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D. V. Shirkov and I. L. Solovtsov

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
(Received 28 October 1996; revised manuscript received 9 April)1997

We discuss the new model expressiap (Q?) recently obtained for the QCD running coupling with
a regular ghost-free behavior in the “lo@*” region. Being deduced from the standard “asymptotic-
freedom” expression by imposing th@? analyticity—without any adjustable parameters—it has nice
features: (i) The universal limiting value,, (0) = 47 /B, expressed only via group symmetry factors
and independent of experimental estimates on the running couplit@?) (of QCD scale parameter
A). This value is stable with respect to higher order corrections. (ii) Stability of IR behavior with
respect to higher-loop effects. (iii) Coherence between the experimepta?) value and integral
information on IR&,(Q?) behavior as extracted from jet physics data. [S0031-9007(97)03834-9]

PACS numbers: 12.38.Aw, 11.10.Hi, 12.38.Bx

The ghost-pole problem in the behavior of a runningUV limit &(«, @) = 37 that does not depend on the
coupling, being an obvious property of the geometricalexperimental valuex = 1/137.
progression, spoils a physical discussion of the renormal- The same procedure being applied to the two-loop QED
ization group (RG) summed perturbative QCD results incase yielded [2] a more complicated expression with the
the infrared (IR) region. To avoid it, one uses somesame essential features.
artificial constructions like the “freezing of the coupling” In the QCD case, to apply this technique to the strong
hypothesis. running coupling, one has to make two reservations.

Here, we are going to revive an old idea of combining First, as far as herez,(Q?) is defined via a product
the RG summation with analyticity in th@> variable. It  of propagators and a vertex function, there is a question
was successfully used in the late 1950s for examining thabout validity of the spectral representation. Happily, this
QED ghost-pole issue [1,2]. Quite recently, it has beerpoint has been discussed in paper [4]. As a result, one
proposed for applying to the QCD case [3]. can use the Kallén-Lehmann analyticity here, as well.

The QED effective couplingr(Q?) being proportional Second, in QCD, the running of coupling is, generally,
to the transverse dressed-photon propagator amplitudmnnected with the running of gauge. For simplicity,
according to general principles of local QFT satisfies theve assume that the modified minimal-subtractidS]
Kallén-Lehmann spectral representation and, therefore, scheme is used (or the momentum subtraction scheme in

an analytic function in the cut complex?> plane. the transverse gauge) wherny is not influenced by the
The “analytization procedure” elaborated in papersrunning of gauge.
[1,2] consists of the following three steps: To construct an analytic effective coupling in the QCD

() To find an explicit expression fofirg(Q?)in the case, we start with the leading-logs expression
Euclidean regionQ? > 0 by standard RG improvement 00 a 1 )
of a perturbative input. a T 1+ N02/ 1) Boln(02/A2)°

() To perform the straightforward analytical continu- 5 _ a,‘;o NO*/w?)  Boln(Q°/A%)
ation of this expression into the Minkowskian regionWith a(Q%) = a;(Q%)/4m and By = 11 — (2/3)ny, the

Re Q2 <0, Im Q> = —e. To calculate its imaginary one-loop coefficient, and with the spectral representation
part and to define the spectral density pyg(o, a) = 5 (07) = 1 °°d p(o,a) @)
Im arg(—0 — i€, a). @an T o+ 0?2 —ie’

(1) Using the spectral representation [see Eq. (2) beccording to step (11 of the outlined procedure, we define
low] with pgg in the integrand to define an “analytically e spectral function in the one-loop approximation
improved” running coupling@,,(Q?) in the Euclidean

region o0 (. a) = a*Bom
: RG ’ - )
Being applied to@(Q?) in the one-loop ultraviolet (I + aBol)* + (afom) 3)
(UV) QED case, this procedure produced [2] an explicit L —inZ
expression with the following properties: (a) it has no = u?

