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Ehrenfest Relations at the Glass Transition: Solution to an Old Paradox
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In order to find out whether there exists a thermodynamic description of the glass phase, the Ehrenfest
relations along the glass transition line are reconsidered. It is explained that the one involving the
compressibility is always satisfied, and that the one involving the specific heat is principally incorrect.
Thermodynamical relations are presented for nonergodic systems with a one-level tree in phase space.
They are derived for a spin glass model, checked for other models, and expected to apply, e.g., to glass-
forming liquids. The second Ehrenfest relation gets a contribution from the configurational entropy.
[S0031-9007(97)03875-1]
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The glass transition is a dynamical freezing transitionthat the second relation must be incorrect. Analyzing
that occurs when a liquid is supercooled. The transition isnodel systems we shall then derive an extra contribution
smeared, but becomes sharper the slower one cools. Fibrat arises from the configurational entropy.
ideal, adiabatic cooling the transition will be sharp and Before discussing the meaning of the Ehrenfest rela-
occurs at the Kauzmann temperat@ie tions, we first have to define the experiment, or, better

Experimentally it is known that second derivatives ofsaid, the set of experiments, to be performed. Let us con-
the free energy, the specific heat, the compressibility, andider for definiteness cooling of a glass-forming liquid at a
the thermal expansivity, make a (smeared) jump from theifixed pressurep, and cooling rate) = —dT/dt. Start-
liquid values to smaller values in the glass. Since manyng from a high temperature one measures the specific
decades in time are involved, one might therefore wondevolumeV(T’; p1). ltis linear at largel’ and at lowZ and
whether it can be described as a (smeared) second ordeas a smooth crossover between these behaviors. This
phase transition. This idea has been put forward by Gibb$iappens near the freezing temperatfife Let us then
DiMarzio, and Adam [1]. As thermodynamics amounts torepeat the cooling experiment at a large set of different
system-independent laws, the approach leads to sine-quaressurey;, with moderate stepp; — p;—;. This will
non relations along the glass transition lip€l'). They lead to a set of freezing temperaturBs which define a

are the Ehrenfest relations smooth freezing linep(T). The location of this line is
dp by no means universal. It is defined by our set of mea-
Ax O Aa, (1)  surements, here the set pfs and their common valu@

of the cooling rate. Different smooth sets of experiments
may involve a different cooling rat@’, nonuniform cool-
ing by lettingQ — Q; depend smoothly op;, nonlinear
cooling, or cooling wherep also changes in time. All

ments it was concluded that the first relation is usuall;}hese sets of experiments will in principle lead to differ-

violated, while the second is closely satisfied in most case?,nt transition curvep(T). In practice this means that old
but not in all. (For reviews see [2,3].) The Prigogine- works in literature, where the cooling procedure has not
Defay ratio ' been specified, are not reproducible. Likewise, computer

experiments, with their extremely high cooling rates, can-
AC,Ak : Lot i
bl il (3) ot yield reallst.|c glass transition temperatures.
TV(Aa)? To test the first Ehrenfest relation (1) one needs-
should be equal toll = 1. Experimental values are —dlInV/dplr, which is difficult to determine from cool-
typically found, however, in the range<< II < 5. Itis ing curves at two consecutive pressures. Therefore it
generally believed thdfl = 1 is a strict lower bound. has become standard to measutein the glass phase
In an extension of the theory one assumes that at thiy cooling atp; down below7; and then making small
transition a number of (unspecified) internal variabfes pressure variations [5]. Such procedures, however, lead
freeze in, and that the configurational entropy is constanio a determination ofdp/dT from an experiment at
along the transition line. This modifies (1) and (2) but(essentially)p; only, a contradictio inter terminis. No
keepsll = 1 [4]. These negative results have preventedexperiment at one pressure can fix the slope of the tran-
further development of a thermodynamic approach. sition line, because that depends on the conditions un-
In this Letter we first explain that the first Ehrenfestder which the set of experiments will be performed
relation is automatically satisfied (already in the reported6]. The hope that the compressibility could be obtained
measurements). By the same reasoning we shall concludy small pressure variations is frustrated by the history

_ A dp
v - Aear (2)

where AA = Ajiquia — Aglass fOr any A.  From experi-
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dependence of the glassy state. A closely related phet which processes related to the configurational entropy
nomenon is known from experiments on spin glasseshermalize [8].

the short-time (“zero-field cooled”) susceptibiligzrc = It was shown thatC, = T9Sin /0T + T,91./0T [9].

