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Binary Neutron Stars in General Relativity: Quasiequilibrium Models
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We perform fully relativistic calculations of binary neutron stars in quasiequilibrium circular orbits
We integrate Einstein’s equations together with the relativistic equation of hydrostatic equilibrium t
solve the initial-value problem for equal-mass binaries of arbitrary separation. We construct sequen
of constant rest mass and identify the innermost stable circular orbit and its angular velocity. We fi
that the quasiequilibrium maximum allowed mass of a neutron star in a close binary is slightly larg
than in isolation. [S0031-9007(97)03845-3]
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The two-body problem is one of the outstanding, u
solved problems in classical general relativity. And ye
neutron star binary systems are known to exist, even wit
our own galaxy [1]. For some of these systems (inclu
ing PSR B1913+16 and B1534+12) general relativistic o
bital effects have been measured to high precision [
Binary neutron stars are among the most promising sour
for gravitational wave detectors now under constructio
like LIGO, VIRGO, and GEO. This has triggered an in
tense theoretical effort to predict the gravitational wa
form emitted during the inspiral and coalescence of t
two stars.

Much of the work on binary neutron stars has been p
formed within the framework of Newtonian hydrodynam
ics [3]. Many investigators have also studied the proble
in post-Newtonian (PN) theory. As long as the PN sta
are well separated, they can be approximated by po
sources [4], but for close binaries, hydrodynamical effec
must also be taken into account [5–9].

Fully general relativistic treatments of the problem
are complicated by the nonlinearity of Einstein’s equ
tions and the requirement of very large computational
sources. Numerical simulations are currently only in the
infancy [6]. Recently, Wilson and Mathews [10] reporte
preliminary results obtained with a relativistic numeric
evolution code. Their dynamical calculations suggest th
the neutron stars may collapse to black holes prior
merger. They also find that, typically, binaries have to
large a total angular momentum to form a Kerr black ho
immediately upon merger (see also [11]). Their resu
are in disagreement with predictions of Newtonian [1
and PN calculations [7], which show that tidal fields st
bilize neutron stars against radial collapse.

In this Letter we report the first calculations in ful
relativity of quasiequilibrium, equal mass, neutron st
binaries in synchronized circular orbits. We numerical
integrate a subset of the Einstein equations, coupled
the equations of relativistic hydrodynamics, to solve th
0031-9007y97y79(7)y1182(4)$10.00
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initial value problem for binaries. Such quasiequilibriu
models provide initial data for future dynamical evolutio
calculations. We construct quasiequilibrium sequences
constant rest mass configurations at varying separat
These sequences mimic evolutionary sequences in wh
the stars undergo slow inspiral on nearly circular orb
due to the emission of gravitational waves. We ident
the innermost stable circular orbit (ISCO), its angul
velocity, and the maximum quasiequilibrium mass of
neutron star in a close binary.

In Newtonian gravity, strict equilibrium for two stars
in synchronized circular orbit exists. Since this solutio
is stationary, the hydrodynamical equations reduce to
Bernoulli equation, which greatly simplifies the problem
Because of the emission of gravitational waves, a bin
in general relativity cannot be in strict equilibrium
However, outside the ISCO, the timescale for orbi
decay by radiation is much longer than the orbit
period, so that the binary can be considered to be
“quasiequilibrium”. This fact allows us to neglect bot
gravitational waves and wave-induced deviations from
circular orbit to very good approximation. Some of ou
approximations have been used and calibrated elsew
[13,14], and a more detailed discussion will be presen
in a forthcoming paper [15]. Here we will briefly outline
our method and present some of our key results.

We attempt to minimize the gravitational wave conte
in the solution, in compliance with physical expectation
by choosing the 3-metric to be conformally flat [10,13
In Cartesian coordinates the line element can then
written

ds2 ­ 2a2dt2 1 C4dijsdxi 2 vidtd sdxj 2 vjdtd ,

(1)
wherea is the lapse,vi the shift, andC the conformal
factor. We satisfy the initial value equations of relativit
precisely. Our approximation lies in assuming that t
metric will remain conformally flat for all times. The
© 1997 The American Physical Society
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extrinsic curvatureKij then has to satisfy

K̄ij ­ 2
C6

2a

µ
=ivj 1 =jvi 2

2
3

dij=kvk

∂
, (2)

where K̄ij ­ C10Kij and where we have also used th
maximal slicing conditionKi

i ­ 0. Here =i is the flat
space derivative operator in Cartesian coordinates.