ghost pole; (b) as a function af at the pointa = 0 it  Note that the RG invariance af,, defined via Eq. (2) is
possesses an essential singularityexp(—3/a); (€) i provided by the scaling property of the spectral function
the vicinity of this singularity for real and positive (o) ut.a) = p(ino/A?) A2 = W2 exp—1/aBo)

it admits a power expansion that coincides with theP 7/ K -4 P ’ K aBo)-
perturbation one (used as an input); (d) it has the finite 4)
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Substitutingpgé into Eqg. (2) we get [3] 1.5
1 1 A? e id
=02y — +

where we used the QCD scale parameter defined as1.0-
in Eq. (4). However, to identifya with a(u?), the

running coupling value ap? = u?, we have to change

this definition for A = u?exd— ¢ (a(u?)Bo)], where

the function ¢(z) satisfies the equation = 1/¢(z) — 0.5-
1/{exd ¢ (2)] — 1}.

It is clear that the “analytic” coupling constant, Eq. (5),

has no ghost pole a@> = A?, and its IR limiting value Q (GeV)
a'V(0) = 41/ B, depends only on group factors. Numeri- I L ' ‘ .
cally, forn; = 3, we havea()(0) = 47/9 = 1.398, 0.0 0.5 1.0 1.5 20 25 3.0

Usually, we are accustomed to the idea that theory SugFIG. 1. The bundle of analytic solutions. The cunasnd
plies us with a set of possible curves f@f(Q) and one b are the one-loop analytia, for A =200 and 400 MeV,
has to fix the “physical one” by comparing with experi- réspectively; the curves and d show the corresponding
ment. Here, Eq. (5) describes a family of possible curve&erturbative result.
for @,, (Q?) forming a bundle with the same common limit
atQ? = 0 as itis shown in Fig. 1. invariance (compare with Ref. [5]) and in our case follows

Another important virtue of Eq. (5) is that the analytic directly from Eq. (4). Second, the IR limiting coupling
behavior in the IR domain is provided by a nonperturbavajye is defined by the one-loop approximation, that is,

tive contribution=exp(—1/a o). . in the two-loop case coincides with the one-loop case,
To analyze the two-loop case, let us start with(Q?) a?(0) = @(0) = &a(0).
written down in the form To obtain a simple proof for the two-loop case, it is
@, g 1 02 convenient to express the differenef)(0) — @?(0) via
ara(Q°) = Bol + BobiIn(1 + 1/by)’ I'= 'nﬁ’ the imaginary part of the integral
(6) A — dz In(1 + 2) ©)
whereb, = B,/85 and B, = 102 — 38/3n; is the two- c z z+In(l+7z)°
loop coefficient. This expression corresponds to thawith the contour C defined by —w < Re z < +oo,
result of exact integration of the two-loop differential RG Im z = —#/b,. As far as the integrand is an analytic
equation resolved by an iteration and generates a popul@uinction in the half-plane below the contouf, we
two-loop formula with I/ /i? term. conclude thatA = 0. Note also that the universality of
For the spectral density, we get a,,(0) follows directly from the procedure of constructing
@ I(L) o the analytic coupling. Indeed, our two-loop input Eq. (6)
Bopra(L) = R0 + L)’ L=ln A (7)  has the ghost pole a@? = A% and the unphysical cut

mentioned above. The analytization procedure removes

with these parasitic singularities by two compensation terms.
The term that removes the pole gives the contribution
R(L) =L + byIny/(1 + L/by)? + by)? 8
) b n\/( /b1) (/b1 (8) Aa(0)pole = 1/(2Bo). The second term that compensates
I(L) =7 + b; arccos by + L the cut can be expressed via the discontinuity of function
! Vb + L) + 72 (6) on this cut and presented as
Now, to obtainaﬁ)(QZ), one has to substitute Eq. (7) AG(0)ey = 1 fx dz . (10
into the right-hand side of Eq. (2). However, the integral BoJo (z+1—1Inz)?+ 72

expression thus obtained is too complicated for presentingihich equalsl/(28,), and we again obtain the universal
in an explicit form as the integration result differs from yajue ofa,, (0) = 1/Bo. Thus, in contrast to perturbation
the used inpuﬁgé not only by the pole term “subtracting” theory, where the many-loop corrections change the
the ghost pole (as in the one-loop case), but also by alR behavior of the running coupling significantly, our
integral along the unphysical cat< 02 < AZexp(—b;)  analytic coupling has a stable IR limit. The analytization
“born” by the log-of-log dependence. For a quantitativeprocedure removing all unphysical singularities leaves us
discussion we have to use numerical calculation. with the physical cut which is mainly described by the
Nevertheless, for a particular value @ = 0 we can  one-loop contribution.

