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Are Steadily Moving Crystals Unstable?
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We study the dynamics of small fluctuations about the uniform state of a crystal moving through
a dissipative medium, e.g., a sedimenting colloidal crystal or a moving flux lattice, using a set of
continuum equations for the displacement fields, and a one-dimensional driven lattice-gas model for the
coupled concentration and tilt fields. For the colloidal crystal we predict a continuous nonequilibrium
phase transition to a clumped state above a critical Péclet number. [S0031-9007(97)03739-3]

PACS numbers: 82.70.Dd, 47.15.Gf

What is the response of a crystalline lattice to a smallstochastic partial differential equations for displacement
long-wavelength disturbance? Elastic theory [1] and itdields, and (ii) numerical studies of an equivalent driven
extension to time-dependent phenomena [2] provide &ttice-gas model [7] describing the coupled dynamics
complete answer to this question for a systenthermal  of concentration and tilt fields. Our simulations of the
equilibrium. In this Letter we ask and answer the samelattice model are done in the parameter range where there
guestion for a lattice beindriven through a dissipative is a local tendency to undergo the Crowley [6] instability.
mediumby a constant external force. This importantWe find that the system is nonethelassablewith respect
nonequilibrium steady state arises, for example, in théo clumping up to a critical Pe at which eontinuous
steady sedimentation [3,4] of a colloidal crystal [5] and innonequilibrium phase transitionto a clumped state
the motion of a depinned flux lattice in a current-carryingtakes place. For the corresponding parameter range the
superconductor. Using symmetry arguments we construcontinuum model, neglecting nonlinearities and noise, is
continuum and lattice-gas models for the dynamics oflinstable without threshold, i.e., at Re0. In view of the
small distortions about the uniform state of such a steadilyesults of the lattice model, we expect that nonlinearities
moving lattice. The effects that we discuss arise fromand fluctuations shift the critical Pe for the onset of
the dependence of the mobility of a given region on theclumping in the continuum model to a nonzero value.
local strain of the crystal. Our most striking result is We first derive the continuum model and perform a
that the dominant linear response at long wavelengthmean-field analysis, then show how the lattice-gas model
is proportional to thedriving speedof the lattice, not to follows naturally from it. Ignoring inertia altogether,
its elastic constants, and that this response can lead tovéhich is justified for the experimental geometry we
nonequilibrium phase transition. wish to consider [8], the displacement fieldr, ) of a

Before presenting our results in more detail let usd-dimensional lattice moving through a frictional medium
recall an important early study. Crowley [6] carried outwith a mobility which depends on the local strain obeys
experiments (on steel b'aIIs dropped gently .int_o turpe_ntine i = u(Vu)(DVVu + F + &), 1)
oil) and theory (calculating the hydrodynamic interactions
between the spheres) to show that a regular horizont

array of sedimenting spheres wésearly unstableto L e
clumping and buckling. Elastic forces, Brownian motion,d”VIng f_orce, and the th'.rd IS a ra”dO"? force of th_ermal
or possibly hydrodynamic origin [9].u is the mobility

and nonlinearities, all of which can resist this instability, 4 ) . ) . 4
were not considered in [6]. Since experiments on modef€nser which, n the S'T‘g'e particle limit for_collom!s
colloidal systems are most conveniently performed b))n a s?Ivent with VIISCOSItyn, approac;hes the isotropic
varying interaction strength rather than temperature [5]510kes’s law valugz=2. \We expandu in powers ofVu,

the appropriate Péclet number for this problem is the n(Vu) = o + AVu + O((Vu)?), (2

ratio Pe= Apag/G of gravitational toelasticrather than  \herepu, is the mean macroscopic mobility of the undis-
Brownian Stregges. HerAP is the difference between torted CrystaL For Steady sedimentation a|m@ssum-
the mass densities of particles and solventhe particle  jng isotropy in thed — 1 transverse () dimensions but

radius, g the acceleration due to gravity, ar@ is @ notunderz — —z, (1) and (2) lead directly to
typical elastic modulus of the suspension. A sedimenting

colloidal crystal, according to [6], is therefore unstable in
the Pe= « limit. Hence the question posed in our title: + O(VVu) + O(VuVu) + £, (3a)
does the instability persist at finite Pe?

Our answer to this question is in two parts:
(i) analytical results from a system of coupled nonlinear + O(VVu) + O(VuVu) + f,, (3b)

here the first term on the right represents, through the
ensorD, the elastic restoring forces, the second is the