We assume that the matter obeys a polytropic equati
of state

P ­ Kr
111yn
0 , (3)

where P is the pressure,r0 the rest-mass density,K
the polytropic constant, andn the polytropic index. We
assume that we can neglect deviations from a strict
periodic circular orbit and that the stars are corotatin
which is equivalent to assuming that the fluid four
velocity is proportional to a Killing vector. In this case
the matter equations can be integrated analytically, whi
yields the relativistic Bernoulli equation

q ­
1

1 1 n

√
1 1 C

as1 2 y2d1y2
2 1

!
, (4)

whereq ­ Pyr0, C is a constant of integration, andy is
the proper velocity of the matter.

The Hamiltonian constraint can now be written

=2C ­ 2
1
8

C27K̄ijK̄ij

2 2pC5qn

µ
1 1 s1 1 ndq

1 2 y2 2 q

∂
. (5)

Requiring that the maximal slicing condition be main
tained at all times, we can use the time evolution equatio
for Kij to find an equation for the lapse,

=2ã ­
7
8

ãC28K̄ijK̄ ij

1 2pãC4qn

√
s1 1 sn 1 1dqd

1 1 2y2

1 2 y2
1 5q

!
,

(6)
whereã ­ Ca. The momentum constraint becomes

=2vi 1
1
3

=is=jvjd ­ 22=jsãC27dK̄ij

2 16pC4qn 1 1 s1 1 ndq
1 2 y2

3 sVji 2 vid , (7)

where V is the constant angular velocity andji is a
three-vector tangent to the matter velocity. With th
stars centered along thez axis and orbiting around the
y axis, we haveji ­ sz, 0, 2xd. The last equation can be
simplified by writingvi ­ Gi 2

1
4 =iB.

Our approximations reduce the Einstein field equation
to a set of coupled, quasilinear elliptic equations fo
the lapse, shift, and the conformal factor [Eqs. (5)–(7
which have to be solved together with the matter equatio
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(4). For boundary conditions at large radius we impo
asymptotic flatness. Solving these equations yields a va
solution to the initial value (constraint) equations. Suc
a solution will also provide an approximate instantaneo
snapshot of a binary evolved according to the full Einste
equations, prior to plunge. In the Newtonian limi
the above equations reduce to the coupled Poisson
Bernoulli equations.

Our numerical implementation will be described i
detail in [15]. Since the stars have equal mass, it
sufficient to work in one octant only. We use a fu
approximation storage multigrid scheme to solve t
elliptic field Eqs. (5)–(7) for a given matter distribution
Once a solution has been found, the matter can be upd
[Eq. (4)]. This iteration can be repeated until convergen
is achieved to a desired accuracy. We have implemen
this algorithm in a parallel environment using DAGH
software [16]. Typical runs were computed on a gr
of 643 gridpoints. We adjusted the outer boundaries f
each separation so that the matter was always covered
17 gridpoints along the diameter.

We determine the rest (baryon) massM0, the total
(ADM) mass-energyM, and the angular momentumJ,
which refer to the parameters of one individual sta
Physical dimensions enter the problem only through t
polytropic constantK in (3). It is therefore convenient to
introduce the dimensionless quantitiesr̄0 ­ Knr0, M̄0 ­
K2ny2M0, andM̄ ­ K2ny2M (see [17]).

In the following we will discuss results forn ­ 1, for
which the maximum mass of a neutron star in isolatio
is M̄max

0 ­ 0.180. In Fig. 1 we show density profiles for
highly relativistic neutron stars of rest massM̄0 ­ 0.178

FIG. 1. Rest-density contours in the equatorial plane for
neutron star binary close to the ISCO. Each star has a
mass ofM̄0 ­ 0.178, only slightly below the maximum mass a
infinite separation,̄Mmax

0 ­ 0.180. The contours span densitie
between the central density and 1% of that value by decreas
factors of 0.63.
1183
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close to the ISCO. We define the ratio between the inn
and outer coordinate separation,zA ­ rinyrout.

In Fig. 2 we plot the allowed rest mass versus the ce
tral density for several different separations betweenzA ­
0.3 (roughly two stellar radii apart) tozA ­ 0 (touch-
ing). As zA ! 1 we expect these curves to approach th
spherical Oppenheimer-Volkoff (OV) result, which we in-
cluded as the dashed line in Fig. 2 [18]. All our graph
lie within 2% of the OV curve, showing that the presenc
of a companion star has only very little influence on th
mass-density equilibrium relationship.

