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We discuss the new model expressionāansQ2d recently obtained for the QCD running coupling with
a regular ghost-free behavior in the “lowQ2” region. Being deduced from the standard “asymptotic-
freedom” expression by imposing theQ2 analyticity—without any adjustable parameters—it has nice
features: (i) The universal limiting valuēaans0d ­ 4pyb0 expressed only via group symmetry factors
and independent of experimental estimates on the running couplingāssQ2d (of QCD scale parameter
L). This value is stable with respect to higher order corrections. (ii) Stability of IR behavior with
respect to higher-loop effects. (iii) Coherence between the experimentalāansM2

t d value and integral
information on IRāssQ2d behavior as extracted from jet physics data. [S0031-9007(97)03834-9]

PACS numbers: 12.38.Aw, 11.10.Hi, 12.38.Bx
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The ghost-pole problem in the behavior of a runnin
coupling, being an obvious property of the geometrica
progression, spoils a physical discussion of the renorma
ization group (RG) summed perturbative QCD results i
the infrared (IR) region. To avoid it, one uses som
artificial constructions like the “freezing of the coupling”
hypothesis.

Here, we are going to revive an old idea of combinin
the RG summation with analyticity in theQ2 variable. It
was successfully used in the late 1950s for examining th
QED ghost-pole issue [1,2]. Quite recently, it has bee
proposed for applying to the QCD case [3].

The QED effective couplinḡasQ2d being proportional
to the transverse dressed-photon propagator amplitu
according to general principles of local QFT satisfies th
Källén-Lehmann spectral representation and, therefore,
an analytic function in the cut complexQ2 plane.

The “analytization procedure” elaborated in paper
[1,2] consists of the following three steps:

(I) To find an explicit expression for̄aRGsQ2din the
Euclidean regionQ2 . 0 by standard RG improvement
of a perturbative input.

(II) To perform the straightforward analytical continu-
ation of this expression into the Minkowskian region
Re Q2 , 0, Im Q2 ­ 2e. To calculate its imaginary
part and to define the spectral density byrRGss, ad ­
Im āRGs2s 2 ie, ad.

(III) Using the spectral representation [see Eq. (2) be
low] with rRG in the integrand to define an “analytically
improved” running couplingāansQ2d in the Euclidean
region.

Being applied toāsQ2d in the one-loop ultraviolet
(UV) QED case, this procedure produced [2] an explic
expression with the following properties: (a) it has no
ghost pole; (b) as a function ofa at the pointa ­ 0 it
possesses an essential singularity, exps23pyad; (c) in
the vicinity of this singularity for real and positivea
it admits a power expansion that coincides with th
perturbation one (used as an input); (d) it has the fini
0031-9007y97y79(7)y1209(4)$10.00
g
l
l-

n
e

g

e
n

de
e
is

s

-

it

e
te

UV limit ās`, ad ­ 3p that does not depend on the
experimental valuea . 1y137.

The same procedure being applied to the two-loop QE
case yielded [2] a more complicated expression with t
same essential features.

In the QCD case, to apply this technique to the stro
running coupling, one has to make two reservations.

First, as far as here,̄assQ2d is defined via a product
of propagators and a vertex function, there is a quest
about validity of the spectral representation. Happily, th
point has been discussed in paper [4]. As a result, o
can use the Källén-Lehmann analyticity here, as well.

Second, in QCD, the running of coupling is, generall
connected with the running of gauge. For simplicity
we assume that the modified minimal-subtraction (MS)
scheme is used (or the momentum subtraction scheme
the transverse gauge) when̄as is not influenced by the
running of gauge.

To construct an analytic effective coupling in the QCD
case, we start with the leading-logs expression

ās1dsQ2d ­
a

1 1 ab0 lnsQ2ym2d
­

1
b0 lnsQ2yL2d

, (1)

with āsQ2d ­ āssQ2dy4p and b0 ­ 11 2 s2y3dnf , the
one-loop coefficient, and with the spectral representatio

āansQ2d ­
1
p

Z `

0
ds

rss, ad
s 1 Q2 2 ie

. (2)

According to step (II) of the outlined procedure, we defin
the spectral function in the one-loop approximation

r
s1d
RGss, ad ­

a2b0p

s1 1 ab0Ld2 1 sab0pd2 ,

L ­ ln
s

m2 .
(3)

Note that the RG invariance of̄aan defined via Eq. (2) is
provided by the scaling property of the spectral function

rssym2, ad ­ r̃sln syL2d, L2 ­ m2 exps21yab0d .

