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Nonlocal Effects on the Magnetic Penetration Depth ind-Wave Superconductors
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(Received 21 February 1997)

We show that, under certain conditions, the low temperature behavior of the magnetic penetration
depthlsT d of a pured-wave superconductor is determined by nonlocal electrodynamics and, contrary
to the general belief, the deviationDlsTd ­ lsT d 2 ls0d is proportional toT 2 and not T . We
predict that theDlsTd ~ T2 dependence, due to nonlocality, should be observable experimentally
in nominally clean high-Tc superconductors below a crossover temperatureTp ­ sj0yl0dD0 ,
1 K. Possible complications due to impurities, surface quality, and crystal axes orientation are
discussed. [S0031-9007(97)03539-4]

PACS numbers: 74.25.Nf, 74.20.Fg, 74.72.Bk
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There is a significant amount of experimental eviden
that the pairing state in the cuprate high temperature
perconductors (HTSC) is unconventional, most probab
of dx22y2 symmetry [1–3]. One generic feature of a lay
ered HTSC with any unconventional order parameter (O
compatible with the underlying crystal symmetry is th
the OP exhibits line nodes (point nodes in 2D) on th
Fermi surface (FS) and, therefore, gapless quasipart
excitations in the corresponding energy spectrum. The
low-lying excitations dominate the low temperature the
modynamics and transport properties of these materi
and it is expected that the temperature dependence of
different thermodynamic quantities and transport coef
cients will follow a power law rather than the convention
exponential behavior [4]. Direct experimental evidenc
for the existence of zeros of the gap function on the F
in HTSC has been found by angle resolved photo emiss
spectroscopy (ARPES) [5,6].

In particular, the low temperature behavior of the Meis
ner penetration depthlsTd is frequently regarded as an im
portant probe of the morphology of the magnitude of th
anisotropic OP,Dsp̂d, in the cuprates. In conventionals-
wave superconductors, the deviationDlsT d of lsT d from
its zero temperature valuels0d exhibits activated behav-
ior, i.e., DlsT d ~ exps2DyTd (throughout this paper we
use units in whichkB ­ h̄ ­ 1), reflecting the existence
of the isotropic BCS energy gapD at the FS. In contrast,
in a pured-wave superconductor, or any other unconve
tional superconductor with nodes in the gap, the Lond
(local) penetration depth varies linearly with the temper
ture, i.e.,DlsT d ~ T . Recently, by employing different
high precision measurement techniques, such a linearT de-
pendence of the in-planeDlabsT d penetration depth (here
the subscript refers to the axes along which the screen
currents flow) has been observed experimentally in t
Meissner state of several HTSC systems, such as: h
quality single crystals of YBa2Cu3O72d (YBCO) [7–
9] and Bi2Sr2CaCu2O8 (BSCCO) [10–12], magnetically
aligned powders of crystalline HgBa2Ca2Cu3O81d [13]
and high quality YBCO thin films [14–16]. However, be
low a certain sample dependent temperatureTp
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T dependence of the penetration depth in HTSC cross
over into a higher power law, most probablyT2. In the
d-wave scenario of HTSC, the origin of thelsT d ~ T2

dependence has been explained by the presence of n
magnetic impurities which scatter in the unitary limit [17]
In this strong scattering limit a small amount of impuri
ties can induce a finite residual density of states at t
Fermi level which is sufficient to change the temperatu
dependence of the penetration depth fromT to T2 without
lowering significantly the transition temperature. A direc
experimental confirmation of such a crossover betwe
pure and impurity dominated regimes was reported b
Bonnet al. [18].

