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Wave Function Scarring Effects in Open Stadium Shaped Quantum Dots
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In agreement with experiment, our calculations show that the low field magnetoconductance of
stadium shaped quantum dots can be periodic, indicating that only a few regular orbits dominate
the quantum transport, even though the structure is classically chaotic. Evidence for these orbits
is seen in scarred wave functions that recur periodically in correspondence to selected peaks in the
power spectrum. Crucial in exciting these orbits is the quantization of modes in the quantum point
contacts that cause the electrons to be injected in collimated beams at well defined angles. [S0031-
9007(97)03512-6]
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Electron interference is an important process in mes
scopic devices and strongly influences their resultin
electrical behavior. In disordered systems, electrons
diffusively scattered by a random impurity distribution
and the resulting interference gives rise to univers
conductance fluctuations (UCF) [1]. Such fluctuation
are also observed in ballistic quantum dots, where t
complex electron scattering is instead generated by
confining geometry [2–5]. If the mean free path an
phase coherence length are larger than the dot dimensi
then transport should be dominated by the resolvab
quantum spectrum, even in the presence of current fl
[6–8]. The transport can be expected to involve just
few eigenstates that are excited by the collimation effe
of the entrance quantum point contact (QPC). In contra
to UCF [1], in which the fluctuations are aperiodic, an
to the semiclassical treatment of classically chaotic d
shapes, in which the assumption of ergodicity is ma
[9], this behavior leads to reproducible, periodic fluctua
tions, indicative of anonuniform excitation of classical
trajectories. The experimental results of Marcuset al. [2]
for stadium shaped quantum dots showed this perio
behavior when no ensemble averaging was done a
Fourier analysis of the conductance fluctuations revea
the presence of strong peaks at a few discrete frequenc
It was speculated that these resulted from wave functi
scaring by a few periodic orbits.

In this Letter, we simulate magnetotransport throug
stadium shaped, ballistic quantum dots and compute
wave functions. This is done by solving the problem on
discrete lattice using an iterative method that is a nume
cally stabilized variant of the transfer matrix approac
[10,11]. The dot is enclosed inside a waveguide whic
extends a finite number of lattice sites in the transver
syd direction. The structure is then broken down int
a series of slices along the longitudinalsxd direction.
Imposing an electron flux from the left, one translate
across successive slices using the iterative method.
reaching the end, one obtains the transmission coefficie
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which enter the Landauer-Büttiker formula [11] to giv
the conductance. Consequently, we are able to reprod
the periodicity of the conductance fluctuations foun
experimentally [2]. Moreover, the wave functions can
scarred, with certain scars recurring periodically in fie
in good correspondence with selected power spectr
peaks. Further investigations reveal that collimation pla
a crucial role in the nonuniform excitation of orbits.

In Fig. 1(a), we plot the conductance fluctuations,dg
vs perpendicular fieldB for a stadium shaped dot, with th
same lead configuration used in experiment [2] [Figs. 1(
and 1(c)]. Following Marcuset al. [2], the fluctuations
themselves are obtained from the raw conductance
subtracting out a cubic polynomial background and w
have used an electron density3.6 3 1011 cm22. The
radius of the end circles of the stadium isR  0.22 mm
and the total length is0.88 mm, yielding an area of
0.35 mm2. While smaller than the experimental estima
[2] by some 10%, we find that this size gives the be
agreement and emphasize that there is always uncerta
in determining the experimental dot size, since it must
inferred indirectly from high magnetic field measuremen
of the dot conductance. The input QPC or lead allo
four propagating modes to enter the dot. The result
fluctuations have a quasiperiodic appearance, particul
if one looks at the spacing of successive minima. Th
characteristic is confirmed by the power spectrum of t
fluctuations, which reveals well defined peaks atf ,
20, 33, and65 T21 [Fig. 1(a), right inset]. Compared
to the experimental results [Fig. 1(a), left insert] th
spectral content is seen to be strikingly similar. Makin
minor structural alternations (e.g., narrowing the QPC
we find that the relative weighting of the peaks ca
be significantly altered but that theirpositionsare quite
stable, which is again consistent with the experimen
results [2]

As noted above, Marcuset al. [2] suggested that these
peaks may be associated with scarring. We have
deed found evidence of scarring in our simulations a
© 1997 The American Physical Society 123
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FIG. 1. (a) Conductance fluctuationssdgd are plotted as a
function of magnetic field for a stadium shaped quantu
dot. The right inset shows the corresponding power spectru
in arbitrary units. For comparison, the left inset shows
power spectrum obtained from the stadium shaped dot
Ref. [2]. Probability densitysjcsx, ydj2d versus x and y is
plotted for (b) B  0.229 T and (c) B  0.2515 T. Darker
shading corresponds to higher amplitude. Note the positions
the leads.