(4)
© 1997 The American Physical Society 1209
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Substitutingr
s1d
RG into Eq. (2) we get [3]

ās1d
an sQ2d ­

1
b0

"
1

ln Q2yL2 1
L2

L2 2 Q2

#
, (5)

where we used the QCD scale parameter defined
in Eq. (4). However, to identifya with asm2d, the
running coupling value atQ2 ­ m2, we have to change
this definition for L2 ­ m2 expf2fsssasm2db0dddg, where
the function fszd satisfies the equationz ­ 1yfszd 2

1yhexpffszdg 2 1j.
It is clear that the “analytic” coupling constant, Eq. (5

has no ghost pole atQ2 ­ L2, and its IR limiting value
ās1d

s s0d ­ 4pyb0 depends only on group factors. Numeri
cally, for nf ­ 3, we haveās1d

an s0d ­ 4py9 . 1.398.
Usually, we are accustomed to the idea that theory su

plies us with a set of possible curves forāssQd and one
has to fix the “physical one” by comparing with experi
ment. Here, Eq. (5) describes a family of possible curv
for āansQ2d forming a bundle with the same common limi
at Q2 ­ 0 as it is shown in Fig. 1.

Another important virtue of Eq. (5) is that the analyti
behavior in the IR domain is provided by a nonperturb
tive contribution.exps21yab0d.

To analyze the two-loop case, let us start withās2dsQ2d
written down in the form

ā
s2d
RGsQ2d ­

1
b0l 1 b0b1 lns1 1 lyb1d

, l ­ ln
Q2

L2 ,

(6)

whereb1 ­ b1yb
2
0 andb1 ­ 102 2 38y3nf is the two-

loop coefficient. This expression corresponds to t
result of exact integration of the two-loop differential RG
equation resolved by an iteration and generates a popu
two-loop formula with lnlyl2 term.

For the spectral density, we get

b0r
s2d
RGsLd ­

IsLd
R2sLd 1 I2sLd

, L ­ ln
s

L2
, (7)

with

RsLd ­L 1 b1 ln
q

s1 1 Lyb1d2 1 spyb1d2 , (8)

IsLd ­p 1 b1 arccos
b1 1 Lp

sb1 1 Ld2 1 p2
.

Now, to obtainā
s2d
an sQ2d, one has to substitute Eq. (7

into the right-hand side of Eq. (2). However, the integr
expression thus obtained is too complicated for present
in an explicit form as the integration result differs from
the used input̄a

s2d
RG not only by the pole term “subtracting”

the ghost pole (as in the one-loop case), but also by
integral along the unphysical cut0 , Q2 , L2 exps2b1d
“born” by the log-of-log dependence. For a quantitativ
discussion we have to use numerical calculation.

Nevertheless, for a particular value atQ2 ­ 0 we can
make two important statements. First, the IR limitin
coupling value āans0d, generally, does not depend on
the scale parameterL. This is a consequence of RG
1210
as

),

-

p-

-
es
t

c
a-

he

lar

)
al
ing

an

e

g

FIG. 1. The bundle of analytic solutions. The curvesa and
b are the one-loop analytic̄as for L ­ 200 and 400 MeV,
respectively; the curvesc and d show the corresponding
perturbative result.

invariance (compare with Ref. [5]) and in our case follows
directly from Eq. (4). Second, the IR limiting coupling
value is defined by the one-loop approximation, that is
in the two-loop case coincides with the one-loop case
ās2d

an s0d ­ ās1d
an s0d ; āans0d.

To obtain a simple proof for the two-loop case, it is
convenient to express the differenceās1d

an s0d 2 ās2d
an s0d via

the imaginary part of the integral

D ­
Z

C

dz
z

lns1 1 zd
z 1 lns1 1 zd

, (9)

with the contour C defined by 2` , Re z , 1`,
Im z ­ 2pyb1. As far as the integrand is an analytic
function in the half-plane below the contourC, we
conclude thatD ­ 0. Note also that the universality of
āans0d follows directly from the procedure of constructing
the analytic coupling. Indeed, our two-loop input Eq. (6)
has the ghost pole atQ2 ­ L2 and the unphysical cut
mentioned above. The analytization procedure remove
these parasitic singularities by two compensation term
The term that removes the pole gives the contributio
Dās0dpole ­ 1ys2b0d. The second term that compensates
the cut can be expressed via the discontinuity of functio
(6) on this cut and presented as

Dās0dcut ­
1

b0

Z `

0

dz
sz 1 1 2 ln zd2 1 p2

, (10)

which equals1ys2b0d, and we again obtain the universal
value ofāans0d ­ 1yb0. Thus, in contrast to perturbation
theory, where the many-loop corrections change th
IR behavior of the running coupling significantly, our
analytic coupling has a stable IR limit. The analytization
procedure removing all unphysical singularities leaves u
with the physical cut which is mainly described by the
one-loop contribution.