(1 — gea)/T is lower than the long-time (“field cooled”) We are now in the position to take the first derivatives
susceptibility yre = [1 — [} dx q(x)]/T, wheregg, is ~ ofthefreeenthalpg = U + pV — TSy — T.I.. This

the Edwards-Anderson order parameter and whérg <=  yields
qea is the Parisi order parameter function. In the glass

. oT, oG oT,
the short-time value ok (measured by small pressure — = —Sin — 3T I.; 5 =V - s I.. 4
steps [5]) will also be too low, yielding the observed too p p
large Ak. Along the transition lineG, Sy = Sine + I andV are

The correct procedure is obvious and comes from theontinuous with respect to the liquid. The standard as-
meaning of the Ehrenfest relation. The continuity of thesumption that the first derivatives 6f are also continuous
specific volume can be considered at two glass transitiofs seen to be incorrect [10]: the terms involvifigare non-
points (T1, p1) and (T2, p»), where AV = 0. One may trivial inthe glass{7,/0T < 1,dT./dp # 0). The finite
thus write AV(Ty, p1) — AV(T1, p2) = AV(T», p») —  difference in slopes discussed here is due to unexpected
AV(Ty, p2). [The terms a(Ty, p>) do not vanish.] Di-  behavior of the configurational entropy [10], neglected so

viding by p; — p> and taking the limitp, — p; this, of  far. It leads to the modified Maxwell relation
course, leads to Eq. (1). However, we must use on both | au v v T T
sides of the equality the same valuegef— p,; it should 1 U + P 9 W _ < e 9 E>

not be taken “infinitesimal” on the left-hand side andonly 7 dp T dp  oT r o or
“small” on the right-hand side. In practidee only way oI, T, 91.
is to determinex from the curvesV(T;p;). Modern X ap ap oT ®)

computer graphics allows one to fit all the experimental _ _

data above and below the transition regions to high- andlong the freezing line one hag.[T,p(T)] =T and
low-T surfaces inV-p-T space. Using all data should one may define the total derivativé/dT = 9/dT +
lead to reasonable fits. The intersection line of theldp/dT)d/dp. Equation (4) does notviolate the balance:
surfaces will satisfy Eq. (1). This approach thus explaing/AG/dT = 0 sincedT,/dT = 1. Let us now consider
the old paradox: If properly interpreted, the first EhrenfesEd- (5) and subtract the values on the liquid side. Mul-
relation is satisfied automatically. As there is no secondiPlying by dp/dT and usingdT./dT = 1, dAU/dT =
procedure to produce the same glassy state, there is hardiydV/dT = 0 we obtain from (5) the modification of the

a point in testing (1) experimentally. second Ehrenfest relation [cf. Eq. (2)]
By the same token the second Ehrenfest relation (2), re- AC, dp aT,\ 1 dI,
lating dp/dT to measurements at one pressure only, can- v Aa T +{1 - 5T |V ar - (6)

not be correct. Likewise, the Maxwell relatiod//op +
pdV/dp = —TaV/dT must be violated in the glass. We This relation indeed connec#p /dT with another deriva-
now show how unexpected behavior of the configurationative along the transition line, namely, that of the configu-
entropy modifies it. Below we discuss the derivation forrational entropy. This term originates from the difference
spin glasses, and then extend it to the glass transition in tha slopes of the liquid and glass free enthalpies. The fac-
hypernetted chain approximation. We believe that theséor 1 — 97T,/9T > 0 is a nontrivial weight. Since the
relations are very general, and first formulate them foffirst Ehrenfest relation is satisfied, measuremenik a6
glass-forming liquids. not needed for the Prigogine-Defay ratld: = 11 dT/dp

