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The spectrum and statistics of the cosmic microwave background radiation (CMBR) are investigated
under the hypothesis that scale invariance of the primordial density fluctuations should be promoted
to full conformal invariance, allowing for deviations from naive scaling. The spectral index of the
two-point function of density fluctuations is determined by the trace anomaly to be greater than one,
implying less power at large distance scales than a Harrison-Zel'dovich spectrum. Conformal invariance
also implies non-Gaussian statistics of the CMBR and determines the large angular dependence of its
three-point correlations. [S0031-9007(97)03472-8]

PACS numbers: 98.70.Vc, 98.80.Hw

With the discovery of the anisotropy in the cosmic equations, this naive scaling dimension simply reflects the
microwave background radiation (CMBR) [1], cosmology fact that the relevant coordinate invariant measure of
has accelerated its transition from a field based largelynetric fluctuations is the scalar curvatubR® ~ Gép,
on speculation to one in which observational data can behich is second order in derivatives of the metric. Hence,
brought to bear on our understanding of the Universethe fluctuations in the density perturbations are tied to
The CMBR anisotropy is the most sensitive availablethe scalar curvature and the two-point spatial correlations
probe of the primordial density fluctuations from which of both should behave likec — y|~#, or |k|! in Fourier
the large scale structure of the Universe arose. Since thgpace, according to simple dimensional analysis.
pioneering work of Harrison and Zel'dovich [2] it has been One of the principal lessons of the modern under-
reasonable to suppose that these primordial fluctuatiorstanding of critical phenomena is that naive dimensional
were generated with a scale invariant spectrum during aanalysis doesot fix the transformation properties of ob-
early epochin the history of the Universe at the threshold ofervables under conformal transformations at the fixed
its classical evolution. Inflationary models are a particulapoint. On the contrary, one should expect to find well-
realization of this idea which provide a quantum origin todefined logarithmic deviations from naive scaling, corre-
the fluctuations with a spectral indexvery close to one sponding to a (generally noninteger) dimensibr# A,.

[3]. However scale invariance itself is more general thariThe deviation from naive scaliny — Ay is the “anoma-

this. As a newly emerging physical science, the time nowous” dimension of the observable due to critical fluctua-
seems ripe to examine the broader context and implicatiorttons, which may be quantum or statistical in origin. Once
of scale invariant behavior for cosmology, as revealed in is fixed for a given observable the requirement of confor-
its more developed sister sciences. mal invariance determines the form of its two- and three-

Scale invariance was first introduced into physics inpoint correlation functions up to an arbitrary amplitude,
early attempts to understand the apparently universal bavithout reliance on any particular dynamical model.
havior observed in turbulence and second order phase tran-Two-point correlations—Consider first the two-point
sitions, which are independent of the particular dynamicafunction of two observablesD, with dimension A.
details of the system. The gradual refinement and develogsonformal invariance requires [4,5]
ment of this simple idea of universality led to the modern o
theory of critical phenomena, one of whose hallmarks is (0a(x1)0a(x2)) ~ x1 = xal 1)
well-defined logarithmic deviations from naive scaling ré- 5 aqual times in three dimensional flat spatial coordinates.
Iatlon§ [4]_. A se(_:ond ger_leral featur_e of the .theory is than Fourier space this becomes
specification of higher point correlation functions of fluc-
tuations according to the requirements of conformal invari- Ga(k) = (Ox(k)Oa(—k)) ~ |k|*273. (2)
ance at the critical point [5]. i ) .