show two representative examples. In Fig. 1(b), we p
jcsx, ydj2 vs x and y for B  0.2515 T. A roughly
rectangular scar is evident, with the corners and ends be
clearly resolved. In Fig. 1(c), a stronger “bow-tie” scar
apparent atB  0.229 T and is strikingly similar to a scar
observed in theclosedstadium (see Fig. 2 of Ref. [12]).
Unfortunately, it is difficult to establish a specific period t
these scars and thus establish a connection with a part
lar power spectrum peak since similar looking scars can
resolved only at a few other values of field.

Much stronger evidence for the association between
specific power spectrum peak and scarring is provided
Fig. 2, which shows results for a slightly smaller stadiu
with centrallyaligned leads. Here,R  0.2 mm and the
total length is0.8 mm, yielding an area of0.29 mm2.
The density in this case is4 3 1011 cm22. In Fig. 2(a),
we plot the conductance fluctuations for this configuratio
and the corresponding power spectrum is shown in t
inset. A single peak at47 T21 clearly dominates. The
corresponding magnetic field period is0.021 T, in good
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FIG. 2. (a) Conductance fluctuationssdgd are plotted as a
function of magnetic field for a stadium quantum dot wit
aligned leads. The right inset shows the corresponding pow
spectrum and the left inset the collimated beams emerg
from a QPC. sjcsx, ydj2d versus x and y is plotted for
(b) B  0.135 T and (c)B  0.288 T, showing a rectangular
scar in both cases. (d) also corresponds toB  0.288 T, but
now phase breaking is introduced to isolate the effects of t
input lead.

agreement with the spacings between successive min
in the fluctuations. The solid circles correspond to valu
of B where a roughly rectangular scar was observed
the wave function. These appear at very nearly period
intervals, with the period also being0.021 T, though one
period is missed (a scar is expected atB , 0.26 T). In
Figs. 2(b) and 2(c), we plotjcsx, ydj2 vs x andy for the
cases corresponding to the first and last dots,B  0.1355
and 0.288 T, respectively. Both wave functions revea
similar looking but not identical scars [Fig. 2(c) clearly
shows extra “bounces”], following trajectories runnin
along the periphery of the stadium. We return to th
point below.

Insight into the formation of the scars can be obtained
considering the left hand inset to Fig. 2(a), which shows
simulation of an isolated QPC that supports a single mo
Given an opening of widthw, this mode has a quantized
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transverse wave number,k1y  pyw at zero field. With
scattering boundaries absent, two collimated beams can
clearly seen exiting the QPC, with exit angles set by th
transverse velocities,yy  6h̄k1y. It is beams such as
these that excite the particular periodic orbits. Isolatin
this collimation effect inside the actual dot can be don
phenomenologically by introducing an imaginary potentia
Vin  2ih̄y2tf, wheretf is the inelastic scattering time
[13]. One introduces a large enoughtf so that the inelastic
path lengthlf  yFtf, whereyF is the Fermi velocity, is
about the length of the stadium, so that the electron wav
are damped before multiply reflecting off the boundarie
The wave function corresponding to such a calculation
shown in Fig. 2(d), which was done for the same valu
of B as Fig. 2(c). Here we have usedtf  5 ps, which
corresponds to anlf  1.4 mm. Note the tendency for the
electrons to enter the dot at very sharp angles with resp
to the axis formed by the aligned leads, behavior similar
the QPC shown in the inset. The first few reflections of th
electron waves are also evident, with one beam bounc
off the bottom and appearing to exit the dot, and the seco
taking a more peripheral trajectory more in keeping wit
the scar. The differences in the trajectories are accoun
for by the Lorentz force on the electrons generated
the magnetic field. Importantly, the “rectangular” sca
shown in Fig. 2(c) only becomes truly visible abovetf ,
0.05 ns. This corresponds to an inelastic path leng
lf  nFtf of about 14 mm, sufficient to make about
six complete circuits of the scarred loop, demonstratin
the need for long term electrons storage to permit th
observation of well defined scars. This result and th
clear differences between the scars in Figs. 2(b) and 2
are consistent with an observation of Helleret al. [14],
who found that, in closed stadiums, there is a difficulty i
making a correspondence between a scarred wave func
and a specific orbit, as each simple orbit has a larg
number of similar but more complex “cousins,” consistin
of progressively more bounces, only matching up wit
themselves after several trips around the stadium. Th
the observed periodic scarring may be the result of a who
series of such cousins.

