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Elastic Properties of Carbon Nanotubes and Nanoropes
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Elastic properties of carbon nanotubes and nanoropes are investigated using an empirical force-
constant model. For single and multiwall nanotubes the elastic moduli are shown to be insensitive to
structural details such as the helicity, the radius, and the number of walls. The tensile Young’s modulus
and the torsion shear modulus of tubes are comparable to that of the diamond, while the bulk modulus is
smaller. Nanoropes composed of single wall nanotubes have the ideal elastic properties of high tensile
stiffness and light weight. [S0031-9007(97)03859-3]

PACS numbers: 61.46.+w

The discoveries of carbon nanotubes [1] and the nevin radius, the curvature is small enough that one expects
efficient method of producing them [2] stimulate a greatshort-range atomic interactions to be similar to that in
interest in these novel materials. The electronic [3] andhe graphite. Thus, the set of parameters developed
magnetic properties [4] of nanotubes depend sensitivelfor intraplane interactions in graphite [8] is used for all
on structural details such as the tube radius and the héatrawall interactions in nanotubes.
licity. It has been speculated that nanotubes also pos- The different walls in a multiwall tube are not as well
sess novel mechanical properties. Recent measurememégjistered as they are in the single crystal graphite. Thus,
have inferred a Young’s modulus that is several times thathe interlayer interaction parameters in crystalline graphite
of the diamond [5]. The mechanical properties of smallcannot be adopted for the interwall interaction. Instead,
single wall nanotubes have been studied by several groupge model the interwall interaction by the summation of
using molecular dynamics simulations [6,7]. A Young’s pairwise van de Waals interactios(r) = 4e[(o/r)'? —
modulus several times greater than that of the diafo/r)®)]. Such a model has been used successfully to
mond was predicted. However, those calculations werealculate the bulk properties ofg solid [10]. The
restricted to small single wall tubes of a few A in radius.van de Waals parameter = 3.4 A, € = 12 meV, was
Most samples of nanotubes are either multiwall or crys-determined by fitting the interlayer distance and the elastic
talline ropes of single wall tubes. constantcs; of the single crystal graphite [11].

A practical method of investigating elastic properties is Single wall nanotubes—-Following the notation of
to use the empirical force-constant model. The phonofWhite et al. [12], each single wall nanotube is indexed by
spectrum and elastic properties of the graphite have beem pair of integergn,, n,), corresponding to a lattice vec-
successfully calculated using such models [8]. The simitor L = nja; + nya, on the graphite plane, wheeg, a,
larity in local structure between the graphite and the nanoare the unit cell vectors of the graphite sheet. The nano-
tubes ensure that similar calculations are applicable ttube structure is obtained by the conformal mapping of a
nanotubes. The advantage of such a model is that it can lggaphite strip onto a cylindrical surface. The nanotube ra-
easily applied to nanotubes of different size, helicity, anddius is given byR = aoy/3(n? + n3 + nyn,)/2m, where
number of walls. One such model has been used to prediat, = 1.42 A is the C-C bond length. In principle, force
the phonon spectrum of small single wall tubes [9]. Hereconstants depend on the size of the tube while overlaps
we present results of applying a similar model to calculatef 7 orbitals and orbital mixing depend on the curvature.
elastic properties of single and multiwall nanotubes of variHowever, such dependence is very weak [13]. In this pa-
ous size and geometry, and that of crystalline nanoropgser we neglect this effect and concentrate on the depen-
composed of single wall tubes. dence on the geometry and interwall interactions.

