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Wave Function Scarring Effects in Open Stadium Shaped Quantum Dots
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In agreement with experiment, our calculations show that the low field magnetoconductance of
stadium shaped quantum dots can be periodic, indicating that only a few regular orbits dominate
the quantum transport, even though the structure is classically chaotic. Evidence for these orbits
is seen in scarred wave functions that recur periodically in correspondence to selected peaks in the
power spectrum. Crucial in exciting these orbits is the quantization of modes in the quantum point
contacts that cause the electrons to be injected in collimated beams at well defined angles. [S0031-
9007(97)03512-6]

PACS numbers: 73.23.Ad, 05.40.+j, 05.45.+b

Electron interference is an important process in mesowhich enter the Landauer-Biittiker formula [11] to give
scopic devices and strongly influences their resultinghe conductance. Consequently, we are able to reproduce
electrical behavior. In disordered systems, electrons arthe periodicity of the conductance fluctuations found
diffusively scattered by a random impurity distribution experimentally [2]. Moreover, the wave functions can be
and the resulting interference gives rise to universakcarred, with certain scars recurring periodically in field,
conductance fluctuations (UCF) [1]. Such fluctuationsin good correspondence with selected power spectrum
are also observed in ballistic quantum dots, where th@eaks. Further investigations reveal that collimation plays
complex electron scattering is instead generated by tha crucial role in the nonuniform excitation of orbits.
confining geometry [2-5]. If the mean free path and In Fig. 1(a), we plot the conductance fluctuatioig,
phase coherence length are larger than the dot dimensions perpendicular fiel® for a stadium shaped dot, with the
then transport should be dominated by the resolvablsame lead configuration used in experiment [2] [Figs. 1(b)
guantum spectrum, even in the presence of current flomnd 1(c)]. Following Marcust al. [2], the fluctuations
[6—8]. The transport can be expected to involve just ghemselves are obtained from the raw conductance by
few eigenstates that are excited by the collimation effecsubtracting out a cubic polynomial background and we
of the entrance quantum point contact (QPC). In contrastave used an electron densidy6 x 10'' cm 2. The
to UCF [1], in which the fluctuations are aperiodic, andradius of the end circles of the stadiumAs= 0.22 um
to the semiclassical treatment of classically chaotic doand the total length i9.88 wm, yielding an area of
shapes, in which the assumption of ergodicity is mad®.35 um?. While smaller than the experimental estimate
[9], this behavior leads to reproducible, periodic fluctua-[2] by some 10%, we find that this size gives the best
tions, indicative of anonuniformexcitation of classical agreement and emphasize that there is always uncertainty
trajectories. The experimental results of Maretigl. [2] in determining the experimental dot size, since it must be
for stadium shaped quantum dots showed this periodimferred indirectly from high magnetic field measurements
behavior when no ensemble averaging was done anof the dot conductance. The input QPC or lead allows
Fourier analysis of the conductance fluctuations revealefbur propagating modes to enter the dot. The resulting
the presence of strong peaks at a few discrete frequencidfuctuations have a quasiperiodic appearance, particularly
It was speculated that these resulted from wave functioif one looks at the spacing of successive minima. This
scaring by a few periodic orbits. characteristic is confirmed by the power spectrum of the

In this Letter, we simulate magnetotransport throughfluctuations, which reveals well defined peaks fat-
stadium shaped, ballistic quantum dots and compute th20, 33, and65 T~! [Fig. 1(a), right inset]. Compared
wave functions. This is done by solving the problem on &o the experimental results [Fig. 1(a), left insert] this
discrete lattice using an iterative method that is a numerispectral content is seen to be strikingly similar. Making
cally stabilized variant of the transfer matrix approachminor structural alternations (e.g., narrowing the QPCs),
[10,11]. The dot is enclosed inside a waveguide whichwe find that the relative weighting of the peaks can
extends a finite number of lattice sites in the transversée significantly altered but that thegositionsare quite
(y) direction. The structure is then broken down intostable, which is again consistent with the experimental
a series of slices along the longitudingl) direction. results [2]