The scaring features discussed thus far all occurr
aboveB  0.1 T. One might argue that we have crosse
over into the regular regime, as a transition from chaot
to regular behavior occurs classically as the magne
field is increased. However, using the formulaBp 
f0ysrminlFd, wherermin is the smallest radius of cur-
vature of the device andlF is the Fermi wavelength,
Marcuset al. [2] estimated this to occur atBp  0.45 T,
for the stadium dots he examined. For the example us
in Fig. 2, Bp  0.48 T, since the dot is smaller andlF

is larger. Thus, with this criteria, the scarring effects w
have shown are at fields in which the classical scatteri
is expected to be chaotic.

We have also seen other scars familiar from the li
erature on closed stadiums. Examples for the align
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FIG. 3. (a) The bouncing-ball scar. (b) The “double-V” sca
(c) A “diamond” scar that occurs when the leads are placed
the top edges of the stadium.

lead case are shown in Fig. 3(a), in which the cla
sic “bouncing-ball” scar appears quite strongly atB 
0.145 T, and in Fig. 3(b), which shows a double V (com
pare this with Fig. 2 of Ref. [12]) forB  0.13 T. As
mentioned above, some scars do recur, while many oth
do not. When there is recurrence, typically it is not ea
to assign a periodicity (if it in fact exists) since the sca
do not recur with the same intensity each time and so
periods are apparently missed. In this regard, we note t
the energy levels are broadened inopendots, so there is a
question of whether the scars correspond to eigenstate
particular energy levels, or averages over broadened
overlapping levels. It is difficult to answer this questio
conclusively. It is possible that some levels are still bein
resolved since the level spacing is not even and inde
all the scars shown here correspond to points in the c
ductance where there was some sharp resonance fea
Thus, the missing of periods may be due to uneven bro
ening effects, which smear some resonances but not o
ers. That being said, we have found that narrowing t
leads and, thus, reducing the expected broadening, d
not necessarily give sharper scars. We also point out t
while, for example, the scarred stadium wave functio
plotted by Helleret al. [14] do correspond to individual
eigenstates, Bogomolny [15] has shown that scarring c
be a property ofenergy averagedwave functions. The
effects of magnetic field on the energy level spacing h
been studied in the context of a closed stadium [16].

In Fig. 3(c), a diamond-shaped scar is strongly appar
at B  0.2095 T. The parameters are the same as
Fig. 2 but now the leads are aligned at thetop of the
stadium, and two modes propagate in the leads. T
example underlines the importance of leadplacementin
determining which orbits are excited. Here a collimate
125
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beam pointeddownward(and upward modes are reflected
is what generates the diamond scar. We note also t
the position of the output lead is also of great importanc
There are scars apparent in the aligned case (Fig. 2)
do not appearin the nonaligned lead case (Fig. 1) an
vice versa. This may be due to the exit leads allowing t
electron to escape too quickly before the wave function
built enough to show a particular scar.

Analogous effects to those shown here have been s
in experimental [5,17] and theoretical [5,11] studies o
square quantum dots. As in the stadium, the calculatio
reveal “scarlike” wave functions, with periodicities in
correspondence to the power spectrum peaks. Sim
wave functions have also been seen in circular do
[18]. Thus, while the individual power spectra depen
on specific details such as the dot shape and lead posit
we conclude that the regular behavior is in factuniversal.
Moreover, it has been found that the positions of th
peaks scale inversely with a dot’s linear dimension [18
indicating the period is actually related to the length o
the orbit. From this and noting that scars like the bo
tie and double V reoccur but do not appear to enclo
any Ahoronov-Bohm flux (there is flux cancellation in th
case of the bow tie), it seems it is the symplectic are
which is swept out as the electrons make several circu
around the dot, that is most relevant with regards to t
period and not the simple area apparent inside the scar

In conclusion, we have shown that the low field magn
toconductance of open stadium shaped quantum dots
be periodic, indicating that only a few regular orbits dom
nate the quantum transport, even though the structure
classically chaotic. Evidence for these orbits is seen
scarred wave functions, which recur periodically in ma
netic field in correspondence with selected peaks obser
in the power spectra of the experimental and simulat
magnetoconductance. Crucial in exciting these orbits
the quantization of modes in the QPCs, which inject ele
trons in collimated beams directed at well defined angle
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