u;, = Aozuy + AV,

I:tZ =V, cu, + Ag0 U,
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where the constant drift along has been removed ply from elastic forces, angl, andf, are spatiotemporally
by comoving with the crystal [10]. Heré is a spa- white noises. The symmetry of (4) is under ot in-
tiotemporally white noise source [11] antl are phe- versionx — —x, u, — —u,.
nomenological coefficients whose origin, in the case of a For y,/2y, = Ay/A3, uy — u, — Axx/7y; eliminates
colloidal crystal, lies in the hydrodynamic interaction be-the A, and A; terms from (4), reducing it to the model
tween the particles [6,8,12]. We explain the physical conof Ertas and Kardar (EK) [14] in their limitA, = Ay,
tent of the terms in (3) below. First note that linearizingwith its higher symmetry X — —x), albeit in a state of
and Fourier transforming in space and time yields modesonzero mea.u,. The fluctuation-dissipation theorem,
with frequencies of the forrm = =\/A;A3 g — iDg”> for  Galilean invariance, and Cole-Hopf properties that arise in
q. = 0,q. — 0. If A,A3 > 0, this leads to wavelike ex- [14] for special parameter values thus obtain here as well.
citations at small wave number which are not the usual If in addition y; = 2y3; and D, = D,, the equations de-
shear waves of a crystal at equilibrium. The latter havecouple in terms of transformed variables. = u, *
been turned already into diffusive modes by the frictionak/A,/ A3 u, into two equationsidg+ = */ArA39,d+ +
dynamics adopted in (3). The speed of these waves is d®;02 ¢~ = /A2/A3 y2(d.b+)* + f=, a pair of indepen-
termined by the strain dependence of the mobility, and thelent KPZ [13] equations with oppositely directed kine-
damping by the tensdd which is a ratio of elastic con- matic wave [15] terms, and nonlinear couplings with
stants to friction coefficients. opposite signs. Clearly, for these parameter values, the
When A3 < 0, the dispersion relation at small  stable driven crystal should exhibit KPZ exponents in
becomesw ~ *ig so that the model is linearly unstable its correlation functions. The relevance of perturbations
with growth ratex ¢g. Thus there exist long-wavelength about the highly symmetric EK limit, as well as the stat-
distortions of the perfect lattice which grow exponentiallyics and dynamics of the “stable” cageA; > 0 will be
in time within the linear theory. We do not know the studied in later work. In the present paper we focus on
sign of ;A3 for moving flux lattices, but for colloidal A;A; < 0.
crystals it is negative, making them linearly unstable. Let us first look for steady-state solutions to (4) in
This is because hydrodynamic interactions cause densére absence of noise, in terms pf= d,u, (the local
regions in the suspension to sink faster, and tilted regionsoncentration fluctuation) and = d,u, (the local up
to move laterally in a way so as to cause an instabilityor down tilt). If we restrict ourselves for simplicity to
[6]. Note that in (3) thelinear elasticity of the crystal spatially uniform states with left-right symmetry (so that
enters at second order in wave number and can thus = 0, and the net currents g6 and 6 are zero), we
not alter our conclusions about linear stability at longare left with only two possibilitiesp = 6 = 0 or p =
wavelengths. Forg > g. ~ /A2A3/D, elastic forces —A3/v,, & = 0. In the vicinity of r = X\;A3 = 0, the
suppress the linear instability. Small crystals are thusormer is stable forr > 0, the latter forr < 0. This
linearly stable. exchange of stabilities leads to a continuous onset of the
To go beyond this linear analysis is daunting: even inp # 0 state,p ~ |r|? with 8 = 1. Similar analysis [16]
d = 2, symmetry permits nine terms bilinear WYu and gives a correlation length divergingla$™” with v = 1/2.
six linear second derivative terms. Remarkably, all the Instead of attempting a perturbative treatment of the ef-
essential physics is retained in a greatly simplified versiorfiect of nonlinearities and fluctuations on the above mean-
in one space dimension. Consider a two-dimensionafield picture, we replace the continuous variahleby
crystal described by a two-component displacement fiel& discrete indexi, and du,/dx by p; = u,(i + 1) —
(uy, u;), with the sedimentation direction averaged out u,(i) [similarly 6; = u.(i + 1) — u,(i)], with p; and 6;
so thatonly x derivatives are included The equations restricted tox1. Such an approach [7] has proved very
of motion, retaining the lowest order nonlinearities andsuccessful for simulating the KPZ equation. The “para-
gradients, read magnetic” phase of these Ising variables corresponds to
. 2 the the undistorted crystal, and the “ferromagnetic” phase
ty = Apdxttz + V1dttedys + Diojus + fr, (43) represents a macrosgopically clumped and £'Eilted stzte, in
U, = A30,u, + Y2 (9 cuy)® + y3(9cu,)? terms of suitable order parameters which we define be-
2 low. The best way to visualize the discrete model is to
+ Dadyus + f: (4b) think of two sublattices: a typical configuration can then
The physics of each of the terms in (3) or (4) is reasonablye described by a sequence of spm®,p2620365....
clear. The first two terms on the right of (4a) say that aThe dynamics of the spins is constructed by analogy with
tilt (i.e., 0, u;) produces a lateral drift. The first two terms lattice models [7] for the KPZ equation, retaining the
on the right of (4b) contain the concentration dependencesssential features of (4), viz., conservationédofaind p,
and the third (a Burgey&ardar-Parisi-Zhang(KPZ)-like stochasticity, lack of up-down symmetry, and the bias pro-
term [13]) the tilt dependence, of the vertical sedimentavided by each species on the motion of the other. The two
tion speed. Note that thg; terms can be seen as arising approaches should yield identical long-distance properties.
from the dependence of thes on concentration and tilt. Let us denote the states pf by “+,” “ =" and those
The second derivative terms in both equations arise simaf 6; by “/” (up tilt) and “\"” (down tilt). In the update
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rule corresponding to the linearly unstable case of (4), the
rates for the following exchanges are enhanced relative to
the corresponding reverse rates\— — —\+, —/+ —
+/—,/+\—=\+/,and\ — /— / —\ Since we » N=100
are modeling charge-stabilized suspensions, it is useful . ° N =200
to introduce a repulsion between regions of high density + N=400
. - 0.6}
in the form of an enhanced probability for + — or