Note also that the universality of the value ofāans0d
is not simply a matter of approximate resolution, Eq. (6)
of the exact RG solution—it has a deeper ground. Thi
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fact can be established in a more general context, e
by considering the analytic properties, given by th
analytization prescription, in the complex1ya plane. The
details of this reasoning are rather lengthy and will b
published elsewhere.

Thus, theāans0d value, due to the RG invariance, i
independent ofL and, due to the analytic properties
independent of higher corrections. This means that
causality (­analyticity) property brings the feature of th
universality.

Here, we mean also that the whole shape of theāansQ2d
evolution turns out to be reasonably stable with respec
higher corrections. The point is that the universality
āans0d practically gives rise to stability of thēas,d

an sQ2d be-
havior with respect to higher correction in the whole IR r
gion. On the other hand, this stability in the UV domain
a reflection of the property of asymptotic freedom. As a r
sult, our analytic model obeys approximate “higher-loo
stability” in the whole Euclidean region. Numerical ca
culation (performed in theMS scheme for one-, two-, and
three-loop cases withnf ­ 3) reveals that̄as2d

an sQ2d differs
from ās1d

an sQ2d within the 10% interval and̄as3d
an sQ2d from

ās2d
an sQ2d within the 1% limit. This fact is demonstrated

in Fig. 2.
It seems that the IR stability is an intrinsic feature of

nonanalytic (inas) contribution. To illustrate this thesis
consider a recent IR modification,āBsQ2d, for the QCD
running coupling by Badalian and Simonov [6]. Thes
authors have studied a nonperturbative contribution to
QCD running coupling on the basis of the general bac
ground formalism using nonperturbative background co
relators as a dynamic input. They came to the conclus
that these effects can practically be described by introd
ing an effective gluonic massMB ­

p
2ps defined by

string tensions into all “gluonic logarithms”: lnQ2 !

lnsQ2 1 M2
Bd. This means that̄asQ2d essentially slows

down its evolution (i.e., freezes) aroundQ . MB. Their

FIG. 2. “Higher-loop stability” of the analytic solution. The
normalization point is on thet lepton scale,āssM2

t d ­ 0.34.
Practically, the curvēas3d

an sQ2d coincides withās2d
an sQ2d, and we

do not plot it in the figure.
.g.,
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numerical estimate gaveMB . 1.5 GeV. In practice, this
yields the difference between one- and two-loop results
the IR region of15% order.

In our calculations, we usednf ­ 3 as an average quark
number. This seems to be reasonable in the low energy
gion Q , 2 GeV . mc. For a more realistic description
of theāssQd evolution in the whole Euclidean domain, one
should take into account quark thresholds. To this end, o
usually applies a matching procedure, changing abrup
the number of active quarks at an “effective” threshol
Q ­ jmq with some matching parameterj . 1. Evi-
dently, any procedure of that sort violates theQ2 analytic
properties. On the other hand, these properties could
preserved by the “smooth matching” algorithm devised [7
on the base of an explicitly mass-dependent RG forma
ism ascending to Bogoliubov. This algorithm has bee
recently used [8] for the precise analysis of theāssQd evo-
lution in the3 , Q , 100 GeV interval.

In the present context it could be applied also i
the Q # L domain. However, this would change the
āansQ2d behavior in the “very lowQ” region only slightly
as far as the limitingāans0d value depends onb0snp

f d
with the effective quark numbernp

f related to the ghost-
pole position L. As it is generally accepted on the
base of deep inelastic scattering data, in theMS scheme
Lnf ­3s2-loopd . 250 350 MeV which is quite above the
strange quark mass. This means that the use of va
np

f ­ 3 is justified.
Analytic properties of the running coupling are impor

tant from the point of view of phenomenological appli
cations, for example, for the description of the inclusiv
decay of thet lepton. To this end, one usually trans
forms the initial expression for theRt ratio to the integral
form in the complexq2 plane (see, e.g., [9]). This trans-
formation based on analytic properties mentioned abo
which are violated in the standard perturbative consider
tion and maintained within our method. Note also tha
referring to “low-Q” data, like those oft-lepton decay,
one should distinguish between QCD scaleLMS in the
usual RG solution taken in theMS scheme andLan cor-
responding to our analytic expression. For instance,
the one-loop case, to thēassM2

t d ­ 0.34 there correspond

L
an
3 ­ 280 MeV as compared withLMS

3 ­ 230 MeV.
The idea that the QCD running coupling can be froze

or finite at small momenta has been considered in ma
papers (see, e.g., the discussion in [10]). There seems
be experimental evidence in favor of this behavior of th
QCD coupling in the IR region. As an appropriate objec
for comparison with our construction, we use the averag