As we decrease the separation, the mass suppor
by a given r̄c increases slightly. In particular, the
maximum mass increases from̄Mmax

0 ­ 0.179 for zA ­
0.3 to M̄max

0 ­ 0.182 for touching stars. This trend clearly
suggests thatthe maximum allowed mass of neutron star
in close binaries is slightly larger than in isolation.This
increase is caused partly by the rotation of the stars a
partly by the tidal fields [19]. Note, however, that we are
only constructingquasiequilibriumconfigurations, which
may or may not be dynamically stable. For nonrotating
isolated stars the maximum mass configuration in Fig.
marks the onset of radial instability. No general theorem
can be trivially applied to binary stars. Figure 2 also
shows that keeping the rest mass fixed, the central dens
slightly decreases as the stars approach each other
become tidally deformed. Both effects are consistent wi
simple PN predictions [7,9].

The collapse of binary neutron stars to black hole
prior to merger reported in [10] could, in principle, be
caused either by a decrease of the maximum allowe
mass, or by a dynamical instability. Our results, within
our approximations, rule out the first possibility.

FIG. 2. Rest massM̄0 versus central densitȳrc for separa-
tions zA ­ 0.3 (bottom solid line), 0.2, 0.1, and 0.0 (top line).
The dashed line is the Oppenheimer-Volkoff result. The inse
is a blowup of the region around the maximum masses.
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We construct sequences of constant rest massM̄0,
which approximate evolutionary sequences up to th
ISCO [20]. Note that we have assumed the stars to b
corotating. This may not be realistic, since it would
require excessive viscosity [21]. It is more likely that
circulation of the stars is conserved during inspiral, an
the stars remain nearly irrotational. Nevertheless, w
expect that our sequences are a reasonable approximat
to the inspiral up to the ISCO and correctly reveal the
effects of nonlinear gravitation.

In Fig. 3 we show the binary binding energy versus
angular velocity for several different rest massesM̄0. As
the stars approach, both finite size effects and nonline
gravitation play an increasingly important role and cause
for stiff enough equations of state, the binding energy t
go through a minimum and increase again. The locatio
of the minimum marks the onset of a secular instability
beyond which the binary can no longer maintain circula
equilibrium. It is expected that the dynamical instability,
which defines the true ISCO for plunge, occurs beyond
but close to, the onset of the secular instability [12]
Figure 3 shows that the orbital frequency at the ISCO
fISCO strongly depends onsMyRd`. For smallsMyRd`

we find small values offISCO very similar to those
reported in [10], while for largersMyRd` fISCO increases
to frequencies that will be detectable by gravitationa
wave detectors currently under construction.

FIG. 3. The binding energy as a function of the angula
velocity for different rest masses̄M0. The curves are labeled by
the compactionsMyRd` of the stars in isolation at infinity. The
maximum compaction for a stable, isolated, nonrotatingn ­ 1
polytrope is0.217. The upper label gives the orbital frequency
for stars with a rest mass of1.5MØ. Dashed curves are the
corresponding results from a Newtonian version of our code
In the inset we plot results for a nearly Newtonian configuratio
with sMyRd` ­ 0.025. Here we have also included the results
from a Newtonian ellipsoidal treatment [12] (long dashed line
and for two point particles (dotted line).
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TABLE I. Numerical values for sequences of constant res
massM̄0 and polytropic indexn ­ 1. We tabulate the total
energyM̄` and compactionsMyRd` each star would have in
isolation at infinity as well as the angular velocityM0V and
the angular momentumJtotyM2

tot at the ISCO.

M̄0 M̄` sMyRd` M0VISCO sJtotyM2
totdISCO

0.112 0.106 0.1 0.01 1.22
0.134 0.126 0.125 0.015 1.12
0.153 0.142 0.15 0.02 1.05
0.169 0.155 0.175 0.025 1.00
0.178 0.162 0.2 0.03 0.97

In the Newtonian regime our results agree very wel
with both a Newtonian version of our code and results
from an ellipsoidal treatment of the binaries [12] (see in
set). For more relativistic models, comparisons are mad
somewhat ambiguous by the adopted choice of a param
ter to characterize the sequence. Identifying the memb
at infinity by its value ofM (or M0) versussMyRd` (or
sM0yRd`) leads to different Newtonian models and bind-
ing energy curves. In Fig. 3 we choosesM0yRd` and find
that the ISCO frequencies agree closely with the Newto
nian values, but the binding energies differ as the com
paction increases (see also [5,8,9]).

We summarize these results in Table I, where w
also tabulate the dimensionless total angular momentu
JtotyM2

tot ­ Jy2M2 at the ISCO. For small rest masses
this value is larger than unity, in agreement with [10].
For high enough rest masses, however, it drops belo
unity, so that the two stars could plunge and form a Ker
black hole without having to radiate additional angular
momentum. Because the orbit will decay rapidly inside
the ISCO, its presence will leave a measurable imprint o
the emitted gravitational wave form. MeasuringVISCO
may be the crucial ingredient in determining the radiu
of the star, assuming that the mass has been determin
during the prior inspiral phase [22].
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