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How Much of the Nucleon Spin is Carried by Glue?
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We estimate in the QCD sum rule approach the amount of the nucleon spin carried by
gluon angular momentum: the sum of the gluon spin and orbital angular momenta. The re
indicates that gluons contribute at least one half of the nucleon spin at the scale of1 GeV2.
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Ever since the publication of the European Muo
Collaboration measurement on the fraction of the nucle
spin carried by the quark spin [1], there has been
tremendous activity in the field of the spin structure o
the nucleon [2]. One of the central questions is how t
spin of the nucleon is distributed among its constituen
[3]. After much debate, many agree now that a substan
fraction of the nucleon spin comes from sources oth
than the quark spin, i.e., quark orbital and gluon angu
momenta. Recently, several proposals have been mad
the literature to measure the amount of the spin carried
the gluon helicityDG [4].

In this Letter, we present a QCD sum rule calculatio
[5] of the amount of the nucleon spin carried by gluons,
equivalently by quarks, because, by definition, their su
is 1y2. Our calculation is motivated by the possibility
of measuring these quantities through deeply virtu
Compton scattering proposed by one of us [6]. Th
method we use has been applied successfully to calcu
a similar quantity—fractions of the nucleon momentum
carried by quarks and gluons [7,8]. Our result shows th
the gluon angular momentum, the sum of gluon helici
and orbital angular momentum, contributes at least 50
of the nucleon spin, suggesting that the nucleon conta
nontrivial gluon configurations carrying nonzero angula
momentum.

The angular momentum operator in QCD can be writte
in an explicitly gauge-invariant form [6],

$JQCD ­
Z

d3x

∑
1
2

c̄ $gg5c 1 cysss $x 3 s2i $Dddddc

1 $x 3 s $E 3 $Bd
∏

. (1)

where flavor and color indices are implicit. The first term
can be interpreted as the quark spin contribution, althou
its matrix element is actually the singlet-axial charg
The second term, where the covariant derivative is$D ­
$≠ 1 ig $A, is the canonical orbital angular momentum o
quarks. The word “canonical” stems from thecanonical
momentum for quarks in a background gauge field. T
last term is the total angular momentum of gluons, as
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clear from the appearance of the Poynting vector. (In pu
gauge theory without quarks, this term generates the s
quantum numbers for glueballs.) According to the abo
expression, we can write down a gauge-invariant spin s
rule for the nucleon,

1
2

­
1
2

DSsm2d 1 Lqsm2d 1 Jgsm2d , (2)

where m2 is a scale at which the operators are reno
malized, or more physically the nucleon wave functio
is probed. The first term is what has been measured
polarized deep-inelastic scattering [1,9]. The second a
third terms represent quark orbital and gluon contrib
tions, respectively. We also introduce the notion of the t
tal quark contribution,Jq ­ DSy2 1 Lq, the sum of spin
and orbital. By definition, bothJqsm2d and Jgsm2d
are gauge invariant if gauge-invariant regularization a
renormalization schemes are used. In the lightlike gau
A1 ­ 0, Jgsm2d can be written as a sum of the gluon he
licity DGsm2d, measurable in polarized high-energy sca
tering [4], the gluon orbital angular momentum, as well a
a term from quark-gluon interactions [6,10].

Before formulating the sum rule calculation, it is
instructive to review a derivation of Eq. (1). The angula
momentum operators of QCD are identified with th
generators of the Lorentz group,Jmn , which in turn
are defined from the angular momentum densityMmna

through

Jmn ­
Z

d3 $x M0mns $xd . (3)

The angular momentum density can be expressed in te
of the symmetric, conserved energy-momentum tens
T ab,

Mmna ­ Tmaxn 2 Tmnxa . (4)

The energy-momentum tensor of QCD can be written a
sum of the quark and gluon parts,

T ab ­ Tab
q 1 T ab

g ­
1
4

c̄gsai
$
D

bd
c

1

µ
1
4

gabF2 2 FamFb
m

∂
, (5)
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where sabd means symmetrization of the indices. It i
then simple to see that the quark and gluon parts of t
angular momentum operators in Eq. (1) are derived fro
Eqs. (3) and (4) by substituting in the quark and gluo
parts of the energy-momentum tensor, respectively.

According to the above, we can formulate the su
rule calculation ofJgsm2d, or equivalently Jqsm2d, in
terms of the energy-momentum tensorT

ab
q,g . Consider

the following three-point correlation function in the QCD
vacuum:

Wmna
g spd ­

Z
d4x d4zk0jT fhsxdh̄s0dMmna

g szdg j0leip?x ,

(6)

whereM
mna
g is defined as in Eq. (4) withTab replaced

by its gluonic part, andhsxd is the interpolating field for
the nucleon, which we choose to be [11]

hsxd ­ eijksuiT Cgaujdg5gadk . (7)

W
mna
g contains a nucleon double-pole contribution, wit

its residue proportional toJgsm2d,

Wmna
g ­

Jgsm2dl2
N

sp2 2 m2
N d2

s2ipmgnpygad 1 . . . , (8)

where ellipses include nucleon double poles of differe
Dirac structures, nucleon single poles, and other disp
sive contributions.lN is the nucleon decay constant cor
responding to the interpolating current,

k0jhs0djNspdl ­ lN Uspd . (9)

In the following, we first calculateW
mna
g in the deep-

Euclidean region2p2 ¿ L
2
QCD using operator product

expansion (OPE), from which we attempt to extract th
double-pole residueJgsm2d.