The purpose of this Letter is to show that at very low
temperatures nonlocality may play an important role i
the electromagnetic response of ad-wave superconductor
(or any other unconventional superconductor with nod
in the gap), leading to aDlsT d ~ T2 dependence even
in the clean limit. Thus, besides impurities, nonlo
cality represents a second mechanism which leads
a T 2 dependence of the penetration depth sufficient
close to T ­ 0 K. To the best of our knowledge,
all theoretical calculations and interpretations of th
experimental measurements of the penetration depth
HTSC performed so far assume the validity of loca
electrodynamics (London limit) [19]. At first sight
this is reasonable, since the zero temperature Lond
penetration depthl0 ­

p
mc2y4pne2 is much larger

than the corresponding coherence lengthj0 in these ma-
terials. (In contrast to the penetration depth, which ca
be measured more or less directly, the coherence len
j0 cannot be determined experimentally and, in fact,
estimated in terms of the maximum value of th
anisotropic gap functionD0 ­ maxhDsp̂dj by using the
usual BCS expressionj0 ­ yFypD0.) However, in
the case of a clean, anisotropic superconductor it
more appropriate to introduce an anisotropic coheren
length jsp̂d ; yFypjDsp̂dj. If the anisotropic OP has
nodes on the FS, it is clear that sufficiently close t
the nodesjsp̂dyl0 ­ sj0yl0dD0yjDsp̂dj * 1 holds and,
therefore, the contribution of these regions of the FS
© 1997 The American Physical Society 135
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the penetration depthlsT d must be determined by using
nonlocal electrodynamics. The large value ofl0yj0
guarantees that the applicability of local electrodynam
ics is violated only on a very small fraction, of orde
a0 ; j0yl0, of the FS. Since the whole FS contribute
to the zero temperature penetration depthls0d, one
expects no significant corrections to this quantity due
nonlocal effects. On the other hand, the low temperatu
dependence oflsT d must be dominated by nonloca
effects because this dependence is determined by a sm
region of the FS which is concentrated around the nod
of the OP. The crossover temperature below whi
nonlocal effects are important is given byT p ­ a0D0.
Indeed, since the range ofp̂ values corresponding to the
thermally excited quasiparticles at a given temperatureT
is determined by the conditionjDsp̂dj & T , for T , T p

one obtainsjsp̂dyl0 ­ a0D0yjDsp̂dj * TpyT . 1. For
T ¿ Tp the local limit is applicable. As a typical ex-
ample consider a YBCO single crystal withD0 ø 250 K,
j0 ø 14 Å, and l0 ø 1400 Å; this yields a0 ø 1022

andT p ø 2.5 K.
To demonstrate the effect of nonlocal electrodynami

on lsTd let us consider the case when a weak, unifor
and static magnetic fieldH ­ = 3 A is applied along
the c axis of a semi-infinite HTSC with a plane surfac
which is perpendicular to theb axis. For this particular
geometry, both the vector potentialA and the screening
supercurrent densityj are oriented parallel to thea axis,
while the direction of penetration is along theb axis.
We model the HTSC as a quasi-two-dimensionald-wave
superconductor in which the motion of the electron
is confined for our purposes to the Cu-O planes.
principle, to calculatelsTd, one must first solve self-
consistently the relevant Maxwell equation= 3 = 3

A ­ s4pycdj together with the equation which relate
j to A, subject to some properly chosen bounda
conditions. In a weak magnetic field (Meissner stat
linear response theory yields for our geometryjs yd ­
2

R
dy0 Ks y, y0d As y0d, where y is the coordinate along

the b axis s y ­ 0 gives the position of the boundary)
and the nonlocal electromagnetic response kernelKs y, y0d
must be calculated by using some microscopic theo
Once Hs yd is determined, the penetration depth ca
be calculated according to the standard definition (va
for a semi-infinite superconductor with plane boundar
l ­ Hs0d21

R`
0 dy Hs yd. Furthermore, we assume tha

the boundary reflects the electrons either specularly
diffusively. In both these limiting caseslsTd can be
expressed in terms of the Fourier transform of the bu
response kernelKsq; T d. For a specular boundary one
has [20]

lspecsT d
l0

­
2
p

Z `

0

dq̃

q̃2 1 K̃sq̃; T d
, (1)

while for a diffuse boundary [20]
ldiffsT d

l0
­ p

ΩZ `

0
dq̃ lnf1 1 K̃sq̃; Tdyq̃2g

æ21

, (2)
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where the dimensionless quantitiesq̃ andK̃ are given by
q̃ ­ ql0 andK̃ ­ s4pl

2
0ycdK, respectively.

