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Elastic Properties of Carbon Nanotubes and Nanoropes
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(Received 28 March 1997)

Elastic properties of carbon nanotubes and nanoropes are investigated using an empirical force-
constant model. For single and multiwall nanotubes the elastic moduli are shown to be insensitive to
structural details such as the helicity, the radius, and the number of walls. The tensile Young’s modulus
and the torsion shear modulus of tubes are comparable to that of the diamond, while the bulk modulus is
smaller. Nanoropes composed of single wall nanotubes have the ideal elastic properties of high tensile
stiffness and light weight. [S0031-9007(97)03859-3]
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The discoveries of carbon nanotubes [1] and the ne
efficient method of producing them [2] stimulate a gre
interest in these novel materials. The electronic [3] a
magnetic properties [4] of nanotubes depend sensitiv
on structural details such as the tube radius and the
licity. It has been speculated that nanotubes also p
sess novel mechanical properties. Recent measurem
have inferred a Young’s modulus that is several times th
of the diamond [5]. The mechanical properties of sma
single wall nanotubes have been studied by several gro
using molecular dynamics simulations [6,7]. A Young’
modulus several times greater than that of the d
mond was predicted. However, those calculations we
restricted to small single wall tubes of a few Å in radius
Most samples of nanotubes are either multiwall or cry
talline ropes of single wall tubes.

A practical method of investigating elastic properties
to use the empirical force-constant model. The phon
spectrum and elastic properties of the graphite have be
successfully calculated using such models [8]. The sim
larity in local structure between the graphite and the nan
tubes ensure that similar calculations are applicable
nanotubes. The advantage of such a model is that it can
easily applied to nanotubes of different size, helicity, an
number of walls. One such model has been used to pre
the phonon spectrum of small single wall tubes [9]. He
we present results of applying a similar model to calcula
elastic properties of single and multiwall nanotubes of va
ous size and geometry, and that of crystalline nanorop
composed of single wall tubes.

The force-constant model.—In an empirical force-
constant model, the atomic interactions near the equil
rium structure are approximated by the sum of pairwi
harmonic potentials between atoms. In the most succes
model for the graphite interactions, up to fourth-neighb
in-plane and out-of-plane interactions are included [8
The force constants are empirically determined by fittin
to measured elastic constants and phonon frequenc
The local structure of a nanotube wall is constructe
from the conformal mapping of the graphitic sheet onto
cylindrical surface. For a typical nanotube of a few nm
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in radius, the curvature is small enough that one expe
short-range atomic interactions to be similar to that
the graphite. Thus, the set of parameters develo
for intraplane interactions in graphite [8] is used for a
intrawall interactions in nanotubes.

The different walls in a multiwall tube are not as we
registered as they are in the single crystal graphite. Th
the interlayer interaction parameters in crystalline graph
cannot be adopted for the interwall interaction. Instea
we model the interwall interaction by the summation
pairwise van de Waals interactions,Usrd ­ 4efssyrd12 2

ssyrd6dg. Such a model has been used successfully
calculate the bulk properties ofC60 solid [10]. The
van de Waals parameters ­ 3.4 Å, e ­ 12 meV , was
determined by fitting the interlayer distance and the elas
constantc33 of the single crystal graphite [11].

Single wall nanotubes.—Following the notation of
White et al. [12], each single wall nanotube is indexed b
a pair of integerssn1, n2d, corresponding to a lattice vec
tor L ­ n1a1 1 n2a2 on the graphite plane, wherea1, a2

are the unit cell vectors of the graphite sheet. The na
tube structure is obtained by the conformal mapping o
graphite strip onto a cylindrical surface. The nanotube
dius is given byR ­ a0

p
3sn2

1 1 n2
2 1 n1n2dy2p, where

a0 ­ 1.42 Å is the C-C bond length. In principle, force
constants depend on the size of the tube while overl
of p orbitals and orbital mixing depend on the curvatur
However, such dependence is very weak [13]. In this p
per we neglect this effect and concentrate on the dep
dence on the geometry and interwall interactions.

The elastic constants are calculated from the seco
derivatives of the energy density with respect to va
ous strains [14]. The tensile stiffness as measured
the Young’s modulus is defined as the stress/strain ra
when a material is axially strained. For most mate
als, the radial dimension is reduced when it is axia
elongated. The ratio of the reduction in radial dime
sion to the axial elongation defines the Poisson ration.
We first calculate the Poisson ratio by minimizing th
strain energy with respect to both the radial compre
sion and the axial extension. The Young’s modulusY is
© 1997 The American Physical Society 1297
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then calculated from the second derivative of the stra
energy density with respect to the axial strain at th
fixed n.

