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Are Steadily Moving Crystals Unstable?
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We study the dynamics of small fluctuations about the uniform state of a crystal moving thro
a dissipative medium, e.g., a sedimenting colloidal crystal or a moving flux lattice, using a se
continuum equations for the displacement fields, and a one-dimensional driven lattice-gas model fo
coupled concentration and tilt fields. For the colloidal crystal we predict a continuous nonequilibr
phase transition to a clumped state above a critical Péclet number. [S0031-9007(97)03739-3]
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What is the response of a crystalline lattice to a sma
long-wavelength disturbance? Elastic theory [1] and i
extension to time-dependent phenomena [2] provide
complete answer to this question for a systemin thermal
equilibrium. In this Letter we ask and answer the sam
question for a lattice beingdriven through a dissipative
medium by a constant external force. This importan
nonequilibrium steady state arises, for example, in th
steady sedimentation [3,4] of a colloidal crystal [5] and i
the motion of a depinned flux lattice in a current-carryin
superconductor. Using symmetry arguments we constr
continuum and lattice-gas models for the dynamics
small distortions about the uniform state of such a stead
moving lattice. The effects that we discuss arise fro
the dependence of the mobility of a given region on th
local strain of the crystal. Our most striking result i
that the dominant linear response at long wavelengt
is proportional to thedriving speedof the lattice, not to
its elastic constants, and that this response can lead t
nonequilibrium phase transition.

Before presenting our results in more detail let u
recall an important early study. Crowley [6] carried ou
experiments (on steel balls dropped gently into turpenti
oil) and theory (calculating the hydrodynamic interaction
between the spheres) to show that a regular horizon
array of sedimenting spheres waslinearly unstable to
clumping and buckling. Elastic forces, Brownian motion
and nonlinearities, all of which can resist this instability
were not considered in [6]. Since experiments on mod
colloidal systems are most conveniently performed b
varying interaction strength rather than temperature [5
the appropriate Péclet number for this problem is th
ratio Pe­ DragyG of gravitational toelasticrather than
Brownian stresses. HereDr is the difference between
the mass densities of particles and solvent,a the particle
radius, g the acceleration due to gravity, andG is a
typical elastic modulus of the suspension. A sedimentin
colloidal crystal, according to [6], is therefore unstable i
the Pe­ ` limit. Hence the question posed in our title
does the instability persist at finite Pe?

Our answer to this question is in two parts
(i) analytical results from a system of coupled nonlinea
0031-9007y97y79(6)y1150(4)$10.00
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stochastic partial differential equations for displaceme
fields, and (ii) numerical studies of an equivalent drive
lattice-gas model [7] describing the coupled dynami
of concentration and tilt fields. Our simulations of th
lattice model are done in the parameter range where th
is a local tendency to undergo the Crowley [6] instabilit
We find that the system is nonethelessstablewith respect
to clumping up to a critical Pe at which acontinuous
nonequilibrium phase transitionto a clumped state
takes place. For the corresponding parameter range
continuum model, neglecting nonlinearities and noise,
unstable without threshold, i.e., at Pe­ 0. In view of the
results of the lattice model, we expect that nonlineariti
and fluctuations shift the critical Pe for the onset
clumping in the continuum model to a nonzero value.

We first derive the continuum model and perform
mean-field analysis, then show how the lattice-gas mo
follows naturally from it. Ignoring inertia altogether
which is justified for the experimental geometry w
wish to consider [8], the displacement fieldusr, td of a
d-dimensional lattice moving through a frictional medium
with a mobility which depends on the local strain obeys

Ùu ­ ms=ud sD==u 1 F 1 z d , (1)

where the first term on the right represents, through t
tensorD, the elastic restoring forces, the second is t
driving force, and the third is a random force of therm
or possibly hydrodynamic origin [9].m is the mobility
tensor which, in the single particle limit for colloids
in a solvent with viscosityh, approaches the isotropic
Stokes’s law value 1

6pha . We expandm in powers of=u,

ms=ud ­ m0 1 A=u 1 O ssss=ud2ddd , (2)

wherem0 is the mean macroscopic mobility of the undis
torted crystal. For steady sedimentation alongz, assum-
ing isotropy in thed 2 1 transverse (') dimensions but
not underz ! 2z, (1) and (2) lead directly to

