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Magnus and Iordanskii Forces in Superfluids
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The transverse force acting on a quantized vortex in a superfluid is a problem that has elud
complete understanding for more than three decades. In this Letter I calculate thesuperfluid velocity
part of the transverse force in a way closely related to Laughlin’s argument for the quantization
conductance in the quantum Hall effect. A combination of this result, thevortex velocity part of
the transverse force found by Thouless, Ao, and Niu [Phys. Rev. Lett.76, 3758 (1996)], and Galilean
invariance shows that there cannot be a transverse force proportional to the normal fluid velo
[S0031-9007(97)03821-0]
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The importance of quantized vortices in superfluid
has been recognized since Onsager first put forth t
idea of quantization of circulation almost 50 years ag
[1,2]. A vortex moving in a superfluid experiences
force transverse to its velocity which is equivalent to th
Magnus or Kutta-Joukowski hydrodynamic lift present i
classical hydrodynamics [3], which is generally written

F ­ r k 3 svv 2 vfluidd , (1)

per unit length of the vortex [4]. Herer is the mass den-
sity of the fluid,svv 2 vfluidd is the velocity of the vortex
relative to the fluid, andk is a vector in the direction of
the vortex with magnitude equal to the circulation (k ­H

vfluid ? dl).
However, there is no consensus on the problem

generalizing the Magnus force to the superfluid case, a
various inequivalent expressions for the relevant forc
can be found in the literature [5–11].

This Letter deals specifically with the calculation of th
superfluid velocity part of the Magnus force, which is the
transverse force that depends on the superfluid velocityvs.
It is shown that this force is given by

Fs ­ 2rs ks 3 vs , (2)

wherers is the density of the superfluid component [12
andks is the circulation of the superfluid around a vorte
(a multiple of the quantum of circulationhym [1,2]).

Recently Thouless, Ao, and Niu [5] (TAN) have
convincingly argued for a universalvortex velocity part
of the Magnus force

Fv ­ rs ks 3 vv (3)

per unit length for uniform neutral superfluids; and Gelle
Wexler, and Thouless have generalized TAN’s results
charged systems in the presence of a periodic poten
[13]. The natural assumption by TAN that the norma
fluid does not circulate around the vortexskn ­

H
vn ?

dl ­ 0d has been confirmed by a recent calculation [1
in the thermodynamic limit (mean free path of excitation
much smaller than system size). There is an importa
point to notice: TAN deals only with the part of the
transverse force that depends on thevortexvelocity, while
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no statement is made regarding the other parts of t
force that depend on the normal and superfluid velocitie

The confusion in the topic of writing the various part
of the Magnus force is widespread. Part of it arises fro
different interpretations on the role played by excitation
and whether or not these are scattered asymmetrica
by the vortex [14] leading to a transverse force (th
Iordanskii force) proportional to the normal fluid densit
rn and either the relative velocitiessvn 2 vv d or svn 2

vsd, wherevn is the velocity of the normal component fa
from the vortex.

The results presented in this Letter, combined wi
TAN and Galilean invariance, are incompatible with th
existence of a transverse force proportional to the norm
fluid velocity vn.

I must note that this Letter does not deal with th
determination of additional dissipative terms (name
the longitudinal forces), which are negligible under the
conditions of the present work. This is an interestin
subject as well, but the arguments presented determ
only the transverse forces.

In Section I I write down the most general transvers
force, linear in the velocities, which is compatible with
Galilean invariance. Section II is the main section of th
Letter, where the superfluid velocity part of the Magnu
force is calculated. In Section III I write the final form
of the transverse force by combining the results of th
Letter and TAN, plus Galilean invariance. I also discus
the diverse results obtained by other authors and th
assumptions.

I. Galilean invariant transverse force.—In a homoge-
neous superfluid the forces acting on a vortex must be
pressed in terms of velocity differences only. Consider
rectilinear vortex moving with velocityvv in a superfluid
where the superfluid component has an asymptotic vel
ity vs and the normal componentvn. The most general
Galilean invariant transverse forcecan be written as

F ­ A k̂ 3 svv 2 vsd 1 B k̂ 3 svv 2 vnd , (4)

whereA andB are constants to be determined andk̂ is a
unit vector pointing in the direction of the vortex line. Ou
© 1997 The American Physical Society 1321
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task is the determination of these unknown coefficien
It is customary to divide this expression into separa
terms, each involving one particular velocity and deno
them accordingly: thevortex velocitypart of the Magnus
force Fv ­ sA 1 Bd k̂ 3 vv , thesuperfluid velocitypart
Fs ­ s2Ad k̂ 3 vs, and thenormal fluid velocitypart
Fn ­ s2Bd k̂ 3 vn. Knowledge of two of these forces
completely determines the third. In the following sectio
I determine the coefficientA by calculating the superfluid
velocity part of the Magnus force.

II. Free energy and force.—Here I wish to present
a very simple gedankenexperiment, whose outcome
will determine the coefficientA as mentioned above.
This argument has some parallels to Laughlin’s ow
thought experiment relating to the quantization of Ha
conductance in the quantum Hall effect [15].