Table I lists the bulk, Young’s, and shear (referre
to as the torsional shear) moduli calculated for selecti
examples of single wall nanotubes. An important quant
in determining the values of elastic constants is th
wall thicknessh of nanotubes. For multiwall nanotubes
measured interwall distance is close to that interlay
distance in graphite,h ­ 3.4 Å. Thus, it is reasonable
to take the interwall distance as the wall thickness. W
useh ­ 3.4 Å for all single wall nanotubes. This enable
us to compare the results between tubes of different s
and the number of walls. For comparison, elastic mod
of the graphite [11] and that of the diamond [14] are als
listed in Table I.

From the examination of the numbers in Table I, on
concludes that (1)Elastic moduli are insensitive to the
size and the helicity. (2) The Young’s and shear modul
of nanotubes are comparable to that of the diamond a
that of the graphitic sheet. (3) Single wall nanotubes are
stiff in both the axial direction and the basal plane.

The value of the Young’s modulus obtained,Y ,
1 TPa, is almost five time smaller than that previousl
calculated for small radius tubes [7]. However, in tha
calculation the tube wall thickness used is thep orbital
extensionh ­ 0.66 Å. Since elastic constants scale with
the energy density or the inverse of the wall thickness, o
results agree with the earlier calculations if the same w
thickness is used.

Multiwall nanotubes.—The interwall distance in all ex-
perimentally observed multiwall nanotubes is comparab
to that in graphite. This puts a constraint on possible co
binations of single wall tubes to form multiwall tubes. W
ia-

1298
TABLE I. Elastic coefficients and moduli of selective single wall nanotubes.sn1, n2d—
index, R —radius in nm. B, Y , M are bulk, Young’s, and shear moduli in units of TPa
s1013 dynycm2d. n is the Poisson ratio. Experimental values for the graphite and the d
mond are listed for comparison.

sn1, n2d R C11 C33 B Y M n

s5, 5d 0.34 0.397 1.054 0.191 0.971 0.436 0.280
s6, 4d 0.34 0.397 1.054 0.191 0.972 0.437 0.280
s7, 3d 0.35 0.397 1.055 0.190 0.973 0.454 0.280
s8, 2d 0.36 0.397 1.057 0.190 0.974 0.452 0.280
s9, 1d 0.37 0.396 1.058 0.191 0.974 0.465 0.280
s10, 0d 0.39 0.396 1.058 0.190 0.975 0.451 0.280

s10, 10d 0.68 0.398 1.054 0.191 0.972 0.457 0.278
s50, 50d 3.39 0.399 1.054 0.192 0.972 0.458 0.277

s100, 100d 6.78 0.399 1.054 0.192 0.972 0.462 0.277
s200, 200d 13.5 0.399 1.054 0.192 0.972 0.478 0.277

Graphitea 1.06 · · · 0.0083 1.02 0.44 0.16
Graphiteb · · · 0.036 0.0083 0.0365 0.004 0.012
Diamondc 1.07 1.07 0.442 1.063 0.5758 0.1041

aGraphite in the basal plane [11].
bGraphite along the C axis [11].
cDiamond along the cube axis [14].
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have calculated elastic moduli for many different com
binations. It is found that elastic properties are insens
tive to different combinations as long as the constraint—
interwall distanceø3.4 Å— is satisfied. Because of this
insensitivity, we use the results for one series of mult
wall tubes to illustrate our conclusions. The series chos
is constructed froms5n, 5nd, n ­ 1, 2, 3, . . . , single wall
tubes. This is one of the most likely structures for mu
tiwall tubes as its interwall distance is very close to tha
actually observed [15].

Table II lists the calculated elastic coefficients and th
bulk, Young’s, and shear moduli for this series of nano
tubes up to ten walls. The experimental values for th
graphite and the diamond are also listed for compa
son. One observes that the elastic moduli are essentia
insensitive to the number of walls. The same is tru
for all other multiwall tubes we have calculated. From
Table II and its comparison with Table I, one conclude
that (1)The elastic moduli vary little with the number of
walls. (2) The interwall van de Waals interactions do no
affect significantly the elastic moduli of multiwall nano-
tubes. (3) There is a large anisotropy in elastic prop-
erties of both single wall and multiwall nanotubes. The
Young’s modulus of multiwall nanotubes was deduced r
cently by Treacyet al. [5] from the thermal vibrations of
anchored tubes. Their values range from0.4 to 4 TPa
with the average values of1.6 TPa. These results are sub-
stantially larger than our calculated values of1 TPa. The
discrepancy may be due to the large uncertainty in ho
to estimate the Young’s modulus from the experiment. I
their estimation the isotropic model was assumed. Our r
sults clearly show that this is a large anisotropy in elast
properties, and that analysis of experimental data shou
take this into account. More recent direct measuremen
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TABLE II. Elastic coefficients and moduli (in TPa) of mul-
tiwall nanotubes constructed from thes5n, 5nd, n ­ 1, 2, 3, . . .
series of single wall tubes.N —number of walls,R —radius
of the outermost wall in nm.B, Y , M are bulk, Young’s, and
shear moduli (in TPa).