For glassy systems the entropy consists of two termswith II = AC,/(TV A«) determined at one pressurél
Sie IS the internal entropy, related to the glassy state thavill be less than unity whed I, /dT < 0.
system condenses into; it lies well below the liquid entropy. We now consider the data of Rehage and Oels for the
I. is the configurational entropy due to the number ofglass transition of atactic polystyrene [11]. For cooling at
equivalent glassy states. It is extensive at dynamical trare speed ofil8 K/h atp = 1 bar they reporl” = 361 K,
sitions, and becomes subextensive only for ideal adiabatiaC,/V = 0.30 J/gK, Aa =35 X 1074 cm?/gK,
cooling. This part of the entropy is “lost” in the glass tran-dp /dT = 0.31 bar/K, andAx = 1.6 X 107> cm’/gbar.
sition region. The quantitf aSi,/0T|, will generally be  This was reported to yieldl = 1.06 = 1.0, and a vio-
smaller than the specific he@j, = o(U + pV)/dTl,. In lation of the first Ehrenfest relation. This violation has,
spin glass models the configurational entropy contributekowever, already been traced back to the wayas mea-
to the free energy as(7T/x)I., wherex is the weight sured. Our Prigogine-Defay ratld = 11 dT/dp = 0.77
(0 = x = 1) occurring as the break point of the one-stepis less than unity. The last term in Eq. (6) is negative
replica symmetry breaking Parisi order parameter funcand bring23% of the value for the slopép/dT, a large
tion. x also shows up dynamically as the factor by whicheffect.
the fluctuation-dissipation theorem is broken at long times We have discussed how the configurational entropy
[7]. T. = T/x can be considered as effective temperaturenodifies an Ehrenfest relation. This effect should be
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stronger for first order glass transitions, which occur, forthe set is “smooth” it will lead to a smooth function
instance, in water [3]. In the-spin model [see Eq. (8)] #(T;I'). This function should follow from solving the
this happens when the transversal fi€léexceeds a criti- dynamical equations. We shall not do that, but remain on
cal value [12]. Using that along the dynamical transitiona quasistatic level, where the information of the cooling

line AG = dAG/dT = 0 and Eq. (4) we obtain dynamics is coded in the function(7'; I').
dp 1 T oT In our present analysis a freezing transition occurs
AV T ?(AU + pAV) + <?” — aTe>Ic’ (7)  when the temperature, below which the dominant lowest

reached state will freeze, is equal to the actual tempera-

which deviates by the, term from the static Clausius- ture. We assume that we can still describe the situation

Clapeyron equation. Note that= 7 /T, is below unity. by the Gibbs weight, which is the case when no relevant
Let us now give the theoretical background of ourparts of phase have become inaccessible.

relations. They have initially been derived within a The free energy of the TAP states can be characterized

spherical p-spin interaction spin glass. For a systemby a parameten (n,, = n =< 1) that enters the condition

of m-component spherical spin§ (i = 1,...,N, ¢ =

1,...,m), satisfying >, S =N, we consider the llgzp(p — g’ = _n (10)

Hamiltonian in a transversal field 2 (qa — q1)*

In solving the saddle point equations for, ¢4, and
q1, the above relation fixesx = (p — 1 — n)(qa —
q1)/mq1. One can calculate all quantities of interest. We

The independent Gaussian quenched random couplinggve verified the following relations fat(T, T,(T, I'), I'):
have average zero and varianEg!/2N?~'. The system

Ho=— > Jiii,SiSh--S;, — TS5 (8)

. . P
i1<-+<i

. : B oF
has a multitude of stat_es lj\f each with its F=U~— TSy — T, I: M=-2= . (1)
own free energy, that is a local minimum of a known ol Irr,
Thouless-Anderson-Palmer (TAP)-free energy functional.
The replica calculation with one-step replica symmetry Sint = _OF . L= — oF i (12)
breaking involves parameters, ¢4, q1, andx, leading to oT Ir,r aT, Irr
the free energy [12] oU 9 ol
F BJZ » » T C = ﬁ =T 9T +T, oT . (13)
N =~ " g (@ = éa) — 5o Inlge = €q1) r r r
Té This implies the modified Maxwell relation
+ 3y N =) + 5 aa = 1) U gy (g, i)l
_ + p— —_ = . — R —_
2 (m — DT “ ol’ aoT oT ) oI’
_2_+Tln7, (9) aT, 91,
“ + T (14)

where ¢ =1 — x. u, qq4, and g; are determined by or oT

optimizing F. It was recently pointed out by us that r, vy, S,,, I., M, and T, only depend on the value of
the value ofx is related to the time scale at which the 7 in the point(T,T'). Their temperature derivatives also
system is considered [9]. Indeed, setting/dx =0  depend ondn/dT, while their field derivatives involve
[leading to Eq. (10) withy — 75, < 1 independentof’ 34 /9p, the measure of variation between experiments at
andI'] yields the static phase transition at the Kauzmanryifferent fields.