make two important statements. First, the IR limiting Note also that the universality of the value &f,(0)
coupling value @,,(0), generally, does not depend on is not simply a matter of approximate resolution, Eq. (6),
the scale parameteh. This is a consequence of RG of the exact RG solution—it has a deeper ground. This
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fact can be established in a more general context, e.gaumerical estimate gavdg = 1.5 GeV. In practice, this
by considering the analytic properties, given by theyields the difference between one- and two-loop results in
analytization prescription, in the compléxa plane. The the IR region ofl5% order.
details of this reasoning are rather lengthy and will be In our calculations, we usetf = 3 as an average quark
published elsewhere. number. This seems to be reasonable in the low energy re-
Thus, thea,,(0) value, due to the RG invariance, is gion Q < 2 GeV = m.. For a more realistic description
independent ofA and, due to the analytic properties, of thea,(Q) evolution in the whole Euclidean domain, one
independent of higher corrections. This means that thehould take into account quark thresholds. To this end, one
causality Eanalyticity) property brings the feature of the usually applies a matching procedure, changing abruptly
universality. the number of active quarks at an “effective” threshold
Here, we mean also that the whole shape ofahg0?) Q = &m, with some matching parametér= 1. Evi-
evolution turns out to be reasonably stable with respect tdently, any procedure of that sort violates & analytic
higher corrections. The point is that the universality ofproperties. On the other hand, these properties could be
@, (0) practically gives rise to stability of the!?(0?) be-  preserved by the “smooth matching” algorithm devised [7]
havior with respect to higher correction in the whole IR re-on the base of an explicitly mass-dependent RG formal-
gion. On the other hand, this stability in the UV domain isism ascending to Bogoliubov. This algorithm has been
a reflection of the property of asymptotic freedom. As are+recently used [8] for the precise analysis of thé€Q) evo-
sult, our analytic model obeys approximate “higher-loopdution in the3 < Q < 100 GeV interval.
stability” in the whole Euclidean region. Numerical cal- In the present context it could be applied also in
culation (performed in th&4S scheme for one-, two-, and the Q = A domain. However, this would change the
three-loop cases with, = 3) reveals thae?(0?) differs  @,,(Q?) behavior in the “very lowQ” region only slightly
from a(!)(Q?) within the 10% interval and®)(0?) from  as far as the limitinga,,(0) value depends orBy(ny)
a®(Q?) within the 1% limit. This fact is demonstrated with the effective quark number; related to the ghost-
in Fig. 2. pole position A. As it is generally accepted on the
It seems that the IR stability is an intrinsic feature of abase of deep inelastic scattering data, in Mi& scheme
nonanalytic (ine,) contribution. To illustrate this thesis, A,,—3(2-loop) = 250-350 MeV which is quite above the
consider a recent IR modificatiom,z(Q?), for the QCD  strange quark mass. This means that the use of value
running coupling by Badalian and Simonov [6]. Thesen; = 3 is justified.
authors have studied a nonperturbative contribution to the Analytic properties of the running coupling are impor-
QCD running coupling on the basis of the general backtant from the point of view of phenomenological appli-
ground formalism using nonperturbative background corcations, for example, for the description of the inclusive
relators as a dynamic input. They came to the conclusiodecay of ther lepton. To this end, one usually trans-
that these effects can practically be described by introdudorms the initial expression for thg, ratio to the integral
ing an effective gluonic masafz = 27 o defined by form in the complex;? plane (see, e.g., [9]). This trans-
string tensiono into all “gluonic logarithms”: InQ? — formation based on analytic properties mentioned above
In(Q? + Mg), This means thair(Q?) essentially slows Which are violated in the standard perturbative considera-
down its evolution (i.e., freezes) arou@l= M. Their tion and maintained within our method. Note also that
referring to “low-Q” data, like those ofr-lepton decay,
one should distinguish between QCD scal¥® in the
15 usual RG solution taken in thelS scheme and\*" cor-
a-1-loop responding to our analytic expression. For instance, in
the one-loop case, to the,(M2) = 0.34 there correspond

A" = 280 MeV as compared witth}'> = 230 MeV.