In the language of critical phenomena, the observatiod NUs, we define the spectral index of this observable by
of Harrison and Zel'dovich [2] that the primordial density n=2A—3. 3)
fluctuations should be characterized by a spectral index
n = 1 is equivalent to the statement that the observablén the case that the observable is the primordial density
giving rise to these fluctuations has engineering or naivdéluctuation 6p, and in the classical limit where its
scaling dimensiom\, = 2. Indeed, because the density anomalous dimension vanishés— A, = 2, we recover
fluctuations are related to metric fluctuations by Einstein’she Harrison-Zel’dovich spectral index of= 1.
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In order to convert the power spectrum of primordial Our conformal symmetry considerations up to this point
density fluctuations to the spectrum of fluctuations in theare quite general and leave undetermined. Let us dis-
CMBR at large angular separations we follow the stancuss now a physical source of quantum fluctuations on
dard treatment [6] relating the temperature deviation to theosmological distance scales that can lead to a deviation
Newtonian gravitational potentigh at the last scattering from the classical scale dimensidg = 2. As has been
surface,2- ~ 8¢, which is related to the density pertur- known for some time, the quantum zero-point energy of

bation in turn by massless fields is modified in curved space and gives rise
to a nonvanishing trace of the energy-momentum tensor
V8¢ = 4wGop. . '
] ] ¢ Top 4) called the trace anomaly [8]. This nonzefd couples
Hence, in Fourier space, to the spin® or conformal part of the spacetime metric
ST 1 8p and causes it to fluctuate as well. Physically this means
T o~ i (5)  that the local standard of distance in the line elemaft

_ _ varies from point to point in space. By the equivalence
and the two-point function of CMBR temperature fluctua-principle there is no strictly local coordinate invariant ob-

tions is determined by the conformal dimensibrio be  servable that is sensitive to these conformal fluctuations.
ST ST However the correlations between the fluctuationdift
C2(0) = <7 (1) T (?2)> ferent spacetime points grow logarithmically, and on the
s characteristic scale of the horizon their magnitude becomes
_ [ d3k(i> Galk)ei comparable with the classical gravitational potential in (4).
k2 At still larger scales these fluctuations dominate and lead

~ T = A) ()0 (©6) toa renormalization group fixed_poin_t of grr?lvity which is
12 ’ infrared stable [9]. Conformal invariance is thereby re-
wherer, = (71 — 7»)r is the vector difference between stored by these very large scale gravitational fluctuations,
the two positions from which the CMBR photons origi- but the correlations and statistics of the CMBR entering our
nate. They are at equal distanciom the observer by the horizon should bear their imprint in the form of logarith-
assumption that the photons were emitted at the last scamic deviations of the scaling relations from their classical

tering surface at equal cosmic time. Sinng =2(1 — counterparts, i.eA # Ay.
cosh)r?, we find then This line of reasoning determines the scaling dimension
C,(6) ~ T2 — A)(1 — cosh)>2 @) of an observable with classical dimensiag to be [10]
for arbitrary scaling dimensioA. A V1 —2(4 — Ag)/0? — /1 — 8/02 1
Expanding the functio’>(#) in multipole moments, =4 1 —J1—8/02 )
Cy(0) = 1 Z(% + l)cf)(A)Pg(cose), (8) whereQ? is the relevant coefficient of the original trace
47 = anomaly (the Gauss-Bonnet term). Hence consideration
@ _ T — 2+ A) of the trace anomaly generated by the zero-point fluctua-
cg (A) ~ T2 — A)si7(2 — A)] TC+4=-2) tions of massless fields leads necessarily to well-defined

9 guantum corrections to the naive scaling dimensions of ob-
(®)  servables in cosmology. In the lim@2?> — <, the effects
shows that the pole singularity & = 2 appears only in  of fluctuations in the metric are suppressed and one recov-
the ¢ = 0 monopole moment. This singularity is just the ers the classical scaling dimensidg,

reflection of the fact that the Laplacian in (4) cannot be !

