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Three-Body Contribution to Binding Energy of Solid Argon and Analysis of Crystal Structure
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(Received 20 February 1997)

The binding energy of solid argon has been computed using a symmetry-adapted perturbation theory
three-body potential. This energy equals27752.9 Jymol and agrees well with the experimental
value of 27726 6 13 Jymol. The fcc structure is favored over the hcp structure by 0.01%, in
agreement with experimental observations. In accord with an early suggestion of Jansen [Adv. Quantum
Chem.2, 119 (1965)], inclusion of nonadditive exchange contributions were found to be necessary
to understand the preferred crystal structure and for accurate computation of the binding energy.
[S0031-9007(97)03748-4]

PACS numbers: 61.50.Lt, 31.25.–v, 34.20.Cf
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The binding energy, crystal structure, and lattice con
stant of rare gas solids have for a long time been acc
rately known from experiments and in particular the firs
two quantities were heavily studied theoretically. The firs
attempts at analyzing the solid form of the rare gases a
proximated the many-body potential by the two-body, i.e
pairwise additive contribution. In this approximation the
binding energies of the heavier rare gases were predic
to be between 4% (Ne) and 9% (Xe) too low compared
experimental values [1]. Such theory also predicted th
hcp crystal structure to be about 0.01% more stable th
the observed fcc structure [2]. Since current two-body p
tentials for rare gas atoms are believed to be very accura
their residual errors cannot be responsible for these d
crepancies. The first attempts to incorporate many-bo
effects into the binding energy calculations came from
Axilrod and Teller [3] and Muto [4] who approximated the
three-body nonadditivity by the first term in the multipole
expansion of the third-order dispersion energy, called th
ATM or triple-dipole (ddd) term. This approach worked
remarkably well in explaining the discrepancies in bind
ing energies which were reduced by inclusion of the ATM
term to about61%, compared to the experimental accu
racy of 0.4%–0.1%; however, the predicted crystal stru
ture remained to be of the hcp type. Further attempts we
made to improve the many-body potential by conside
ing higher-order terms in the multipole expansion of th
third-order dispersion energy [5], i.e., terms which involv
ddq, ddo, dqq, and qqq interactions, whereq and o de-
note quadrupole and octupole moments, respectively. T
contributions from these higher-order terms were found
be significant but did not necessarily improve agreeme
between theory and experiment. The computations me
tioned above neglected the charge overlap damping effe
present in the third-order dispersion energy. This proble
was investigated forH3 by O’Shea and Meath [6] who
found the ATM term to be damped by about 15%–40%
equilibrium separations. However, the damped dispersi
energies have never been applied in crystal structure cal
lations. Jansen investigated the three-body nonadditiv
of the first- and second-order exchange energies [7] a
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found the exchange energy components to be very la
making the fcc structure more stable than hcp by as m
as 4%. However, the approximate method of Jansen
nificantly overestimated the exchange nonadditivities,
shown by Refs. [8,9]. The first-order exchange nonad
tivities for selected geometries of rare gas trimers were r
ably computed almost twenty years ago [10,11]. Althou
Meath and Aziz pointed out in their 1984 paper [12] th
for equilateral triangle geometries the first-order exchan
effects nearly cancel the contribution from the dispers
nonadditivity, which should lead to a significant worse
ing of agreement with experiment, these components w
never used in a complete calculation of crystal binding e
ergy. In particular the latest such calculation for argo
published in 1986 by Aziz and Slaman [13], did not i
clude any three-body exchange effects. Incorporation
higher than third-order dispersion nonadditivities [14,1
which take into account also four-body and higher no
additive contributions, gave relatively small improvemen
(this work was based on an oscillator model recently sho
to be incorrect [16]). It was also attempted to resolve
crystal structure problem by consideration of the zero-po
energy [17]. The results of such computations predicte
difference of 0.01% in the zero-point energies favoring t
fcc lattice. Since the zero-point energy contributes o
about 10% to the binding energy, this difference is ne
ligible. Thus, observation that the heavy rare gas so
crystallize in the fcc rather than the hcp structure has ne
been explained satisfactorily, and is sometimes referre
as the “crystal structure paradox” [2,18].