The force-constant modekIn an empirical force- The elastic constants are calculated from the second
constant model, the atomic interactions near the equilibderivatives of the energy density with respect to vari-
rium structure are approximated by the sum of pairwiseous strains [14]. The tensile stiffness as measured by
harmonic potentials between atoms. In the most successftie Young’s modulus is defined as the stress/strain ratio
model for the graphite interactions, up to fourth-neighborwhen a material is axially strained. For most materi-
in-plane and out-of-plane interactions are included [8]als, the radial dimension is reduced when it is axially
The force constants are empirically determined by fittingelongated. The ratio of the reduction in radial dimen-
to measured elastic constants and phonon frequenciesion to the axial elongation defines the Poisson ratio
The local structure of a nanotube wall is constructedNVe first calculate the Poisson ratio by minimizing the
from the conformal mapping of the graphitic sheet onto astrain energy with respect to both the radial compres-
cylindrical surface. For a typical nanotube of a few nmsion and the axial extension. The Young’'s modulus
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then calculated from the second derivative of the strairhave calculated elastic moduli for many different com-
energy density with respect to the axial strain at thebinations. It is found that elastic properties are insensi-
fixed v. tive to different combinations as long as the constraint—
Table | lists the bulk, Young's, and shear (referredinterwall distance=3.4 A— is satisfied. Because of this
to as the torsional shear) moduli calculated for selectivénsensitivity, we use the results for one series of multi-
examples of single wall nanotubes. An important quantitywall tubes to illustrate our conclusions. The series chosen
in determining the values of elastic constants is thds constructed from(5n,5n),n = 1,2,3,..., single wall
wall thicknessh of nanotubes. For multiwall nanotubes, tubes. This is one of the most likely structures for mul-
measured interwall distance is close to that interlayetiwall tubes as its interwall distance is very close to that
distance in graphiteh = 3.4 A. Thus, it is reasonable actually observed [15].
to take the interwall distance as the wall thickness. We Table Il lists the calculated elastic coefficients and the
useh = 3.4 A for all single wall nanotubes. This enables bulk, Young’s, and shear moduli for this series of nano-
us to compare the results between tubes of different sizeibes up to ten walls. The experimental values for the
and the number of walls. For comparison, elastic modulgraphite and the diamond are also listed for compari-
of the graphite [11] and that of the diamond [14] are alsason. One observes that the elastic moduli are essentially
listed in Table I. insensitive to the number of walls. The same is true
From the examination of the numbers in Table I, onefor all other multiwall tubes we have calculated. From
concludes that (1Elastic moduli are insensitive to the Table Il and its comparison with Table I, one concludes
size and the helicity (2) The Young’s and shear moduli that (1) The elastic moduli vary little with the number of
of nanotubes are comparable to that of the diamond andvalls. (2) The interwall van de Waals interactions do not
that of the graphitic sheet(3) Single wall nanotubes are affect significantly the elastic moduli of multiwall nano-
stiff in both the axial direction and the basal plane tubes (3) There is a large anisotropy in elastic prop-
The value of the Young’'s modulus obtainedf, ~  erties of both single wall and multiwall nanotube3he
1 TPa, is almost five time smaller than that previously Young’s modulus of multiwall nanotubes was deduced re-
calculated for small radius tubes [7]. However, in thatcently by Treacyet al. [5] from the thermal vibrations of
calculation the tube wall thickness used is theorbital anchored tubes. Their values range from to 4 TPa
extensionk = 0.66 A. Since elastic constants scale with with the average values &f6 TPa. These results are sub-
the energy density or the inverse of the wall thickness, oustantially larger than our calculated valuesldfPa. The
results agree with the earlier calculations if the same waltliscrepancy may be due to the large uncertainty in how
thickness is used. to estimate the Young’s modulus from the experiment. In
Multiwall nanotubes—The interwall distance in all ex- their estimation the isotropic model was assumed. Our re-
perimentally observed multiwall nanotubes is comparableults clearly show that this is a large anisotropy in elastic
to that in graphite. This puts a constraint on possible comproperties, and that analysis of experimental data should
binations of single wall tubes to form multiwall tubes. We take this into account. More recent direct measurements

TABLE |. Elastic coefficients and moduli of selective single wall nanotubés;, n,)—
index, R—radius in nm. B,Y,M are bulk, Young’s, and shear moduli in units of TPa
(10'3 dyn/cm?). v is the Poisson ratio. Experimental values for the graphite and the dia-
mond are listed for comparison.

(nl, I’lz) R C11 C33 B Y M 14
(5,5) 0.34 0.397 1.054 0.191 0.971 0.436 0.280
(6,4) 0.34 0.397 1.054 0.191 0.972 0.437 0.280
(7,3) 0.35 0.397 1.055 0.190 0.973 0.454 0.280
(8,2) 0.36 0.397 1.057 0.190 0.974 0.452 0.280
9,1) 0.37 0.396 1.058 0.191 0.974 0.465 0.280
(10,0) 0.39 0.396 1.058 0.190 0.975 0.451 0.280
(10, 10) 0.68 0.398 1.054 0.191 0.972 0.457 0.278
(50,50) 3.39 0.399 1.054 0.192 0.972 0.458 0.277
(100, 100) 6.78 0.399 1.054 0.192 0.972 0.462 0.277
(200, 200) 13.5 0.399 1.054 0.192 0.972 0.478 0.277
Graphité* 1.06 S 0.0083 1.02 0.44 0.16
Graphite® . 0.036 0.0083 0.0365 0.004 0.012
Diamond 1.07 1.07 0.442 1.063 0.5758 0.1041

&Graphite in the basal plane [11].
Graphite along the C axis [11].
‘Diamond along the cube axis [14].
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TABLE Il. Elastic coefficients and moduli (in TPa) of mul- TABLE IIl. Elastic moduli (in TPa), lattice constarmt (nm),
tiwall nanotubes constructed from thén,5n),n = 1,2,3,... and the cohesive energy per atofy (meV) of crystalline
series of single wall tubesN —number of walls,R—radius  nanoropes composed of single wéll, n) tubes. R (nm) is
of the outermost wall in nm.B, Y, M are bulk, Young’s, and the radius of a single wall tube.

shear moduli (in TPa).