Consider a neutral superfluid trapped inside a toro
like the one shown in Fig. 1. For simplicity assume th
toroid to have a roughly uniform section and that th
circumferenceLx is much bigger thanLy . This makes
the superfluid velocityys approximately uniform, which
is what is actually desired for a definition of thesuperfluid
velocity part of the Magnus force. I must remark tha
the argument is more general, and these assumptions
merely necessary to keep the argument clean and simp

Assume that in the initial stateN ¿ 1 quanta of
circulation are trapped in the toroid so that the superflu
velocity is given byys ­ NhymLx . Under this condition
the normal fluid is pinned to the container andyn is zero
(in fact, this is how the normal densityrn is normally
defined[12,16]). At some initial time a vortex is created
at the outer edge andslowly dragged toward the center
of the ring by some means [5], where it is annihilate
at a later timet ­ t ! `. The final state corresponds
to a trapped circulationsN 1 1d hym, while the normal
fluid will still be at rest. By performing this process very
slowly, dissipative effects are negligible.

While transporting the vortex across the ring, one nee
to perform work on the system. In terms of Eq. (4)
1322
ts.
te
te

n

n
ll

id
e
e

t
are
le.

id

d

ds
,

and given the fact thatyv ­ yn ­ 0, the work is given
by integrating the force per unit length along the displac
mentdr of each vortex segmentdl:

W ­ 2
Z

A sdl 3 vsd ? dr ­ A
Z

sdl 3 drd ? vs

­ A
Z

dS ? vs ­ A sLyLzd ys.
(5)

For isolatedsystems the change in energy correspon
to the amount of work. The argument is straightforwar
but it is much simpler to consider anisothermalprocess.
The amount of work performed then corresponds to t
variation of the Helmholtzfree energy A ­ E 2 TS
[17]. The free energy can be expressed in terms
the energy of the ground state plus the free energy
excitations:

A ­ Eg.s. 1 Aexcit . (6)

One will be interested in the variation of the free energ
due to a variation of the superfluid velocityys; therefore,
one needs only to consider theys dependent portions of
A. The relevant ground state energy is

Eg.s. ­ sLxLyLzdr y2
s y2 , (7)

and the excitation free energy is given by the standa
expression

Aexcit ­ skBT d
X

modes

lns1 2 e2eykBT d , (8)

where the excitation energiese are those in the “rest
frame”, and are therefore Doppler shifted by the supe
flow:

e ­ h̄vskd 1 ysh̄kx . (9)

To second order in the superfluid velocity the free e
ergy is given by
Aexcit 2 Aexcitsys ­ 0d ­
y2

s

2
≠2Aexcit

≠y2
s

É
ys­0

­ 2
h̄2y2

s

2kBT

X
modes

k2
x

e h̄vskdykBT

seh̄vskdykBT 2 1d2
­ 2sLxLyLzd rn

y2
s

2
, (10)
m
e

t of
where the last equality follows from the usual Landa
derivation of the normal density [12,16].

The total change in Helmholtz free energy for varia
tions in the superfluid velocity can be written as [18]

DA ­ sLxLyLzd
r 2 rn

2
Dsy2

s d

­ sLxLyLzd
rs

2
Dsy2

s d ­ sLyLzd rs ys
h
m

,

(11)

where the last equality corresponds to the changeDys ­
hymLx due to the motion of the vortex across the ring.
u

-

By equating the work performed on the syste
[Eq. (5)] and the variation of free energy [Eq. (11)] th
unknown coefficientA in the general expression for the
transverse force (4) can be determined:

A ­ rs
h
m

. (12)

III. Total transverse force and conclusions.—Having
calculated thesuperfluidvelocity part of the transverse
force, there is the need to obtain one more componen
it to completely determine the transverse force (4).
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FIG. 1. Gedankenexperiment: a vortex is created at the
outer edge of a toroid with circumferenceLx, adiabatically
transported across the channel and annihilated at the inner ed
thus increasing the total circulation around the toroid by on
quantum of circulationhym.

By considering TAN’s result [5,11], as written in
Eq. (3), it is clear that the coefficient of thevortexvelocity
sA 1 Bd is given by

sA 1 Bd ­ rs
h
m

, (13)

and this, along with the result forA calculated in the
previous section, yields unambiguouslyB ­ 0, meaning
that there is no transverse force depending on thenormal
fluid velocity. The totaltransverseforce per unit length
acting on a vortex can be written

F ­ rs
h
m

ẑ 3 svv 2 vsd , (14)

with the transverse Iordanskii force vanishing exactly.
This is in general agreement with some direct calcula

tions of the normal fluid velocity part of the transverse
force based on the scattering of excitations by the vo
tex [9,19]. These calculations also show that the coe
ficient of the normal fluid velocity either vanishes or is
much smaller than previously thought, in apparent con
flict with Iordanskii’s theory of the transverse force on a
vortex [10,14].

It is interesting to note that while this Letter, in com-
bination with TAN’s result, yields anexactly vanishing
Iordanskii force, the “direct” calculations mentioned
above either give a nonzero result [10,14] or can only hin
that it is small [9,11].