in.verted on constant.functionsf, Whigh should be excluded. A=Ag+ =5 A@d — Ag) + ... (12)
Since the CMBR anisotropy is defined by removing the 20

isotropic monopole moment (as well as the dipole MO\/e estimate)?
ment), the? = 0 term does not appear in the sum, and €

t_he highe_r moments of the anisotropic two-point_c.orrela-for practical purpose® 2 may be regarded as simply a
tion function are well deflnze)d fod negrz. Normalizing parameter characterizing the universality class of the con-
to the quadrupole moment” (A), we find formal metric fluctuations, which has no reason to vanish
o) o) I'6—A)TE—-2+A) and should be determined from the observations. From
ce (A) = ¢ °(4) ) TE+d4-a) (10)  this slightly more general perspective, the conformal in-
variance considerations that lead to (11) are quite indepen-
which is a standard result [6,7]. IndeedAifis replaced by  dent of any particular model of their origin.
Ay = 2 we obtainf({ + l)Cng)(Ao) = 6c§2)(Ao), which is In the analysis of physical observables in the conformal
the well-known predicted behavior of the lower momentssector of gravity, the operator with the lowest nontrivial
(€ = 30) of the CMBR anisotropy where the Sachs-Wolfe scaling dimension corresponds, in the classical limit, to the
effect should dominate. scalar curvature witlh, = 2 [10]. Since the fluctuations
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in light of what is presently known about
the trace anomaly of massless fields in Eq. (13) below, but
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which dominate at large distances correspond to observ-
ables with lowest scaling dimensions, the conformal fac-
tor theory in this limit selects precisely Harrison’s original
choice.

With Ay = 2, we find a definite prediction for deviations n
from a strict Harrison-Zel'dovich spectrum according to
Egs. (3) and (11) in terms of the parame®@f. The
resulting spectral index is plotted as a function ap? in
Fig. 1. It is always greater thanh(if 8 = 02 < =), and ; - - ” - ” >
forlargeQ? itbehavesas = 1 + —; + .... Comparing Q
to the results of the four year cosmic background explorer  £iG 1. The spectral index as a function of0>.
differential microwave radiometer (COBE DMR) data
analysis of the power spectrum9 < nqp, < 1.5[11], we
find thatQ2,, = 12.4 from Fig. 1.

From the theoretical side, the value ¢f for free
conformally invariant fields is known to be [8,12]

bound together with the COBE quadrupole normalization
of the spectrum at large scales implies more power at
shorter subhorizon scales where galaxies formed. For the
value of the spectral index = 1.45, the power spectrum
0? = 1 (Ns + 2N + 62Ny — 28) + Q2,,, (13) hasan enhancement factor(@fy X 20 Mpc/2h) 045 =
180 gy 4.6 at the20h~! Mpc distance scale, relative to the= 1
where Ng, Nr, and Ny are, respectively, the number of spectrum. This would lead to earlier formation of structure
free scalars, Weyl fermions, and vector fields v atthe galactic and galactic cluster scales than in the case
is the contribution of spin-2 gravitons, which has not yetof a primordialn = 1 spectrum. However, the form and
been determined unambiguously. The8 contribution  normalization of the evolved cluster mass function at these
is that of the conformal or spin-0 part of the metric scales is very much model dependent and would need to be
itself. The main theoretical uncertainty in determiningreanalyzechb initio in each model to decide if increased
ey is that the Einstein theory is neither conformally power in the primordial spectrum of adiabatic density
invariant nor free, so that a method for evaluating thefluctuations can be reconciled with the observations of
strong infrared effects of spin-2 gravitons is required whichthe matter anisotropy on this scale [6]. It is noteworthy
is insensitive to ultraviolet physics. Such an analysighat the conformal fixed point for gravity predicts a “blue”
may be possible by numerical methods on the latticespectralindex > 1 (for 9> > 8), while most suggestions
which would also provide a nontrivial consistency checkfor modifying the Harrison-Zel'dovich spectrum, such as
of the existence of the infrared fixed point of quantumextended or power law inflation (which do so by reducing
gravity with the predicted scaling relations [10]. A purely the effective inflation rate) lead to < 1 [13].
one-loop computation giveQérav = 7.9 for the graviton Higher point correlations—Turning now from the two-
contribution [12]. Taking this estimate at face value andpoint function of CMBR fluctuations to higher point cor-
including all known fields of the standard model (SM) relators, we find a second characteristic and unambiguous
of particle physics (for whichWy = 45 and Ny = 12)  prediction of conformal invariance, namely non-Gaussian
we find statistics for the CMBR. The first correlator sensitive to
) this departure from Gaussian statistics is the three-point
Osm = 13.2 and n = 145, (14)  function of the observabl®,, which takes the form [5]

which is intriguingly close to the observational bound. (@, (x;)Oa(x2) 04 (x3))
A deviation of this sort from the Harrison-Zel'dovich