For a weak-coupling, anisotropic superconductor t
nonlocal bulk response kernel is similar to the correspon
ing expression for a conventionals-wave superconductor
[21] and can be written as

K̃sq̃; Td ­ 2pT

3
X̀

n­2`

*
p̂2

jj

D2
pq

v2
n 1 D2

psv2
n 1 D2

p 1 a2d

+
,

(3)

where vn are fermionic Matsubara frequencies,Dp ;
Dsp̂d, p̂jj is the projection ofp̂ on the boundary,k. . .l
means averaging over the circular 2D Fermi surface, a
a ­ sqyFy2dq̂p̂. Here q̂ is a unit vector perpendicular
to the boundary, and it gives the direction in which th
penetration of the magnetic field takes place. Note th
in a different geometry where the boundary is parall
to the a-b plane (H parallel to the boundary), the
direction of penetration̂q would be along thec axis,
i.e., perpendicular tôp, yielding a ­ 0. Thus, we may
conclude that the effect of nonlocal electrodynamics o
labsTd is relevant only whenH is parallel to thec axis.
Furthermore, at sufficiently low temperatures, the OP
Eq. (3) can be approximated with its limiting expressio
close to the nodes, i.e.,Dp ­ D0Fsp̂d ø D0F0s0d w,
where w is the angular deviation of̂p from the given
node direction in the basal plane. In the case of a mo
d-wave OP withFsp̂d ­ p̂2

x 2 p̂2
y one hasF0s0d ­ 2.

Let us calculate first the nonlocal correction to th
zero temperature penetration depthls0d. For T ­ 0 the
frequency sum in (3) goes into an integral which can b
evaluated exactly with the result

K̃sq̃; 0d ­ 1 2

ø
2p̂2

jj

∑
1 2

sinh21sayDpd
sayDpd

p
1 1 sayDpd2

∏¿
.

(4)

The average over the FS in (4) can be evaluated anal
cally for both London (local) and Pippard (extreme nonlo
cal) limits. In the London limit, whena0q̃ ­ qj0 ø 1,
one obtains K̃sq̃; 0d ­ 1 2 sp2

p
2y16da0q̃, while

in the Pippard limit, when a0q̃ ¿ 1, one has
K̃sq̃; 0d ­ s2y3d lnsa0q̃dysa0q̃d2. Note that in both
limiting cases the response kernel for ad-wave su-
perconductor decreases with̃q more rapidly than for
a conventionals-wave superconductor [20]. Now the
correction to the zero temperature penetration depth d
to nonlocality can be obtained from Eqs. (1) and (2) fo
both specular and diffuse boundaries. The results
Dlspecs0dyl0 ­ lspecs0dyl0 2 1 ­ p

p
2 a0y16, and

Dldiffs0dyDlspecs0d ­ lnsa22
0 dy2 ø 4.6. Thus for both

type of boundaries, due to the very small value ofa0, the
nonlocal correction tols0d is less than 1% and therefore
it can be obviously neglected, especially because t
correction is situated within the experimental errors of th
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most accurate measurements of the absolute value of
penetration depth.