One must emphasize some differences in the assum
tions about the asymptotic flow of excitations far awa
from the vortex. The authors calculating directly the
Iordanskii force from the excitation scattering assum
a homogeneous distribution of noninteracting phonon
[9,10,14,19], while the calculations used along this Lette
and references [5] and [11] include the effect of the vor
tex in the excitation distribution. This can explain some
of the apparent discrepancies: a careful calculation of th
Iordanskii force in thehydrodynamicregime (where the
mean free path of excitations is much smaller than the si
of the system) must includeboth the effects of the scatter-
ing of these excitationsand the perturbation of the distri-
bution functions by the vortex. Similar effects have bee
long known in the calculation of the viscous drag of a
ge,
e

-

r-
f-

-

t

p-
y

e
s
r
-

e

ze

n

moving object in a fluid, namely the Stokes problem [20
It may be possible to obtain independently the exact ca
cellation of the transverse Iordanskii force by including a
the effects described in this paragraph. While this wou
be certainly desirable, it goes beyond the scope of th
Letter.

At very low temperatures, however, the mean free pa
increases dramatically [12]. Excitations move ballisti
cally, equilibrating primarily with the walls of the con-
tainer and perturbations of the distribution functions b
the moving vortex may be neglected. A direct calcula
tion of the Iordanskii force based on the scattering o
excitations by the vortex should be valid, yet there i
no consensus on the magnitude of the force calculat
in this manner; some [10,14] obtain a considerable forc
(2rnk 3 vn), while others [9,19] find a result much
smaller than this. I should emphasize that the argume
presented in this Letter (Sect. II) for the superfluid ve
locity part of the transverse force is still valid in this
regime, since the formal definition of the normal densit
and velocity in terms of the momentum density or fre
energy are unmodified [16] (although the actual expre
sion for the normal densityrn will be different, in general
anisotropic and dependent on the channel geometry). T
absence of the normal fluid circulation around the vorte
needed for TAN’s result will also be valid but trickier,
given the complicated geometry dependence. The impo
tance of the distinction at temperatures corresponding
the ballistic regime is relative; the normal densityrn is
extremely small and the superfluid densityrs is essen-
tially indistinguishable from the total densityr [12].

In conclusion, we have obtained the superfluid velocit
part of the transverse force on a vortex using a robu
and simple thermodynamic argument. A combinatio
of this result, the vortex velocity part of the transvers
force found by Thouless, Ao, and Niu [5], and Galilean
invariance implies that there cannot be any transver
force dependent on the normal fluid velocity.

I would like to thank David J. Thouless, Michael
Geller, Jung Hoon Han, Greg Dash, John Rehr, an
Michael Stone for numerous helpful discussions. Th
work was supported by the NSF Grant No. DMR
9528345.

[1] L. Onsager, Nuovo Cimento Suppl.6, 249 (1949);
F. London,Superfluids II(John Wiley, New York, 1954).

[2] R. P. Feynman, Prog. Low Temp. Phys.I (North-Holland,
Amsterdam, 1995), Chap. 1.

[3] Sir H. Lamb, Hydrodynamics (The University Press,
Cambridge, 1932); G. K. Batchelor,An Introduction to
Fluid Mechanics (Cambridge University Press, Cam-
bridge, 1967).

[4] All forces herein referred are per unit vortex length.
[5] D. J. Thouless, P. Ao, and Q. Niu, Phys. Rev. Lett.76,

3758 (1996).
1323



VOLUME 79, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 18 AUGUST 1997

r-
[6] C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, J. Low
Temp. Phys.52, 189 (1983).

[7] R. J. Donnelly, Quantized Vortices in Helium II(Cam-
bridge University Press, Cambridge, 1991).

[8] G. E. Volovik, JETP Lett.62, 65 (1995).
[9] E. Demircan, P. Ao, and Q. Niu, Phys. Rev. B52, 476

(1995).
[10] E. B. Sonin, Phys. Rev. B55, 485 (1997).
[11] C. Wexler and D. J. Thouless, Report No. cond-ma

9612059.
[12] I. M. Khalatnikov, An Introduction to the Theory of

Superfluidity(Benjamin, New York, 1965).
[13] M. Geller, C. Wexler, and D. J. Thouless (to be

published).
1324
t/

[14] S. V. Iordanskii, Ann. Phys. (NY)29, 335 (1964); S. V.
Iordanskii, Sov. Phys. JETP22, 160 (1966).

[15] R. B. Laughlin, Phys. Rev. B23, 5632 (1981); B. I.
Halperin, Phys. Rev. B25, 2185 (1982).

[16] L. Landau, J. Phys.V, 71 (1941).
[17] D. Chandler,An Introduction to Modern Statistical Me-

chanics(Oxford University Press, Oxford, 1987).
[18] In fact, one can argue that this is the proper the

modynamic definition of the superfluid density:rs ;
1
V d2Aydy2

s .
[19] C. Wexler and D. J. Thouless, unpublished.
[20] E. H. Kennard,Kinetic Theory of Gases(McGraw-Hill,

New York, 1938).