n R Cll C33 B Y ap E()
n R Cu s B v M Y 5 033 0066 0795 0.015 0795 0.99 335
1 034 0397 105 0191 097 0436 0280 6 040 0.071L 0.736 0017 0.736 1.13 30.1
2 068 0412 1.13 0.194 1.05 0455 0270 7 047 0078 0.687 0.018 0.687 126 28.2
3 102 0413 1.15 0.194 108 0464 0269 8 054 0082 0.641 0020 0641 140 26.2
4 136 0412 117 0194 1.09 0472 0269 9 061 0085 0600 0.021 0.600 154 24.7
5 170 0411 1.18 0.194 1.10 0481 0.269 10 0.67 0.090 0563 0.022 0.563 1.67 235
6 203 0411 1.18 0.194 1.10 0491 026911 0.74 0.098 0532 0.025 0532 1.81 225
7 237 0410 1.18 0.194 1.11 0502 0.269 12 0.81 0.102 0502 0.026 0.502 1.94 216
8 271 0410 1.19 0.194 1.11 0514 0.26913 0.88 0.106 0.475 0.028 0.475 2.08 207
9 305 0410 1.19 0.194 1.11 0527 0.26914 0.94 0.111 0452 0.030 0.452 221 199
10 3.39 0410 1.19 0.194 1.11 0541 026915 1.01 0.118 0430 0.033 0430 235 19.3

of the multiwall suggest the Young's modulus 1o tional carbon fiber in making strong composite materials.
be ~1-1.2 TPa [16], in better agreement with our (2) The Young's modulus is about one-half that of the
calculations. diamond. It decreases with the nanotube radius. But per
Crystalline nanoropes-The new method of producing unit mass nanorope is stiffer than the diamorkhe weak
single wall nanotubes also produces bundles of nanotubgstertube interactions make the rope flexible as individual
or nanoropes. [2] These nanoropes consist of 100—50Qibes can easily rotate and slide with respect to each other.
single wall nanotubes of uniform size arranged in hexagoThis is supported by the experimental scanning electron
nal order. Because of the weak intertube interactions, ongiicroscopy images, where long nanoropes are observed to
expects these ropes to be flexible in the basal plane, ygle well bent and tangled [2]. (3Yanoropes possess the
very stiff along the axial direction. ideal properties of high tensile moduli and light weight
We use the same model described above to calculatehese unique properties should make nanoropes useful in
the elastic constant of nanoropes. Because of extrem@any applications.
disparity between the intertube and intratube interactions, |n conclusion, we have investigated elastic properties
we neglect the coupling between the two interactionsof nanotubes and nanoropes using an empirical force-
(This may lead to some error, but considering the simgonstant model. The simplicity of the model enables us to
plicity of the current model such approximation is ap-explore the dependence of elastic moduli on the nanotube
propriate.) Thus, the lattice constant and the cohesive geometry. It is shown that elastic properties of single
energyE, are determined by intertube van de Waals in-and multiwall nanotubes are insensitive to the radius, he-
teraction only. By minimizing the total intertube inter- |icity, and the number of walls. The Young’'s modulus
actions we find that the equilibrium lattice constant (~1 TPa) and shear modulué-0.5 TPa) calculated are
and the cohesive energy per atom scales with the tube rgomparable to that of the diamond. A crystalline rope

dius R asap = 2R + 32 A, E; = 61.5(meV)/y R(A).  ©of nanotubes is very anisotropic in its elastic properties—
Table IIl summarizes the bulk properties of nanoropess0ft on basal plane and stiff along the axial direction. The
with the nanotube radius ranging from 0.33 nm [the (5,5)}4nusual properties of nanorope—Ilight, flexible, stiff—
tube] to 1 nm [the (15,15) tube]. For a typical nanoropemake thgm ideal materials for composite and nano scale
composed of the (10,10) tubR,= 6.78 A, ap = 16.8 A, ~ €ngineering.

and E; = 23 meV. The cohesive energy is comparable This work is supported by a grant from the U.S.
to that of theCgo solid (33 meV pelC atom). The density Department of Energy, and in part by a grant from The
of such a nanoropel,.3 g/cm?, is only one-half that of Petroleum Research Foundation.

the graphite and one-third that of the diamond. Nanoropes

are much lighter than regular carbon fibers.

The elastic constant ropes are calculated in a similar
way by considering a small deviation from the equilibrium
structure. The results are listed in Table Il for selections :
of nanoropes. From the table, one observes thatlého- 2] Zﬁi:ésl\géf‘ é?%ré’i;itgzrsézogn?)d(()l%g%)_zzo (1992).
ropes are extremely anisotropic. The basal plane is [3] N, Hamadaet al., Phys. Rev. Lett.68, 1579 (1992):

soft (small ¢1;) while the axial direction is very stiff L. Wang et al., Phys. Rev. B46, 7175 (1992); R. Saito
(large c33). This unique property is in sharp contrast et al., ibid. 46, 1804 (1992).

to the graphite and makes nanoropes superior to convenf4] J.P. Lu, Phys. Rev. Letf74, 1123 (1995).
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