— + + to go to+ — +. Combining all of the above, &
we get the following exchange probabilities for adjacent
pairs of concentration and tilt: 04|

or

Pppiy =Dp — €,0ipi .
+ af(l + p) (1 + pi-1) .8
(0 +pi) U+ pralt,  (52) S IR
Po.g,,, = Dy + €gpi+10; + g1pi+1 + g20i,  (5b) "

[}
A

where D, and Dy are related to the elastic constants, o L= \ \ -
€,, €9, g1, and g, to the y; and A; in (4), and « is 0 0.05 0.1 0.15 0.2
the repulsion [17]. Note that decreasiagreduces the o

stiffness of the system, thus increasing the effective Péclefig 1. Order parameterd(,) as a function of repulsion
number. The last two terms in (5b) arise because of thetrengtha for various system size#'. Increasinga is like
lack of up-down symmetry. Our results in this paper aredecreasing Péclet number.

for e,e4 > 0, corresponding ta, A3 < 0 in (4).

The mean value of both andé are expected to be zero
in the experimental system. We worked, therefore, at zer
total “magnetization” for both fields and studied the model
starting from random initial conditions, evolving it accord-

ing to the above update rules for various system sies where ¥, [may is the maximum value of¥,| over the

Eer'?‘(.j'(;] bolundanli cono:lt!onstr\]/vere.used ;‘_or aIIt_the TUNS ns. b1 andb, are numberindependendf N, chosen to
or high values of repulsion the spin configurations con- t good statistics; we todk = 0.8, = 0.5.

. ) : e
tlnued_to be homogeneous under time evolution. When thg Figure 2 shows that-(N) is roughly exponential in
repulsion was small or absent, there was a phase separaﬁn for @ = 0 and distinctly faster than a power law

have barriers to remixing which grow ag¢ for some
ower /. The lifetime of such a state would then go as
xp(N¢). To look for such barriers, we define a lifetime

7(N) to be the mean time of first passage of the order

parameter|W,| from a value b;|V,|max t0 b1|¥,|max

into regions of high and low concentration and of up an resumably a stretched exponential, for= 0.015. This

down tilt, separated by interfgces. Thus the lattice see 2 strong evidence [19] for a true clumped phase at weak
to be stable for strong repulsion, but undergoes Crowley’ epulsion

Clumping instapility [6] for weak repulsion. Th_e same be- To see why phase separation can occur in this one-
havior, qualitatively, is observed &, or D are increased dimensional model one has to look at the positions of the

keeping oth_er parameters fixed [16.]' . . concentration and tilt domains. We find in our simulations
To describe .the ordered phase in th.'S modeI_W|th CONtat the system goes into a steady state in which the
served dynamics, we use two essentially equivalent Ol3omains are staggered with respect to each other by
der parametersd, = \/—% 2. pipi+ny2 (Similarly @y an approximate distanc¥ /4. This happens in such a
for tilt), which measure how anticorrelated the spins arevay that a concentration interface + + — —— lives
across half the system size; arf@’(|, |Wy[), the moduli  in a region crowded with up tilty which inhibit the
of the Fourier amplitudes of the spin fields at the small-exchange of a pait-—. The dissolution of the interface
est nonzero wave vectad, = 27” [18] (the amplitude at by interdiffusion of+ and — thus requires uphill motion
k = 0 is zero). Figure 1 shows that the order parame-over a nonzero fraction df.
ter @, is appreciable for small repulsion and decreases Since our simple one-dimensional model undergoes a
rapidly to a value consistent with zero for sufficiently clumping transition, it is reasonable to expect that a real
large repulsione. Moreover,®, increaseswith N for  charge-stabilized colloidal crystal in a fluidized bed [4,8]
« small anddecrease$16] roughly asl/+/N for « large.  will do so as well. The repulsion between polyballs may
There must thus be a continuous nonequilibrium phasbee decreased by adding salt to the fluid, which should lead
transition atae around 0.05, although to pin down the criti- to an observable clumping transition at ionic strengths
cal value ofa would require careful finite-size scaling.  much lower than those required to produce melting or
We now present an independent check that the observejgregation at equilibrium. The clumping will manifest
phase separation is not merely the result of transients. Aself as a breakup of the crystal into smaller crystallites
truly phase-separated state in a system of lepg#hould  (since the crystal is stable at small enough system size),
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