We have computed anab initio three-body potential for
the Ar trimer based on the nonadditive symmetry-adap
perturbation theory (SAPT) developed in Ref. [19]. Lar
orbital basis sets were used. Details of these calc
tions are published elsewhere [16]. The SAPT method
cluded the third-order dispersion nonadditivityE

s3d
dispf3, 3g

with a complete account of charge overlap effects. In
dition the fourth-order dispersion nonadditivityE

s4;0d
disp f3, 3g,

which had been estimated before only in a crude appro
mation [14], has been computedab initio. The first-
order exchange nonadditivity has been obtained direc
© 1997 The American Physical Society 1301
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as well as included via the Hartree-Fock nonadditivit
EHF

int f3, 3g. The latter quantity takes into account also th
induction and exchange-induction effects up to infinite o
der. The second-order exchange-dispersion nonadditiv
E

s2;0d
exch2dispf3, 3g, has been calculated as well. It is believe

that these contributions account for all significant phys
cal effects in Ar3 interaction. The SAPT computed ener
gies were fitted to an analytic potential. This potential
expected to be significantly more accurate than anythi
available so far.

The binding energy of a crystal consists of a stat
component which can easily be computed by summin
the two- and three-body contributions over the lattice an
of the zero-point vibrational energy. The latter quantit
was calculated in the quartic oscillator approximation a
used in Refs. [13,20–23]. Expanding the potential th
an atom in a crystal experiences due to its fixed (Einste
approximation) neighbors through quartic terms, allow
the Schrödinger equation for the motion of this atom t
be written as [20,22]∑

2
h̄2

2m
=2 1 P0 1 P2sx2 1 y2 1 z2d 1

P4sx4 1 y4 1 z4d
∏

C ­ EC , (1)

wherem is the mass of argon atom. In the present wo
only two- and three-body contributions to the bindin
energy will be considered so thatP0, P2, andP4 are sums
of two- and three-body components,Pi ­ Pif2, Ng 1

Pif3, Ng, i ­ 0, 2, 4, whereXfK , Ng denotes theK-body
contribution to theN-body quantity. The first term,P0,
represents the static potential energy at the equilibriu
position of theith atom and is the sum of the two- and
three-body contributions

P0 ­
X

j

jfii

y2srijd 1
X
j.k

j,kfii

y3srij , rjk , rikd , (2)

where two- and three-body potentials depend on inte
atomic distances. The total static binding energy per ato
ES is one-half of the two-body term plus one-third of the
three-body term. The harmonic constantP2 is obtained
from the Taylor expansion ofP0 [20–22]:

P2f2, Ng ­
1
6

X
jfii

fy00
2 srijd 1 2y0

2srijdyrijg , (3)

P2f3, Ng ­
2
3

X
j.k

j,kfii

∑
≠2y3y≠rij≠riksr̂ij ? r̂ikd1 1

2 ≠2y3y≠2rij

1
1
2 ≠2y3y≠2rik1

1
rij

≠y3y≠rij1
1

rik
≠y3y≠rik

∏
.

(4)

Since the anharmonic contribution dependent on t
quartic constantP4 is small, this constant was computed
using only the pairwise additive part of the potentia
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Following Refs. [20,22] we get

P4 ­
1

72

X
j

jfii

µ
yiy

2 srijd 1 4
y

iii
2 srijd
rij

∂
. (5)

Notice that this expression involves a further approxim
tion consisting of replacingx2y2 1 x2z2 1 y2z2 terms
in the Taylor expansion byx4 1 y4 1 z4 [20]. If ther-
mal effects are ignored and the eigenvalues of Eq.
are solved for using first-order perturbation theory, t
Helmholtz free energy per atom can be expressed
[20,23]

F̃ ­ ES 1
3
2 fh̄s2P2ymd1y2 1 3h̄2P4ys4mP2dg

­ ES 1 EH
Z 1 EAH

Z . (6)

The second and third terms represent the harmo
and anharmonic contributions to the zero-point ener
respectively. Since the two-body contribution is muc
larger than the three-body one, in order to separate th
the square root in Eq. (6) can be expanded

EH
Z ø 3

2

p
2P2f2, Ngym

µ
1 1

P2f3, Ng
2P2f2, Ng

∂
­ EH

Z f2, Ng 1 EH
Z f3, Ng . (7)

The Einstein approximation of fixed neighbors can
removed using the approach of Domb and Salter [24]. T
results in multiplying the Einstein approximation value b
a constantC ­

p
15y16 ­ 0.9682. A more accurate value

of this constant can be inferred from numerical calculatio
of Isenberg [25] and it is equal to 0.964 21. We will follow
most recent calculations [13,23] and multiply the comple
zero-point energy byC.