temperaturdl’x, related to the longest time scale. Onthe The second Ehrenfest relation can be rederived by mul-
other hand, the marginality condition [Eq. (10) with= " tiplying Eq. (14) by(1/NT)dI'/dT. This yields generally

1] describes algebraic time scales, at which a transition

occurs at a higher temperatufg. This is reproduced AC _ Aa ar + <1 _ a_Tf> dl.

by the mode-coupling equations, and is comparable to NT dT oT ) NdT

the sharp critical temperature occurring in mode-coupling dT,\ o1,

equations for glasses. As this transition is absent in - <1 - dT)NaT’ (15)

practice, we have considered the system at exponential

time scales = rpexp(N7) [9]. At given 7 barriers with  while Aa = Ay dT"/dT is again satisfied, where =

free energy height less thaWiT'+ can be surpassedy  —(dM/dT)/N and y = (0M/aT')/N. In comparing
parametrizes the value of the free energies of the states with (6) one should keep in mind thaiT,/dT = 1.

As time evolves, the dominant lowest reached free energlquation (15) also applies to the case where one starts
Fmin(z) has parameten(r). When, at fixed field’;, the  cooling adiabatically belowW. At freezing one then has
temperaturel'(¢) is also slowly lowered, we can eliminate I. = dI./dT = 0, but the last term is nonzero.

¢t to obtain a functionp(T;I'y). Cooling trajectories at d1./dT does not depend orn/oT but only on

a large set of fieldd"; define a set of experiments. If dI'/dT. It holds thatAC, Aa, andA y are proportional
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to 1 — aT./0T (since near the transitiotls, — Upm ~ is finite, while the last one vanishes. A related transi-
x — 1). tion can occur at an§’ > Tx. Then the transition line is

The relations (11)—(15) are expected to be universat(r) = €max, whereI, = 0. Now the last term in (15) is
for dynamical glassy transitions with extensive configura-nonvanishing [16].
tional entropy. We have considered three other cases: In conclusion, we have pointed out that the present un-

(1) In the case of a longitudinal field['Q_S; —  derstanding of the Ehrenfest relations is incorrect. We
H > S7) the same equations are satisfied; see also [9]. have explained that the first one is satisfied automatically

(2) The hypernetted chain equation of fluids is anand that the second one must be modified. From qua-
approximate nonlinear integral equation for the pair-sistatic model calculations we have shown that it gets an
correlation function [13]. Mézard and Parisi [14] pointed extra contribution from the configurational entropy. This
out that in a certain region it has many solutions, describexplains that the Prigogine-Defay ratio is smaller than
ing a glass phase. By weakly coupling different copiesunity in the experiments or Ref. [11].

(replicas) of the system, they introduced a replica calculus. We have also presented the generalization of the
The main difference with the above spin glass is thastandard thermodynamical laws to nonergodic situations
the spin-spin overlap is replaced by the pair-correlatiorwith a one-level tree in phase space. This is given in
function. The static transition again follows from the Egs. (11)—(14), wher&, is an effective temperature, that
relation F/dx = 0. Dynamically this relation is not depends slowly on time. Along the transition line the
satisfied, and there is an extensive configurational entropynodified Maxwell relation Eq. (14) leads to a new form
We now can make the same assumptions as in the aboy@) and (15) of the second Ehrenfest relation. We have
spin glass and will rederive Eq. (6). checked the predictions in several model systems.