Imposing an electron flux from the left, one translates As noted above, Marcust al. [2] suggested that these
across successive slices using the iterative method. Queaks may be associated with scarring. We have in-
reaching the end, one obtains the transmission coefficienteed found evidence of scarring in our simulations and
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FIG. 1. (a) Conductance fluctuatioigg) are plotted as a
function of magnetic field for a stadium shaped quantum
dot. The right inset shows the corresponding power spectrum,
in arbitrary units. For comparison, the left inset shows a
power spectrum obtained from the stadium shaped dot oFIG. 2. (a) Conductance fluctuatiori$g) are plotted as a
Ref. [2]. Probability density(|¢(x,y)|?) versusx and y is function of magnetic field for a stadium quantum dot with
plotted for (b)B = 0.229 T and (c) B = 0.2515 T. Darker aligned leads. The right inset shows the corresponding power
shading corresponds to higher amplitude. Note the positions gfpectrum and the left inset the collimated beams emerging
the leads. from a QPC. (J#(x,y)[?) versusx and y is plotted for

(b) B=0.135T and (c)B = 0.288 T, showing a rectangular

) . scar in both cases. (d) also correspond3te- 0.288 T, but

show two representative examples. In Fig. 1(b), we plohow phase breaking is introduced to isolate the effects of the

l¢(x,y)|> vs x and y for B =0.2515T. A roughly input lead.
rectangular scar is evident, with the corners and ends being
clearly resolved. In Fig. 1(c), a stronger “bow-tie” scar isagreement with the spacings between successive minima
apparent aB = 0.229 T and is strikingly similar to a scar in the fluctuations. The solid circles correspond to values
observed in theclosedstadium (see Fig. 2 of Ref. [12]). of B where a roughly rectangular scar was observed in
Unfortunately, it is difficult to establish a specific period to the wave function. These appear at very nearly periodic
these scars and thus establish a connection with a particintervals, with the period also beirig021 T, though one
lar power spectrum peak since similar looking scars can bperiod is missed (a scar is expectedBat- 0.26 T). In
resolved only at a few other values of field. Figs. 2(b) and 2(c), we pldi(x, y)|* vs x andy for the
Much stronger evidence for the association between aases corresponding to the first and last dBts; 0.1355
specific power spectrum peak and scarring is provided imand 0.288 T, respectively. Both wave functions reveal
Fig. 2, which shows results for a slightly smaller stadiumsimilar looking but not identical scars [Fig. 2(c) clearly
with centrallyalignedleads. HereR = 0.2 um and the shows extra “bounces”], following trajectories running
total length is0.8 um, yielding an area o.29 um?.  along the periphery of the stadium. We return to this
The density in this case i X 10" cm™2. In Fig. 2(a), point below.
we plot the conductance fluctuations for this configuration Insight into the formation of the scars can be obtained by
and the corresponding power spectrum is shown in theonsidering the left hand inset to Fig. 2(a), which shows a
inset. A single peak a#7 T~! clearly dominates. The simulation of an isolated QPC that supports a single mode.
corresponding magnetic field period 09021 T, in good Given an opening of widthw, this mode has a quantized
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transverse wave numbet,, = 7/w at zero field. With
scattering boundaries absent, two collimated beams can be
clearly seen exiting the QPC, with exit angles set by the
transverse velocitiesy, = *7k;,. It is beams such as
these that excite the particular periodic orbits. Isolating
this collimation effect inside the actual dot can be done
phenomenologically by introducing an imaginary potential
Vin = —ili/274, Wherer is the inelastic scattering time
[13]. One introduces a large enoughso that the inelastic
path length/, = vg7,, Wherevg is the Fermi velocity, is
about the length of the stadium, so that the electron waves
are damped before multiply reflecting off the boundaries.
The wave function corresponding to such a calculation is
shown in Fig. 2(d), which was done for the same value } 3 4
of B as Fig. 2(c). Here we have useg = 5 ps, which Lt St A4 1P
correspondstoaly, = 1.4 um. Note the tendency for the , i:-;?.‘l, ‘ ",_\:."
electrons to enter the dot at very sharp angles with respect G
to the axis formed by the aligned leads, behavior similar to
the QPC shown in the inset. The first few reflections of the )
electron waves are also evident, with one beam bouncin§/G: 3. (a) The bouncing-ball scar. (b) The “double-V” scar.
off the bottom and appearing to exit the dot, and the secon )e/?o diamond” scar that occurs when the leads are placed at