All contributions have been computed for argon atom
in fcc and hcp configurations withN ø 8000 corre-
sponding to a cubic crystal with 20 atoms per sid
The nearest neighbor separation was varied from 6.0
7.5 bohr. The additive contributions have been compu
using the HFDID1 potential of Aziz [26]. The additive
and nonadditive contributions to the binding energy
fcc solid argon are shown in Fig. 1 and Table I for th
nearest neighbor distance of 7.088 bohrs, which is
minimum of our binding energy. The three-body nona
ditive contribution for the fcc lattice is 561.8 Jymol while
the additive one is28314.7 Jymol, showing that the
nonadditive effects decrease the magnitude of the bind
energy by about 7%. This means a significant amplific
tion compared to the Ar trimer where the nonadditive e
fects are responsible for only about 1% of the binding
the minimum. The total binding energy was found to b
27752.9 Jymol which is 0.3% larger in magnitude tha
the experimental value of27726 6 13 Jymol [1]. Fig-
ure 1 shows that the nearest neighbor separation is q
significantly affected by the nonadditivity. Consideratio
of additive contribution alone predicts the nearest neig
bor separation of 7.034 bohrs, which is about 1% sma
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FIG. 1. Dependence of additive and three-body nonadditi
contributions to the binding energy of fcc argon on neare
neighbor separation.

than the experimental value of 7.097 bohrs [28]. In
cluding the three-body nonadditive contribution increas
the nearest neighbor separation to 7.088 bohrs, which
only 0.1% different from the experimental value. Th
experimental value is likely to be slightly too large
due to the presence of imperfections in the solid argo
samples used in measurements so that the compu
value may in fact be closer to the “true” nearest neigh
bor separation in the ideal crystal than this compariso
would indicate.

The additive potential from Ref. [26] is not realis-
tically separated into physical components so that d
composition of the additive contributions to the bindin
energy is not possible. However, the three-body nona
ditive SAPT potential consists of components with clea
physical interpretation which are shown in Fig. 2 an
listed in Table I. It is clear that the three-body contribu
tion cannot be quantitatively described by one compone
alone. The largest component, the third-order dispersi
energy, overestimates the nonadditive binding energy
about 30%. The exponentially decaying components a
large. The contributions from the Hartree-Fock nonadd
tivity (which consists mostly of the first-order exchang
energy) and the fourth-order dispersion nonadditivity a
canceled to a large degree by the second-order exchan
dispersion contribution explaining the relative success th
additive1ATM models enjoyed. The three-body contri
bution to the harmonic zero-point energy is almost ne
ligible due to significant cancellations between physic
components.

Table I shows substantial differences between the lat
computation of binding energy of argon [13] and that o
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TABLE I. Binding energy contributions for argon at 0 K
The present values were computed using a nearest neig
separation of 7.088 bohrs while those of Aziz and Slam
[13] used a nearest neighbor separation of 7.09687 bohrs.
energies are in Jymol.

Component Aziz-Slaman Present-fcc Present-h

ESf2, Ng 29093.4 29082.9 29083.2

ESf3, Ng 652.2 569.6 570.5

EHF
int f3, Nga · · · 2226.2 2225.6

E
s2;0d
exch2dispf3, Nga · · · 378.3 378.6

E
s3d
dispf3, Nga 801.2b 805.0 805.3

E
s4;0d
disp f3, Ng a 2149.0 c 2387.5 2387.8

EH
Z f2, Ng 744.3 752.8 752.8

EH
Z f3, Ng 12.0 27.8 27.7

EHF
int f3, Ngd · · · 229.4 229.4

E
s2;0d
exch2disp f3, Ngd · · · 21.3 21.3

E
s3d
dispf3, Ngd 12.0e 12.3 12.4

E
s4;0d
disp f3, Ng d · · · 212.0 212.0

EAH
Z f2, Ng 21.9f 15.4 15.5

Eb
g 27663.0 27752.9 27752.1

aPhysical contributions toESf3, Ng.
bSum ofddd, ddq, qqd, ddo, andqqqundamped asymptotic con
tributions. Theddd (ATM) contribution was571.6 Jymol.
cApproximate Drude model contribution from Bell and Zucke
which includes also higher than three-body effects [23].
dPhysical contributions toEH

