1

0
du

Z 1

0
dy

fus1 2 udyg12 D

2 s1 2 yd211 D

2

fus1 2 udk2
1 1 ys1 2 udk2

2 1 uysk1 1 k2d2g3s12 D

2
d

. (16)

This three-point function of primordial density fluctuations gives rise to three-point correlations in the CMBR by reas
precisely analogous as that leading from Eqs. (2) to (6). That is,

C3su12, u23, u31d ;
ø

dT
T

sr̂1d
dT
T

sr̂2d
dT
T

sr̂3d
¿

,
Z d3k1d3k2

k2
1k2

2sk1 1 k2d2
G3sk1, k2deik1?r13 eik2?r23 , (17)

whererij ; sr̂i 2 r̂jdr andr2
ij ­ 2s1 2 cosuijdr2.
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From the above expressions, it is easy to extract t
global scaling of the three-point function in the infrared:

G3slk1, lk2d , l3sD22dG3sk1, k2d ,

C3 , r3s22Dd.
(18)

In the general case of three different angles, the expre
sion for the three-point correlation function (17) is quite
complicated, though it can be rewritten in parametric form
analogous to (16) to facilitate numerical evaluation, if de
sired. An estimate of its angular dependence in the lim
D ! 2 can be obtained by replacing the slowly varying
G3sk1, k2d by a constant. Then (17) can be evaluated b
expanding in terms of spherical harmonics:

C3suijd ,
X
li ,mi

K
p
l1m1l2m2l3m3

s2l1 1 1d s2l2 1 1d s2l3 1 1d

3

µ
1

l1 1 l2 1 l3
1

1
l1 1 l2 1 l3 1 3

∂
3 Yl1m1 sr̂1dYl2m2sr̂2dYl3m3sr̂3d , (19)

whereKl1m1l2m2l3m3 ;
R

dV Yl1m1 sVdYl2m2sVdYl3m3 sVd.
In the special case of equal anglesuij ­ u [14], it

follows from (18) that the three-point correlator is

C3sud , s1 2 cosud
3

2
s22Dd. (20)

Expanding the functionC3sud in multiple moments as
in Eq. (8) with coefficientsc

s3d
, , and normalizing to the

quadrupole moment, we find

c
s3d
, sDd ­ c

s3d
2 sDd

Gsss4 1
3
2 s2 2 Ddddd

Gsss2 2
3
2 s2 2 Ddddd

3
Gsss, 2

3
2 s2 2 Ddddd

Gsss, 1 2 1
3
2 s2 2 Ddddd

. (21)

In the limit D ­ 2, we obtain,s, 1 1dcs3d
, ­ 6c

s3d
2 , which

is the same result as for the momentsc
s2d
, of the two-point

correlator but with a different quadrupole amplitude.
The value of this quadrupole normalizationc

s3d
2 sDd can-

not be determined by conformal symmetry consideratio
alone. A naive comparison with the two-point function
which has a small amplitude of the order of1026 leads to
a rough estimate ofc

s3d
2 , O s1029d, which would make

it very difficult to detect [14]. However, if the conformal
invariance hypothesis is correct, then these non-Gauss
correlations must exist at some level, in distinction to th
simplest inflationary scenarios. Their amplitude is mod
dependent and possibly much larger than the above na
estimate. The detection of such non-Gaussian correlatio
(or non-Gaussian statistics of the two-point correlator)
any level is therefore an important test for the hypothes
of conformal invariance.

For higher point correlations, conformal invariance
does not determine the total angular dependence. Alrea
the four-point function takes the form

kODsx1dODsx2dODsx3dODsx4dl ,
A4Q

i,j r
2Dy3
ij

, (22)
he
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where the amplitudeA4 is an arbitrary function of the two
cross ratios,r2

13r2
24yr2

12r2
34 and r2

14r2
23yr2

12r2
34. Analogous

expressions hold for higherp-point functions. However,
in the equilateral caseuij ­ u, the coefficient amplitudes
Ap become constants and the angular dependence is a
completely determined. The result is

Cpsud , s1 2 cosud
p
2

s22Dd, (23)

and the expansion in multiple moments yields coefficien
cs pd

, of the same form as in Eq. (21) with3y2 replaced
by py2. In the limit D ­ 2, we obtain the universal,-
dependence,s, 1 1dcs pd

, ­ 6cs pd
2 .

In summary, the conformal invariance hypothesis a
plied to the primordial density fluctuations predicts de
viations from the Harrison-Zel’dovich spectrum, which
should be imprinted on the CMBR anisotropy. A particu
lar realization of this hypothesis is provided by the metr
fluctuations induced by the known trace anomaly of mas
less matter fields which gives rise to a fixed point with
spectral indexn . 1. A second general consequence o
conformal invariance is non-Gaussian statistics which
in particular the form of the three-point correlations of th
CMBR. If either of these effects is detected it would re
quire a reappraisal of the current models of the origin
primordial density fluctuations and the formation of struc
ture in the Universe.
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