—A —-A —A
spectrum has implications for galaxy formation. Indeed, ~ e =l e = sl s -l (15)
a determination of? close to its present observation?l or in Fourier space,
Gultkisk) ~ [ dplpl 1y + kI lp — kol
1 1 -4 —1+4
A u(l —wv] 21 —v 2
~T@Ba - 7))[ duf dv [2 Jv] 2( ) ESE (16)
0 0 [u(1 — wki + v(l — Wk + uvlk; + k)2 2

This three-point function of primordial density fluctuations gives rise to three-point correlations in the CMBR by reasoning
precisely analogous as that leading from Eqgs. (2) to (6). That s,

8T, 8T 68T d*kid’ky T
C3(012. 0230 E<— ) (7)) = (7 >~f—G ki, kp)ettm gikerm, 17
3(6012, 623, 031) 7 () = (72) = (75) C2k T k) 3(ki1, k2) (17)
wherer;; = (7 — #;)r andr}; = 2(1 — cosf;;)r?.
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From the above expressions, it is easy to extract thevhere the amplitudd, is an arbitrary function of the two
global scaling of the three-point function in the infrared: cross ratios;#ra,/rira and rigrs/riri. Analogous
G3(Aky, Aka) ~ A3 DGs(ky, k), expressions hold for highgr-point functions. However,
(18) in the equilateral case;; = 6, the coefficient amplitudes
A, become constants and the angular dependence is again
In the general case of three different angles, the expresompletely determined. The result is
sion for the three-point correlation function (17) is quite c,0) ~ (1 — ) B (23)

complicated, though it can be rewritten in parametric formand the expansion in multiple moments yields coefficients
analogous to (16) to facilitate numerical evaluation, if de- P P y

sired. An estimate of its angular dependence in the Iimigfp of the Sﬁmtﬁ fqu ES in Eq. t()Zl.) erltB1/2 r'epla(;]ed
A — 2 can be obtained by replacing the slowly varying y p/2. In the limit o _ 2, V(Vf) obtain the universa-
Gs(k1, k») by a constant. Then (17) can be evaluated byieépendencé(t + 1)c,” = 6¢,".

C3 ~ }’S(ZiA).

expanding in terms of spherical harmonics: .In summary, the <_:onforma_1| invarian(_:e hypoth_esis ap-
. plied to the primordial density fluctuations predicts de-
C5(0;;) ~ Z Kty tymatyms viations from the Harrison-Zel'dovich spectrum, which
TG L+ )L+ )2+ 1) should be imprinted on the CMBR anisotropy. A particu-
1 1 lar realization of this hypothesis is provided by the metric
<l1 YL+ + L+ 0L+ 0+ 3> fluctuations induced py th(? knov_vn trace gnomaly of mass-
R R R less matter fields which gives rise to a fixed point with a
XY, PO Yy (P2)Yiyms (F3) 5 (19)  spectral indexs > 1. A second general consequence of
where Ip, m, mytyms = [dQ Yi,m, ()Y 1,y () Y, (). conformal invariance is non-Gaussian statistics which fix
In the special case of equal anglég = ¢ [14], it  in particular the form of the three-point correlations of the
follows from (18) that the three-point correlator is CMBR. If either of these effects is detected it would re-
Cy(0) ~ (1 — Cosg)g(z—A)_ (20) quire a reappraisal of the current models of the origin of

. . . . primordial density fluctuations and the formation of struc-
Expanding the functionC3(¢) in multiple moments as ¢ o 'in the Universe.
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