Z f3, Ng.
eComputed using components in footnote a. The ATM contrib
tion was7.4 Jymol.
fComputed using the ratio of anharmonic to harmonic contrib
tions from the Morse potential of Glyde [27].
gExperimental value from Ref. [1] is27726 6 13 Jymol.

the present work. The additive contributions to the sta
and zero-point components of the binding energy are 1
and 8.5 Jymol apart, respectively. This reflects solely th
variance in the two-body potentials of Refs. [13,26] (
fact, for the sameR of 7.09687 bohrs the difference in
ESf2, Ng is still larger amounting to 25.2 Jymol). Much
more substantial differences exist between the three-b
contributions to the static and zero-point energies. T
former energies differ by 82.6 Jymol which is over 1% of
the binding energy, while the latter by 19.8 Jymol. The
third-order dispersion contributions are very close, whi
is due to the remarkable closeness between the multip
expanded and unexpanded third-order dispersion non
ditivities [16]. Substantial disagreement exists betwe
contributions from fourth-order dispersion nonadditivit
However, we have shown [16] that the method of a
proximating fourth-order dispersion nonadditivity used
Refs. [14,23] is incorrect. The Hartree-Fock nonadditi
ity and the second-order exchange-dispersion nonadd
ity, which were not included in previous work, give ver
large contributions amounting in magnitude to about 3
and 5%, respectively, of the total binding energy.
1303
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FIG. 2. Dependence of various nonadditive contributions
the binding energy of fcc argon on nearest neighbor distan
All components except forEH

Z are static energy contributions.

It has been estimated in Ref. [16] that the error of th
SAPT three-body potential is of the order of 10%, whic
translates into 0.7% error in the cohesion energy. T
two-body potential of Aziz [26] was fitted to a broad
range of experimental data and predicts the most accur
spectroscopic data to about 0.1%. If this potential
replaced by the 1986 potential of Aziz and Slaman [13
the cohesion energy would change by about 0.5% a
we would expect that the uncertainty resulting from th
two-body component should not be larger than this valu
Similar uncertainty could be contributed by the neglecte
four- and higher-body effects if one assumes geomet
convergence of the many-body expansion. Other sour
of inaccuracies should be much smaller so that the to
inaccuracy of the present values could be estimated to
of the order of 1%.

The two-body potential of Aziz [26] predicts the hcp
structure to be more stable than the fcc structure
0.003%. Our three-body nonadditive contribution favo
the fcc structure by about 0.01%, enough to overcome
preference for the hcp structure of the additive contrib
tion. The total binding energies for fcc and hcp structur
are27752.9 and27752.1 Jymol, respectively, 0.01% dif-
ferent. The only direct measurements of this differen
were made near the melting point and were based on va
pressure of dilute Ar-O2 alloys [29]. It was found that the
fcc structure should be more stable by0.012 6 0.0027%.
This value is very close to the result of the present wor
despite the fact that the measurement was done at 8
while the present computations correspond to 0 K. A
though the inaccuracy of our cohesion energy is of t
order of 1%, the residual errors in the fcc and hcp coh
sion energies are likely to cancel to a large extent so th
the 0.01% difference should be meaningful, at least up
the sign and order of magnitude. All nonadditive com
ponents favor the fcc structure except for the fourth-ord
dispersion energy which cancels the favoring contributio
due to the third-order dispersion nonadditivity. Thus, on
may say that the nonadditive exchange contributions to
1304
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binding energy (in particular the first-order exchange e
ergy included inEHF

int f3, Ng) are responsible for the stabil
ity of the fcc structure, a situation first hypothesized b
Jansen [7].
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