To ensureJqsm2d 1 Jgsm2d ­ 1y2 in the sum rule
calculation, we use an implicit form of Ward identity,

Tab ­ ≠rsTrbxad 2 xa≠rT rb , (10)

so we rewrite the three-point correlation function as

Wmna
g ­

Z
d4x d4z

3 k0jThsxdh̄s0dzmsza≠rT rn
g

2 zn≠rT ra
g d j0leip?x.

(11)

From Eq. (5), we find

≠rT rn
g ­ 2c̄gFnagac 1 . . . , (12)

where ellipses denote terms vanishing after using gluo
equations of motion. Thus, we arrive at a new form o
1226
s
he
m
n

m

h

nt
er-
-

e

n’s
f

the Green’s function

Wmna
g ­

Z
d4x d4z zmzn

3 k0jThsxdh̄s0dÔ aszdj0leip?x

2 sn $ ad 1 . . . , (13)

where Ô aszd ­ c̄gFabgbcszd. If one goes through a
similar procedure for a correlator with the quark part
the energy-momentum tensor, one finds that it can
reduced to the same term with a negative sign plus
two-point nucleon correlation function with a double-po
residue 1y2.

The Green’s function in the deep Euclidean space c
be calculated in OPE because of asymptotic freedom. T
first term in such an expansion is the usual perturbat
contribution, which is infrared finite due to the finite
external momentump2. There are two perturbative
diagrams as shown in Fig. 1. We find the contributio
from the first diagram as

as

p5

∑
1

144
ln2

µ
2p2

m2

∂
2

1
36

ln

µ
2p2

m2

∂∏
p2, (14)

where and henceforth we omit the structure fact
2ipmgnpga . A calculation for the second diagram
(“sailboat”) is rather tedious. Since in the final result th
(typical) contribution from the first diagram is small (les
than 10%), we discard this sailboat contribution in th
following study.

The next term in OPE comes from dimension-fou
vacuum condensates. Diagrams from Figs. 2(a) and 2
are found to contribute

2
1

144p2p2

ø
as

p
F2

¿ ∑
ln

µ
2p2

m2

∂
1

7
6

1 ln

µ
m2

2q2

∂∏
,

(15)

where q2 is an infrared regulator which represents th
momentum flow through the operatorO a . The infrared
logarithm arises from large separations of pointz from
0 and x. To take into account the contribution in thi
region properly, one must first expand the product of t
interpolating current,

Thsxdh̄s0d ­
X
n

CnsxdÔn (16)

FIG. 1. Perturbative diagrams. Dashed line denotes glu
(Permutations are not shown.)
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FIG. 2. Dimension-four power corrections: local (a),(b) an
bilocal (c). Shaded circles mark vacuum fields.

(where Ôn are a set of local operators), resulting in so
called bilocal power corrections [12] [see Fig. 2(c)]. Th
relevant local operator in this case is a dimension-five on

Ô
lrr0

5 ­ 2ūgFlfrgr0gu 2 2i≠frsū$
D

l
gr0gud

1 ūDy
√ $Dsrr0

u 1 ūsrr0

D
√l $Dyu

1
3
4

ūgFrr0

glu 1
3
4

d̄gFrr0

gld , (17)

where frr0g denotes antisymmetrization of the two in
dices. The operator yields a contribution toW

mna
g ,

2
1

12p2p2
P

np
0 s0, m2d , (18)

whereP
np
0 sq2, m2d is the nonperturbative part of a two-

point correlation function between̂O
lrr0

5 and O a , and
m2 is an ultraviolet regulator to be defined below.

To calculateP
np
0 s0, m2d, we again use the sum rule ap

proach. We first work out an operator-product expansi
for P0sq2d in the deep Euclidean region,

P0sq2, m2d ­
as

60p3
q4 ln

µ
m2

2q2

∂
1

1
12

ø
as

p
F2

¿
ln

µ
m2

2q2

∂
1

8pas

9q2
kūul2 2

1
192p2q2

kg3G3l 1 . . . .