We turn now to calculateDlsT d. At low temperatures,
dK̃sq̃; T d ; K̃sq̃; T d 2 K̃sq̃; 0d represents a small cor-
rection to the zero temperature response kernelK̃sq̃; 0d.
Therefore, by using our previous resultls0d ø l0, from
Eqs. (1) and (2) one obtains

DlspecsT d
l0

­
2
p

Z `

0
dq̃

2dK̃sq̃; T d
sq̃2 1 1d2 (5)

and

DldiffsT d
l0

­
1
p

Z `

0
dq̃

2dK̃sq̃; T d
q̃2 1 1

. (6)

Furthermore, a convenient expression fordK̃ can be
obtained by evaluating the Matsubara sum in Eq. (3)
means of complex contour integration

2dK̃sq̃; T d ­ 2
Z `

0
fsvd dv

3

*
2p̂2

jj Re
D2

pq
v2 2 D2

p sD2
p 1 a2 2 v2d

+
.

(7)

Note that in thea ! 0 limit one recovers the familiar
local limit expression fordK̃ [17]. Because of the
presence of the Fermi functionfsvd in (7) the main
contribution to the frequency integral comes from th
interval v & T . Therefore, in the average over the F
the relevant regions are determined byjDpj # v & T
and are obviously located around the nodes of the O
By using the expression for the OP close to a no
one arrives, after some straightforward algebra, at t
following result:

dK̃sq̃; Td ­ dK̃s0; T d Fsq̃ytd , (8)

where t ; TyTp, dK̃s0; T d ­ 22 ln 2 TyD0 is the well
known local limit expression ofdK̃ for a d-wave super-
conductor [1], the expression

Fszd ­ 1 2
1

ln 2

Z sp
p

2y4dz

0
dx fsxd

s
1 2

8
p2

≥x
z

¥2

(9)

is a universal function, andfsxd ­ sex 1 1d21. It is
remarkable that, within the above mentioned approx
mations, the kerneldK̃ depends only on the ratiõqyt
and not separately on its two arguments. A caref
quantitative analysis of Eq. (9) motivates the fo
lowing reasonable approximation:Fszd ø 1 2 c1z,
for z , 2, and Fszd ø c0yz2, for z . 2, where
c0 ­ 6z s3dyp2 ln 2 ø 1.05, and c1 ­ s1 2 c0y4dy2 ø
0.37. Note that c1 is somewhat smaller than the
absolute value of the slope ofFszd at the origin,
i.e., jF0s0dj ­ p2

p
2y32 ln 2 ø 0.63. The tempera-

ture dependence of the penetration depth can now
calculated by inserting (8) in Eqs. (5) and (6).
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For t ¿ 1 (i.e., T ¿ Tp) and for a specularly reflect-
ing boundary one obtainsDlspecsT dyl0 ­ ln 2 sTyD0d 2

sp
p

2y16d a0 1 O s1ytd. Here, the leading term is the
well known linear inT local expression forDlsT d for
a d-wave superconductor, i.e.,DlLsT d ­ ln 2 sTyD0d l0.
The second, small negative constant term in the expre
sion of DlspecsT d is due to nonlocality and shows clearly
that the linearT dependence cannot extend all the way
down to T ­ 0 K; it must cross over to a higher power
law at someT , T p. In the case of a diffuse bound-
ary one obtains a similar result, namely,DldiffsT d ­
DlLsT d 2 sp

p
2y16d a0l0 ln t 1 O s1ytd. Note that the

magnitude of the nonlocal correction to the local penetra
tion depth is larger than in the case of the specular boun
ary by a factor of lnt.

In the opposite limitt ø 1 (i.e., T ø Tp) one obtains
for a specular boundaryDlspecsT d ­ b DlLsT d TyTp ~

T 2, whereb ­ 8s1 2 c1 1 c0y4dyp ø 2.2. Thus, due
to nonlocal electrodynamics, forT ø T p the tempera-
ture dependence of apure d-wave superconductor is pro-
portional to T 2 and not T , regardless of how small is
a0 ­ j0yl0. This conclusion is one of the main results of
the present paper. It should be noted that the above val
for the coefficientb is just an approximation; a more ac-
curate value ofb can be obtained by approximatingFszd
by a polynomial of degreeN . 1 for z , z0, and by its
large z asymptotic form forz . z0, wherez0 is a con-
veniently chosen value. By reevaluating the integrals i
DlsT d one obtains again the leading term proportional to
T 2 but with a slightly different numerical value forb. A
similar calculation in the case of a diffuse boundary yield
DldiffsT d ø DlspecsTdy2.