. . . . ) ) p edges of the stadium.
taking a more peripheral trajectory more in keeping with
the scar. The differences in the trajectories are accountddad case are shown in Fig. 3(a), in which the clas-
for by the Lorentz force on the electrons generated bic “bouncing-ball” scar appears quite strongly Rt=
the magnetic field. Importantly, the “rectangular” scar0.145 T, and in Fig. 3(b), which shows a double V (com-
shown in Fig. 2(c) only becomes truly visible aboyg ~  pare this with Fig. 2 of Ref. [12]) foB = 0.13 T. As
0.05 ns. This corresponds to an inelastic path lengthmentioned above, some scars do recur, while many others
ly = vpry Of about 14 um, sufficient to make about do not. When there is recurrence, typically it is not easy
six complete circuits of the scarred loop, demonstratingo assign a periodicity (if it in fact exists) since the scars
the need for long term electrons storage to permit thelo not recur with the same intensity each time and some
observation of well defined scars. This result and theperiods are apparently missed. In this regard, we note that
clear differences between the scars in Figs. 2(b) and 2(¢he energy levels are broadenedipendots, so there is a
are consistent with an observation of Helkdr al. [14],  question of whether the scars correspond to eigenstates of
who found that, in closed stadiums, there is a difficulty inparticular energy levels, or averages over broadened and
making a correspondence between a scarred wave functi@averlapping levels. It is difficult to answer this question
and aspecific orbit, as each simple orbit has a large conclusively. It is possible that some levels are still being
number of similar but more complex “cousins,” consistingresolved since the level spacing is not even and indeed
of progressively more bounces, only matching up withall the scars shown here correspond to points in the con-
themselves after several trips around the stadium. Thusluctance where there was some sharp resonance feature.
the observed periodic scarring may be the result of a whol&hus, the missing of periods may be due to uneven broad-
series of such cousins. ening effects, which smear some resonances but not oth-

The scaring features discussed thus far all occurredrs. That being said, we have found that narrowing the
aboveB = 0.1 T. One might argue that we have crossedleads and, thus, reducing the expected broadening, does
over into the regular regime, as a transition from chaotimot necessarily give sharper scars. We also point out that
to regular behavior occurs classically as the magnetigvhile, for example, the scarred stadium wave functions
field is increased. However, using the formubd =  plotted by Helleret al. [14] do correspond to individual
do/(PminAr), Where pnin is the smallest radius of cur- eigenstates, Bogomolny [15] has shown that scarring can
vature of the device andy is the Fermi wavelength, be a property ofenergy averageavave functions. The
Marcuset al. [2] estimated this to occur &* = 0.45 T, effects of magnetic field on the energy level spacing has
for the stadium dots he examined. For the example useldeen studied in the context of a closed stadium [16].
in Fig. 2, B* = 0.48 T, since the dot is smaller antr In Fig. 3(c), a diamond-shaped scar is strongly apparent
is larger. Thus, with this criteria, the scarring effects weat B = 0.2095 T. The parameters are the same as in
have shown are at fields in which the classical scatteringrig. 2 but now the leads are aligned at ttup of the
is expected to be chaotic. stadium, and two modes propagate in the leads. This

We have also seen other scars familiar from the lit-example underlines the importance of lgaldcementn
erature on closed stadiums. Examples for the alignedetermining which orbits are excited. Here a collimated
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