The idea that the QCD running coupling can be frozen
or finite at small momenta has been considered in many
papers (see, e.g., the discussion in [10]). There seems to
be experimental evidence in favor of this behavior of the
QCD coupling in the IR region. As an appropriate object
for comparison with our construction, we use the average

A(Q) = 2 ]Qdk‘ k2 11
Q(Gev). (Q)—a o a, (k%) (11)

1 1
%956 0.2 0.4 0.6 0.8 1.0 that people manage to extract from jet physics data. Em-

pirically, it has been claimed that this integral @t=
normalization point is on the lepton scale,(M2) = 0.34. 1-2 GeV turns out to be a fit-invariant quantity. For it

Practically, the curvex3(Q?) coincides witha2/(Q?), and we  there is an estimatet(2 GeV) = 0.52 = 0.10 [11]. Our
do not plot it in the figure. results forA(2 GeV) obtained by the substitution!) and

FIG. 2. “Higher-loop stability” of the analytic solution. The
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TABLE I. Values of A(2 GeV) obtained from Eg. (11); see the U.S. NSF Grant No. PHY-9600421 is gratefully

text. acknowledged.

A (M2) 0.34 0.36 0.38 Note added—As far as it is difficult to present an
Al-toop (2 Ge V) 0.50 0.52 055 explicit analytic expression fo&2'(0?), for the need of
Ar-100p (2 GeV) 0.48 0.50 0.52 QCD practitioners, we propose an approximate formula.

It can be obtained by the method of subtraction of
unphysical singularities if one takes into account the
a? into Eq. (11) for some values of the running coupling explicit expression for the term that removes the ghost
at the normalization poinu> = M? are summarized in pole and an approximate expression in the form of the first
Table I. term of the power expansion for the term that removes the
Note here that a nonperturbative contribution, like theunphysical cut. The corresponding expression reads
second term on the right-hand side of Eg. (5), reveals | | A2
itself even at moderat@ values by “slowing down” the ~2 (N2 — p =2 2 2 _ A7
rate of &,(Q) evolution. For instance, in the vicinity of Boa™(Q7) = Boara(Q) + 5 77— 02/A2 Q2 Crs
the c andb quark thresholds a@ = 3 GeV it contributes (12)
about 4%, which could be essential for the resolution of

the “discrepancy” between “low” data and directZy  \yhere a%%(0?) is defined by (6) and, forn; = 3,

measurement fod, (Mz). C; = 0.035. Expression (12) approximates the two-loop

In this Letter, we have argued that a possible Wayanajytic coupling with an accuracy less than 0.5% in
to resolve the ghost-pole problem for the QCD running,o region 2.5A < Q < 3.5A, practically coincides

C°2Up””9 can be found by imposing the Kallen-Lehmannih the exact formula for larger values of momenta,
Q~“ analyticity Whlch refletcts. the causallty pr_lnC|pIe of and, therefore, can be used in the analysis of many
QFT. The analytic behavior in the IR region is restoredgyherimental data. If it is necessary to consider a very
by a nonperturbative contribution. The procedure of cONymall momentum. like Eqg. (11), we suggest another

structing the analytic running coupling is not unambigu-g55r6ximate formula which can be written in the form of
ous [12]. We have considered the simplest way WhIC|’Eq_ (5) with substitution, instead a2/A2, the expres-
does not require any additional parameters and operates,, exgln 02/A? + by Iny/In? Q2/A? + 472). For

only Wi.th A ora value of th'e coupling at a cg(tain_nor- Q = A, the accuracy of this approximation is less than
malization point. The requirement of analyticity yields o, o4 yields only 3% error into th&(2 GeV) value.
significant modification in the IR and intermediate do-

mains and leads to the universal valueagf,(0). In this

paper we have obtained the analytically improved result
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