(3) Recently we have introduced a model of a directed The author thanks S. Franz, D. Frenkel, H. F. M. Knops,
polymer on a square lattice with a correlated randonW. A. van Leeuwen, J. Michels, B. Nienhuis, K. O. Prins,
potential, consisting of randomly located parallel ridgesF. Ritort, Th. W. Ruijgrok, J. A. Schouten, G. H. Wegdam,
(repulsive potentials) [15]. The polymer prefers to lie inand G. Parisi for discussion, and the ISI (Turin, Italy) for
broad lanes (widtlY) in between ridges, of which there hospitality.

occur a lot when the transversal width scalesVas= Note added—We have checked our Ehrenfest relations
exp(AL'/3) in the parallel widthL. The free energy reads for cooling in the backgammon model, which has no
disorder but entropic barriers [17].
I'(r)L.t
F = Lfp(T) + (222 -v{—-TI., (16)
where /5(T') is an uninteresting bulk free energy den- 1} 5 . Gibbs and A.A. DiMarzio, J. Chem. Phy2s, 373
sity, I' is the interface stiffness, ekpy) is the chance (1958); G. Adam and J. H. Gibbibid. 43, 139 (1965).
for having no ridge at a given height, andis a chemi-  [2] J. Jackle, Philos. Mag. B4, 533 (1981); Rep. Prog. Phys.
cal potential favoring # > 0) or disfavoring ¢ < 0) 49, 171 (1986).

wide lanes, and,. = logW — uf is the complexity. At  [3] C.A. Angell, Science267, 1924 (1995).

someTx, wherey(T;v) = (u/A)[TT(T)/(Tpn — v)]'/3 [4] I. Prigogine and R. DefayChemical Thermodynamics
equals y(T; ») = 1, there occurs a static “Kauzmann” (Longmans, Green and Co., New York, 1954), Chap. 19;
transition from a high-temperature phase, where the poly-  E.A. DiMarzio, J. Appl. Phys4S, 4143 (1974).

mer lies in the broadest lané & €y, = )\Ll/3/,u), to a [5] Measuring sound propagation is equivalent to this.

: . 6] This also occurs at the (first order) boiling line of a liquid.
!ow-temperature phase, where it spends most of the tim 7% L. F. Cugliandolo and J.(Kurchan )Phys. Igev. L&t 1?3
ina Set. of narrower lane¢’( = 76“‘%" with .< .1)' . (1993); G. Parisi, Report No. cor;d-mat/9703219.’
Starting from a large set of uniformly distributed in- [8] L. F. Cugliandolo, G. Kurchan, and L. Peliti, Phys. Rev. E

dependent polymers, we are interested in the dynamical * 55 3398 (1997): H. Knops (private communication).

(short time) regimeA, where (16) is valid with¢ in- [9] Th. M. Nieuwenhuizen (to be published).

creasing logarithmically with time [15]. In order to make [10] Th. M. Nieuwenhuizen, Phys. Rev. Left4, 3463 (1995),
contact with previous theory, we repla@d, in (16) by and references therein; Report No. cond-mat/9504059.
T,I. whereT,(t1) = LTT(T)/[u€(1)]? + v/@. A mini- [11] G. Rehage and H.J. Oels, High Temp.-High Prés&45
mum will then occur af = €(¢). In the polymer model (1977).

one has a reversed role of heatlng and Cooling [15] A Sdt].Z] Th. M. Nieuwenhuizen and F. Ritort (tO be publlshed),
of experiments can be introduced by specifying smoothly13 ?el\ﬁogt No. C?_”d'maﬂwgae d and J. de B
related heating trajectories at a large numbep,f. For 3] J:M.J. van Leeuwen, J. Groeneveld, and J. de Boer,

each of them a dynamical phase transition can occur :ﬁ 4] '\Pﬂhy'\jg:;laﬁgt;%hgizléi(%]95;?3&/5 20, 6515 (1996)

any T < Tx(v;), where the dominant widt#i(z) reached 157 Th M. Nieuwenhuizen, Phys. Rev. Le®t8, 3491 (1997).
so far equals its freezing val¥e[T'(1)]. This transitionis [16] A similar situation is expected to occur below the de

very similar to the ones above. Equations (11)—(15) aré ~ Aimeida-Thouless line fop-spin models in large enough
satisfied with' — ». As before, I, is large at the tran- parallel field.

sition. The second term in the right-hand side of Eq. (15]17] F. Ritort, Phys. Rev. Let{75, 1190 (1995).
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