n R C11 C33 B Y M n

1 0.34 0.397 1.05 0.191 0.97 0.436 0.28
2 0.68 0.412 1.13 0.194 1.05 0.455 0.27
3 1.02 0.413 1.15 0.194 1.08 0.464 0.26
4 1.36 0.412 1.17 0.194 1.09 0.472 0.26
5 1.70 0.411 1.18 0.194 1.10 0.481 0.26
6 2.03 0.411 1.18 0.194 1.10 0.491 0.26
7 2.37 0.410 1.18 0.194 1.11 0.502 0.26
8 2.71 0.410 1.19 0.194 1.11 0.514 0.26
9 3.05 0.410 1.19 0.194 1.11 0.527 0.26

10 3.39 0.410 1.19 0.194 1.11 0.541 0.26

of the multiwall suggest the Young’s modulus t
be ,1 1.2 TPa [16], in better agreement with our
calculations.

Crystalline nanoropes.—The new method of producing
single wall nanotubes also produces bundles of nanotu
or nanoropes. [2] These nanoropes consist of 100–5
single wall nanotubes of uniform size arranged in hexag
nal order. Because of the weak intertube interactions, o
expects these ropes to be flexible in the basal plane,
very stiff along the axial direction.

We use the same model described above to calcu
the elastic constant of nanoropes. Because of extre
disparity between the intertube and intratube interactio
we neglect the coupling between the two interaction
(This may lead to some error, but considering the sim
plicity of the current model such approximation is ap
propriate.) Thus, the lattice constanta0 and the cohesive
energyE0 are determined by intertube van de Waals i
teraction only. By minimizing the total intertube inter
actions we find that the equilibrium lattice constanta0
and the cohesive energy per atom scales with the tube

dius R as a0 ­ 2R 1 3.2 Å, E0 ­ 61.5smeVdy
q

RsÅd.
Table III summarizes the bulk properties of nanorop
with the nanotube radius ranging from 0.33 nm [the (5,
tube] to 1 nm [the (15,15) tube]. For a typical nanorop
composed of the (10,10) tube,R ­ 6.78 Å, a0 ­ 16.8 Å,
and E0 ­ 23 meV . The cohesive energy is comparab
to that of theC60 solid (33 meV perC atom). The density
of such a nanorope,1.3 gycm3, is only one-half that of
the graphite and one-third that of the diamond. Nanorop
are much lighter than regular carbon fibers.

The elastic constant ropes are calculated in a sim
way by considering a small deviation from the equilibrium
structure. The results are listed in Table III for selectio
of nanoropes. From the table, one observes that (1)Nano-
ropes are extremely anisotropic. The basal plane
soft (small c11) while the axial direction is very stiff
(large c33). This unique property is in sharp contras
to the graphite and makes nanoropes superior to conv
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TABLE III. Elastic moduli (in TPa), lattice constanta0 (nm),
and the cohesive energy per atomE0 (meV) of crystalline
nanoropes composed of single wallsn, nd tubes. R (nm) is
the radius of a single wall tube.

n R C11 C33 B Y a0 E0

5 0.33 0.066 0.795 0.015 0.795 0.99 33.5
6 0.40 0.071 0.736 0.017 0.736 1.13 30.1
7 0.47 0.078 0.687 0.018 0.687 1.26 28.2
8 0.54 0.082 0.641 0.020 0.641 1.40 26.2
9 0.61 0.085 0.600 0.021 0.600 1.54 24.7

10 0.67 0.090 0.563 0.022 0.563 1.67 23.5
11 0.74 0.098 0.532 0.025 0.532 1.81 22.5
12 0.81 0.102 0.502 0.026 0.502 1.94 21.6
13 0.88 0.106 0.475 0.028 0.475 2.08 20.7
14 0.94 0.111 0.452 0.030 0.452 2.21 19.9
15 1.01 0.118 0.430 0.033 0.430 2.35 19.3

tional carbon fiber in making strong composite materials
(2) The Young’s modulus is about one-half that of th
diamond. It decreases with the nanotube radius. But pe
unit mass nanorope is stiffer than the diamond.The weak
intertube interactions make the rope flexible as individua
tubes can easily rotate and slide with respect to each oth
This is supported by the experimental scanning electro
microscopy images, where long nanoropes are observed
be well bent and tangled [2]. (3)Nanoropes possess the
ideal properties of high tensile moduli and light weight.
These unique properties should make nanoropes useful
many applications.

In conclusion, we have investigated elastic propertie
of nanotubes and nanoropes using an empirical forc
constant model. The simplicity of the model enables us t
explore the dependence of elastic moduli on the nanotu
geometry. It is shown that elastic properties of singl
and multiwall nanotubes are insensitive to the radius, h
licity, and the number of walls. The Young’s modulus
s,1 TPad and shear moduluss,0.5 TPad calculated are
comparable to that of the diamond. A crystalline rope
of nanotubes is very anisotropic in its elastic properties—
soft on basal plane and stiff along the axial direction. Th
unusual properties of nanorope—light, flexible, stiff—
make them ideal materials for composite and nano sca
engineering.
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