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Three-Body Contribution to Binding Energy of Solid Argon and Analysis of Crystal Structure
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The binding energy of solid argon has been computed using a symmetry-adapted perturbation theory
three-body potential. This energy equals’752.9 J/mol and agrees well with the experimental
value of —7726 = 13 J/mol. The fcc structure is favored over the hcp structure by 0.01%, in
agreement with experimental observations. In accord with an early suggestion of Jansen [Adv. Quantum
Chem.2, 119 (1965)], inclusion of nonadditive exchange contributions were found to be necessary
to understand the preferred crystal structure and for accurate computation of the binding energy.
[S0031-9007(97)03748-4]

PACS numbers: 61.50.Lt, 31.25.-v, 34.20.Cf

The binding energy, crystal structure, and lattice confound the exchange energy components to be very large,
stant of rare gas solids have for a long time been accumaking the fcc structure more stable than hcp by as much
rately known from experiments and in particular the firstas 4%. However, the approximate method of Jansen sig-
two quantities were heavily studied theoretically. The firstnificantly overestimated the exchange nonadditivities, as
attempts at analyzing the solid form of the rare gases aphown by Refs. [8,9]. The first-order exchange nonaddi-
proximated the many-body potential by the two-body, i.e. fivities for selected geometries of rare gas trimers were reli-
pairwise additive contribution. In this approximation the ably computed almost twenty years ago [10,11]. Although
binding energies of the heavier rare gases were predictddeath and Aziz pointed out in their 1984 paper [12] that
to be between 4% (Ne) and 9% (Xe) too low compared tdor equilateral triangle geometries the first-order exchange
experimental values [1]. Such theory also predicted theffects nearly cancel the contribution from the dispersion
hcp crystal structure to be about 0.01% more stable thanonadditivity, which should lead to a significant worsen-
the observed fcc structure [2]. Since current two-body poing of agreement with experiment, these components were
tentials for rare gas atoms are believed to be very accurateever used in a complete calculation of crystal binding en-
their residual errors cannot be responsible for these digrgy. In particular the latest such calculation for argon,
crepancies. The first attempts to incorporate many-bodpublished in 1986 by Aziz and Slaman [13], did not in-
effects into the binding energy calculations came fromclude any three-body exchange effects. Incorporation of
Axilrod and Teller [3] and Muto [4] who approximated the higher than third-order dispersion nonadditivities [14,15],
three-body nonadditivity by the first term in the multipole Which take into account also four-body and higher non-
expansion of the third-order dispersion energy, called th@dditive contributions, gave relatively small improvements
ATM or triple-dipole @ddd) term. This approach worked (this work was based on an oscillator model recently shown
remarkably well in explaining the discrepancies in bind-to be incorrect [16]). It was also attempted to resolve the
ing energies which were reduced by inclusion of the ATMCrystal structure problem by consideration of the zero-point
term to about+1%, compared to the experimental accu- €nergy [17]. The results of such computations predicted a
racy of 0.4%—0.1%; however, the predicted crystal strucdifference of 0.01% in the zero-point energies favoring the
ture remained to be of the hcp type. Further attempts werf€C lattice. - Since the zero-point energy contributes only
made to improve the many-body potential by consider200ut 10% to the binding energy, this difference is neg-
ing higher-order terms in the multipole expansion of theligible. Thus, observation that the heavy rare gas solids
third-order dispersion energy [5], i.e., terms which involvecrystallize in the fcc_ rather f[han the_ hcp structure has never
ddg ddo dgg and qqq interactions, where and o de- been explained satisfactorily, and is sometimes referred to
note quadrupole and octupole moments, respectively. TH&S the “crystal structure paradox” [2,18]. _
contributions from these higher-order terms were found to. W€ have computed aab initio three-body potential for
be significant but did not necessarily improve agreemen{€ A trimer based on the nonadditive symmetry-adapted
between theory and experiment. The computations merRerturbation theory (SAPT) developed in Ref. [19]. Large
tioned above neglected the charge overlap damping effecfiPital basis sets were used. Details of these calcula-
present in the third-order dispersion energy. This problenioNS are published elsewhere [16]. The SAP'(I;)method in-
was investigated foiH; by O'Shea and Meath [6] who cluded the third-order dispersion nonadditivity;,|[3, 3]
found the ATM term to be damped by about 15%—40% atith a complete account of charge overlap effects. In ad-
equilibrium separations. However, the damped dispersiodition the fourth-order dispersion nonadditiv ?;?,)[3, 3],
energies have never been applied in crystal structure calcwhich had been estimated before only in a crude approxi-
lations. Jansen investigated the three-body nonadditivitynation [14], has been computeab initio. The first-
of the first- and second-order exchange energies [7] andrder exchange nonadditivity has been obtained directly,
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as well as included via the Hartree-Fock nonadditivityFollowing Refs. [20,22] we get
EHF[3,3]. The latter quantity takes into account also the

induction and exchange-induction effects up to infinite or- Py = — <v§"(ri;) + 4 T2 0yl (n;/)>‘ (5)
der. The second-order exchange-dispersion nonadditivity, 72 7 ' Tij
(2;0) J#Ei