(19)

On the other hand, we write a dispersion integral f
P0sq2, m2d valid for all q2 [14],

P
np
0 sq2, m2d ­

1
p

Z m2

0

ds
s

rssd 2 rpertssd
s 2 q2 , (20)

where the upper limit defines the ultraviolet cutoff and

rpertssd ­
as

60p2
s3. (21)

P
np
0 sq2d defined in this way vanishes in perturbatio

theory and its first power correction contributes in th
same way as the last term in Eq. (15). To findP0s0, m2d,
FIG. 3. Typical local (a), (b), (c) and bilocal (d) power corrections of dimension six.
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we assume a spectral function,

rssd ­ pfRm6
Rdss 2 m2

Rd

1 uss 2 s0d
µ

as

60p2 s3 1
as

12
F2s

∂
, (22)

wheremR is the mass scale for the exotic121 resonance,
suspected to lie between 1.3 to 1.9 GeV [13,14]. In
our estimate, we takemR to be 1.5 GeV. The standard
sum rule method allows us to extractfR ­ 1.8 3 1023,
which in turn yieldsP0s0, m2

Rd ­ 5.0 3 1024m2
R. The

uncertainty of this number is at least a factor of 2 due to
unknownmR and the continuum thresholds0, which we
take to be1.92 GeV2.

The next term in the OPE forW
mna
g involves dimension-

six vacuum condensates, for which we use the factorizatio
assumption. A calculation of the diagrams in Figs. 3(a)–
3(c) (and similar ones which are not drawn) gives a
contribution toW

mna
g ,

askūul2

81pp4

∑
20 ln

µ
2p2

m2

∂
1 62 ln

µ
m2

2q2

∂∏
, (23)

where we have kept only logarithmic terms. A small
contribution of the first term to the final result justifies the
approximation. The infrared logarithm in the second term
signals that the contribution must be replaced by

4kūul
3p4 P1s0, m2d , (24)

where P1sq2, m2d is a bilocal correlator [see Fig. 3(d)]
involving Ô a and the dimension-seven operator,

Ô
lrr 0

7 ­ eijkei0j0ksDludiCgrujūj0

gr0

Cūi0T 1 H.c.

(25)

The OPE forP1sq2, m2d at large Euclideanq2 is

P1sq2d ­
31
54

as

p
kūul ln

µ
m2

2q2

∂
2

m2
0kūul
3q2

1 . . . , (26)

wherem2
0 ­ 2kūgF ? sulykūul. The higher-order terms

in ellipses involve condensates of dimension seven an
higher for which we know very little. To get an estimate,
we assume vector-meson dominance [15],

P1sq2d ­
f 0

R

m2
R 2 q2

. (27)
1227
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Expand the above inq2 and matching its1yq2 term with
the OPE in Eq. (26), we find

P1s0d ­
m2

0kūul
3m2

R
. (28)

We ignore dimension-eight or higher contributions. I
h
n

e

d
o

1228
n

the factorization approximation, the contributions from
dimension-eight condensates (both local and bilocal) a
exactly zero.

Based on the OPE we have developed forWmna ,
we attempt an estimate for theJgsm2

N d. The sum rule
equation reads like this,
Jgl2

sm2
N 2 p2d2

1 · · · ­
as

p5

∑
1

144
ln2s2p2d 2

1
36

lns2p2d
∏

p2 2
1

144p2p2

ø
as

p
F2

¿ ∑
lns2p2d 1

7
6

∏
2

1.1 3 1023

12p2p2

1
20as

81p

kūul2

p4
lns2p2d 1

4m2
0kūul2

9m2
Rp4

. (29)
r
-

,

m,

l.

.

e,
Substituting in the standard values for the con
densates at the normalization pointm ­ 1 GeV
(cf. Ref. [16], for example),ksasypdF2l ­ 0.012 GeV4,
kūul ­ 20.017 GeV3, m2

0 ­ 0.65, ass1 GeVd ­ 0.37,
32p4l

2
N ­ 2.5 GeV6, s0 ­ 2.25 GeV2, we find that the

dimension-six bilocal term is the dominant contribu
tion. If we keep just this term, multiply both sides by
m2

N 2 p2, and make a Borel transformation, we find

Jgs1 GeV2d ­
8em2

0kūul2

9m2
Rl

2
N

­ 0.25 . (30)

A more careful analysis including other contribution
yields

Jgs1 GeV2d ­ 0.35 6 0.13 . (31)

where the error reflects the uncertainty of the mass sc
in the 121 channel as well as the uncertainty from th
sum rule analysis. However, we have no way to know t
accuracy of the vector-meson approximation in estimati
the dimension-six bilocal contribution.

The number we find,Jgs1 GeV2d , 0.35 6 0.13 or
Jqs1 GeV2d , 0.15 6 0.13, if taken seriously, has an in-
teresting implication on the spin structure of the nucleo
It says that gluons are at least as important in determ
ing the nucleon spin as quarks, if not more. Furthe
more, from a recent global analysis of data on polariz
deep-inelastic scattering [9], one finds the gluon helici
DGs1 GeV2d defined in the infinite momentum frame an
lightlike gauge has a size of 1 to 2 units of angular m
mentum. If correct [17], the gluon orbital contribution
defined in a similar framework must be large and neg
tive and cancels a substantial part ofDG. Such a large
cancellation may be caused by the gauge-dependent s
aration ofJg into helicity and orbital contributions. On
the other hand, one half of the singlet-axial charge, or t
quark spin contribution, is found to be0.0510.08

20.05 [9]. This
leaves about 20% of the nucleon spin carried by qua
orbital angular momentum. Here no large cancellation
present between the quark spin and orbital contribution
-
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