For arbitrary temperaturesDlsT d must be calculated
numerically by employing the exact expression (9) fo
the functionFszd. In Fig. 1(a) the ratioDlsT dyDlLsT d
is plotted, for both specular and diffuse boundaries, a

FIG. 1. Plot of DlsT d [in units (a) DlLsT d, and (b) a0l0,
respectively] vst ­ TyTp for both specular (solid line) and
diffuse (long-dashed line) boundary. For comparison, the loca
limit result is also shown (dashed line).
137
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a function of the reduced temperaturet. The deviation
from the standard result obtained in the local limit i
evident. The clear linear dependence in the vicinity
the origin indicates a quadraticT dependence ofDlsT d.
For t ¿ 1, DlsT d approaches asymptotically its loca
limit (minus a small constant correction of ordera0).
Note that the deviation ofDlsT d from the corresponding
local expression is much more pronounced for a diffu
boundary than for a specular one. The sameDlsT d, this
time in units ofa0l0, is shown as a function oft ­ TyTp

in Fig. 1(b). The deviation from linearity becomes visibl
aroundt ­ 1 (t ­ 2) for the specular (diffuse) boundary
For the numerical example considered above for a cle
YBCO single crystal (a0l0 ­ j0 ø 14 Å) one finds that
the deviation fromDlsT d ~ T takes place somewhere
between 2 to 5 K, depending on the surface quality
the crystal. Such a crossover is seen experimenta
in nominally clean YBCO crystals [22]; in the existing
literature it has been attributed to impurities which scatt
in the unitary limit [17].

In principle, there is a simple experimental test t
determine whether this crossover inDlsT d is due to
nonlocal electrodynamics or to impurities. The main ide
is to estimate experimentally the crossover temperatu
in DlabsT d for the same nominally clean HTSC for
two different magnetic field orientations: (i)H parallel
to the c axis, and (ii) H parallel to the a-b plane.
As we have already mentioned, nonlocality is expect
to be relevant only when the applied magnetic field
oriented parallel to thec axis (so that the penetration
direction lies in thea-b plane), while the effect of
impurities should not depend on the orientation of th
field. Thus, if Tp is noticeably smaller in case (ii) than
in case (i) one may conclude that the observed effe
is mainly due to nonlocal electrodynamics and not
impurities. Otherwise, the conclusion is that nonloc
effects are in fact completely masked by impurities. Th
suggested experiment can be made even more conclu
by using two different nominally clean YBCO sample
with the relevant faces having: (a) (1,0,0) orientation (i.e
the geometry considered in this paper), and (b) (1,1
orientation, respectively. It can be shown that by movin
away form the most favorable (1,0,0) surface orientatio
the nonlocal effects become less important, and th
eventually vanish for the (1,1,0) orientation [23]. Thus
if the electromagnetic response of the cuprates is inde
governed by nonlocal effects at very low temperature
in case (a) one would expect a noticeable differen
between theT dependence oflab for the two different
field orientations, while in case (b) the orientation of th
applied magnetic field should be completely irrelevant.

In conclusion, we have shown that nonlocal electr
dynamics dominate the low temperature behavior of t
in-plane magnetic penetration depth of a cleand-wave
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high-Tc superconductor. At temperaturesT ø Tp , 1 K
the penetration depthlsT d has a quadratic temperature de-
pendence, while above the crossover temperatureTp, but
still well below Tc, lsT d has the well known linearT de-
pendence. Thus, nonlocality represents a second possi
mechanism, beside strongly scattering impurities, whic
may account for the experimentally observed deviatio
from the linearT dependence of the penetration depth
at the lowest measured temperatures in nominally clea
HTSC. A simple experiment to probe the viability of this
mechanism has been proposed.
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