Ecxen—disp[3, 3], has been calculated as well. Itis believed _ o _

that these contributions account for all significant physi-Notice that this expression n;vglveszazfurthezr approxima-

cal effects in Ag interaction. The SAPT computed ener- tion consisting of replacm%c y j Xz + y7z” terms

gies were fitted to an analytic potential. This potential isi" the Taylor expansion by + y* + z* [20]. If ther-

expected to be significantly more accurate than anything'@l effects are ignored and the eigenvalues of Eq. (1)

available so far. are solved for using first-order perturbation theory, the
The binding energy of a crystal consists of a staticiélmholtz free energy per atom can be expressed as

component which can easily be computed by summiné20’23]
the two- and three-body contributions over the lattice and - 3 12 5
of the zero-point vibrational energy. The latter quantity F = Es + 5[AQ2P2/m)"" + 3h"P4/(4mP,)]

was calculated in the quartic oscillator approximation as = Es + EY + E2H. (6)
used in Refs. [13,20-23]. Expanding the potential that

an atom in a crystal experiences due to its fixed (Einsteimrhe second and third terms represent the harmonic
approximation) neighbors through quartic terms, allowsand anharmonic contributions to the zero-point energy,
the Schrddinger equation for the motion of this atom torespectively. Since the two-body contribution is much

be written as [20,22] larger than the three-body one, in order to separate them
72 the square root in Eq. (6) can be expanded
[——Vz + Py + Py(x® + y2 + 29 +
2m H 3 P,[3,N]
E; = 5\/2P2[2,N]/m 1+ m
] 2 G \ e
— EH[2,N] + EY[3,N]. @)

wherem is the mass of argon atom. In the present work e Einstein approximation of fixed neighbors can be
only two- and three-body contributions to the binding removed using the approach of Domb and Salter [24]. This
energy will be considered so thap, P>, andP, are sSUms  egyjts in multiplying the Einstein approximation value by
of two- and three-body component®; = Pi[2.N] + 3 constanc = /15/16 — 0.9682. A more accurate value
Pi[3,N], i = 0,2,4, whereX[K, N] denotes th&-body  ihis constant can be inferred from numerical calculations
contribution to theN-body quantity. The first termPo, ¢ |senberg [25] and it is equal to 0.964 21. We will follow

represents the. static potent!al energy at the equilibriumy, oo recent calculations [13,23] and multiply the complete
position of theith atom and is the sum of the two- and zero-point energy b

three-body contributions All contributions have been computed for argon atoms
_ in fcc and hcp configurations withv = 8000 corre-

Po = sz(rif) + ; v3(rijs Tk Tik) (@) sponding to a cubic crystal with 20 atoms per side.

j#i ki The nearest neighbor separation was varied from 6.0 to

where two- and three-body potentials depend on inter?-5 bohr. The additive contributions have been computed

atomic distances. The total static binding energy per atoriSing the HFDID1 potential of Aziz [26]. The additive
Es is one-half of the two-body term plus one-third of the @nd nonadditive contributions to the binding energy of

three-body term. The harmonic constaht is obtained fcc solid argon are shown in Fig. 1 and Table | for the
from the Taylor expansion d?, [20—22]: nearest neighbor distance of 7.088 bohrs, which is the