AsQd ­
1
Q

Z Q

0
dk āssk2d (11)

that people manage to extract from jet physics data. Em
pirically, it has been claimed that this integral atQ .
1 2 GeV turns out to be a fit-invariant quantity. For it
there is an estimate:As2 GeVd ­ 0.52 6 0.10 [11]. Our
results forAs2 GeVd obtained by the substitution̄as1d

an and
1211
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TABLE I. Values of As2 GeVd obtained from Eq. (11); see
text.

āansM2
t d 0.34 0.36 0.38

A1-loop s2 GeVd 0.50 0.52 0.55
A2-loop s2 GeVd 0.48 0.50 0.52

ās2d
an into Eq. (11) for some values of the running couplin

at the normalization pointm2 ­ M2
t are summarized in

Table I.
Note here that a nonperturbative contribution, like th

second term on the right-hand side of Eq. (5), revea
itself even at moderateQ values by “slowing down” the
rate of āssQd evolution. For instance, in the vicinity of
thec andb quark thresholds atQ ­ 3 GeV it contributes
about 4%, which could be essential for the resolution
the “discrepancy” between “low-Q” data and directZ0
measurement for̄assMZd.

In this Letter, we have argued that a possible wa
to resolve the ghost-pole problem for the QCD runnin
coupling can be found by imposing the Källén-Lehman
Q2 analyticity which reflects the causality principle o
QFT. The analytic behavior in the IR region is restore
by a nonperturbative contribution. The procedure of co
structing the analytic running coupling is not unambigu
ous [12]. We have considered the simplest way whic
does not require any additional parameters and opera
only with L or a value of the coupling at a certain nor
malization point. The requirement of analyticity yields
significant modification in the IR and intermediate do
mains and leads to the universal value ofāans0d. In this
paper we have obtained the analytically improved resu
āansQ2d for the QCD running coupling that turns out to
be quite stable with respect to higher-order corrections f
the whole interval ofQ2 and agrees with low energy ex-
perimental evidence for the IR-finite behavior.

Our construction does not contain adjustable param
ters. This is due, in particular, to the convergenc
of a nonsubtracted spectral integral, that is, with th
asymptotic-freedom property. Here, analyticity plays th
role of a bridge between regions of small and larg
momenta. The idea that “analyticity is the key facto
relating high energy to low energy” has recently bee
emphasized by Nishijima [13] in the context of connectio
between the asymptotic freedom and color confineme
However, in our approach this connection is not so direc
If, e.g., we admit (see Ref. [14]) the possibility of a UV
fixed point for the QCD effective coupling at some sma
value of as # 0.05, then we arrive at a modification
of the UV behavior with a power instead ofsln sd22

decrease of the spectral function. So, in that case we c
also use a nonsubtracted spectral representation.
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Note added.—As far as it is difficult to present an
explicit analytic expression for̄as2d

an sQ2d, for the need of
QCD practitioners, we propose an approximate formula
It can be obtained by the method of subtraction of
unphysical singularities if one takes into account the
explicit expression for the term that removes the ghos
pole and an approximate expression in the form of the firs
term of the power expansion for the term that removes th
unphysical cut. The corresponding expression reads

b0ãs2dsQ2d . b0ā
s2d
RGsQ2d 1

1
2

1
1 2 Q2yL2

2
L2

Q2
C1 ,

(12)

where ā
s2d
RGsQ2d is defined by (6) and, fornf ­ 3,

C1 ­ 0.035. Expression (12) approximates the two-loop
analytic coupling with an accuracy less than 0.5% in
the region 2.5L , Q , 3.5L, practically coincides
with the exact formula for larger values of momenta,
and, therefore, can be used in the analysis of man
experimental data. If it is necessary to consider a ver
small momentum, like Eq. (11), we suggest anothe
approximate formula which can be written in the form of
Eq. (5) with substitution, instead ofQ2yL2, the expres-
sion expsln Q2yL2 1 b1 ln

p
ln2 Q2yL2 1 4p2d. For

Q $ L, the accuracy of this approximation is less than
5% and yields only 3% error into theAs2 GeVd value.
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