minimum of our binding energy. The three-body nonad-
Py[2,N] = % Z[vﬁ/(rij) + 205(rij)/rij], (3) ditive contribution for the fcc lattice is 561.8 ol while
j#i the additive one is—8314.7 J/mol, showing that the
nonadditive effects decrease the magnitude of the binding
5 . energy by about 7%. This means a significant amplifica-
Py[3,N]=3 Z [32v3/3rijé’rik(fij B +3 973/t tion compared to the Ar trimer where the nonadditive ef-
T fects are responsible for only about 1% of the binding at
1. ) 1 1 the minimum. The total binding energy was found to be
+307v3/9 rik+; av3/arii+a av3/arik}' —7752.9 J/mol which is 0.3% larger in magnitude than
’ (4) the experimental value of-7726 * 13 J/mol [1]. Fig-
ure 1 shows that the nearest neighbor separation is quite
Since the anharmonic contribution dependent on thsignificantly affected by the nonadditivity. Consideration
quartic constanP, is small, this constant was computed of additive contribution alone predicts the nearest neigh-
using only the pairwise additive part of the potential. bor separation of 7.034 bohrs, which is about 1% smaller
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12000 TABLE I. Binding energy contributions for argon at 0 K.
The present values were computed using a nearest neighbor
10000 separation of 7.088 bohrs while those of Aziz and Slaman
[13] used a nearest neighbor separation of 7.09687 bohrs. All
8000 1 energies are in/ol.
6000 |- Component Aziz-Slaman Present-fcc  Present-hcp
g 4000 Es[2,N] —9093.4 —9082.9 —9083.2
> Eg[3,N] 652.2 569.6 570.5
& 200 EFF[3.N]2 —226.2 ~225.6
g int B . .
“g‘, 0 Eéi?}i*disp[& N2 378.3 378.6
2 -2000 ES,[3.N]* 801.2 805.0 805.3
14} 4,0 — — —
4000 ESY[3,N]2 149.0° 3875 387.8
EH[2,N] 744.3 752.8 752.8
oo EY[3,N] 12.0 ~78 77
0% Eq{[3,N] ~29.4 —29.4
_ ) I ] ! Ll ! I (2:0) R d 21.3 21.3
100000 6.2 6.4 66 6.8 7.0 7.2 74 7.6 7.8 8.0 Ez‘;h""sp [3.N]
Ribohr] Edisp [3’ N]d 120 12.3 12.4
(4;0) _ _
FIG. 1. Dependence of additive and three-body nonadditiveFaisp [3, N1 12.0 12.0
contributions to the binding energy of fcc argon on nearesig;7[2, N] 21.9 15.4 155
neighbor separation. E,9 ~7663.0  —7752.9 ~7752.1

#Physical contributions tds[3, N].
b i -
than the experimental value of 7.097 bohrs [28]. In- oum ofddd ddg gad ddo, andggqundamped asymptotic con

. o ook tributions. Theddd (ATM) contribution was571.6 J/mol.
cluding the three-body nonadditive contribution increasesapproximate Drude model contribution from Bell and Zucker
the nearest neighbor separation to 7.088 bohrs, which ighich includes also higher than three-body effects [23].
only 0.1% different from the experimental value. The %Physical contributions t&% [3, N].
experimental value is likely to be slightly too large ‘Computed using components in footnote a. The ATM contribu-
due to the presence of imperfections in the solid argofon was7.4 J/mol. . : . .

. omputed using the ratio of anharmonic to harmonic contribu-
samples us_ed in measurements so that the Com_put%%nS from the Morse potential of Glyde [27].
value may in fact be closer to the “true” nearest neigh-sexperimental value from Ref. [1] is-7726 = 13 J/mol.
bor separation in the ideal crystal than this comparison
would indicate.

The additive potential from Ref. [26] is not realis- the present work. The additive contributions to the static
tically separated into physical components so that deand zero-point components of the binding energy are 10.5
composition of the additive contributions to the bindingand 8.5 Jmol apart, respectively. This reflects solely the
energy is not possible. However, the three-body nonadvariance in the two-body potentials of Refs. [13,26] (in
ditive SAPT potential consists of components with clearfact, for the sameR of 7.09687 bohrs the difference in
physical interpretation which are shown in Fig. 2 andEs[2,N] is still larger amounting to 25.2/dol). Much
listed in Table I. It is clear that the three-body contribu-more substantial differences exist between the three-body
tion cannot be quantitatively described by one componentontributions to the static and zero-point energies. The
alone. The largest component, the third-order dispersioformer energies differ by 82.6/thol which is over 1% of
energy, overestimates the nonadditive binding energy bthe binding energy, while the latter by 19.8ndol. The
about 30%. The exponentially decaying components arthird-order dispersion contributions are very close, which
large. The contributions from the Hartree-Fock nonaddiis due to the remarkable closeness between the multipole
tivity (which consists mostly of the first-order exchangeexpanded and unexpanded third-order dispersion nonad-
energy) and the fourth-order dispersion nonadditivity arelitivities [16]. Substantial disagreement exists between
canceled to a large degree by the second-order exchangssntributions from fourth-order dispersion nonadditivity.
dispersion contribution explaining the relative success thatiowever, we have shown [16] that the method of ap-
additive + ATM models enjoyed. The three-body contri- proximating fourth-order dispersion nonadditivity used in
bution to the harmonic zero-point energy is almost negRefs. [14,23] is incorrect. The Hartree-Fock nonadditiv-
ligible due to significant cancellations between physicalty and the second-order exchange-dispersion nonadditiv-
components. ity, which were not included in previous work, give very

Table | shows substantial differences between the latesarge contributions amounting in magnitude to about 3%
computation of binding energy of argon [13] and that ofand 5%, respectively, of the total binding energy.
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2000 binding energy (in particular the first-order exchange en-

ergy included inEfiF[3, N]) are responsible for the stabil-
ity of the fcc structure, a situation first hypothesized by
Jansen [7].
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