Ùu' ­ l1≠zu' 1 l2='uz

1 O s==ud 1 O s=u=ud 1 f' , (3a)

Ùuz ­ l3=' ? u' 1 l4≠zuz

1 O s==ud 1 O s=u=ud 1 fz , (3b)
© 1997 The American Physical Society
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where the constant drift alongz has been removed
by comoving with the crystal [10]. Heref is a spa-
tiotemporally white noise source [11] andli are phe-
nomenological coefficients whose origin, in the case o
colloidal crystal, lies in the hydrodynamic interaction be
tween the particles [6,8,12]. We explain the physical co
tent of the terms in (3) below. First note that linearizin
and Fourier transforming in space and time yields mod
with frequencies of the formv ­ 6

p
l2l3 q 2 iDq2 for

qz ­ 0, q' ! 0. If l2l3 . 0, this leads to wavelike ex-
citations at small wave numberq, which are not the usual
shear waves of a crystal at equilibrium. The latter ha
been turned already into diffusive modes by the friction
dynamics adopted in (3). The speed of these waves is
termined by the strain dependence of the mobility, and t
damping by the tensorD which is a ratio of elastic con-
stants to friction coefficients.

When l2l3 , 0, the dispersion relation at smallq
becomesv , 6iq so that the model is linearly unstabl
with growth rate~ q. Thus there exist long-wavelength
distortions of the perfect lattice which grow exponential
in time within the linear theory. We do not know the
sign of l2l3 for moving flux lattices, but for colloidal
crystals it is negative, making them linearly unstabl
This is because hydrodynamic interactions cause den
regions in the suspension to sink faster, and tilted regio
to move laterally in a way so as to cause an instabil
[6]. Note that in (3) thelinear elasticity of the crystal
enters at second order in wave number and can t
not alter our conclusions about linear stability at lon
wavelengths. Forq . qp ,

p
l2l3yD, elastic forces

suppress the linear instability. Small crystals are th
linearly stable.

To go beyond this linear analysis is daunting: even
d ­ 2, symmetry permits nine terms bilinear in=u and
six linear second derivative terms. Remarkably, all t
essential physics is retained in a greatly simplified versi
in one space dimension. Consider a two-dimension
crystal described by a two-component displacement fi
(ux , uz), with the sedimentation directionz averaged out
so thatonly x derivatives are included. The equations
of motion, retaining the lowest order nonlinearities an
gradients, read

Ùux ­ l2≠xuz 1 g1≠xux≠xuz 1 D1≠2
xux 1 fx , (4a)

Ùuz ­ l3≠xux 1 g2s≠xuxd2 1 g3s≠xuzd2

1 D2≠2
xuz 1 fz . (4b)

The physics of each of the terms in (3) or (4) is reasona
clear. The first two terms on the right of (4a) say that
tilt (i.e., ≠xuz) produces a lateral drift. The first two term
on the right of (4b) contain the concentration dependen
and the third (a BurgersyKardar-Parisi-Zhang(KPZ)-like
term [13]) the tilt dependence, of the vertical sediment
tion speed. Note that thegi terms can be seen as arisin
from the dependence of thelis on concentration and tilt.
The second derivative terms in both equations arise s
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ply from elastic forces, andfx andfz are spatiotemporally
white noises. The symmetry of (4) is under thejoint in-
versionx ! 2x, ux ! 2ux .

For g1y2g2 ­ l2yl3, ux ! ux 2 l2xyg1 eliminates
the l2 and l3 terms from (4), reducing it to the model
of Ertaş and Kardar (EK) [14] in their limitl' ­ lk,
with its higher symmetry (x ! 2x), albeit in a state of
nonzero mean≠xux . The fluctuation-dissipation theorem,
Galilean invariance, and Cole-Hopf properties that arise i
[14] for special parameter values thus obtain here as we
If in addition g1 ­ 2g3 andD1 ­ D2, the equations de-
couple in terms of transformed variablesf6 ­ ux 6p

l2yl3 uz into two equations:Ùf6 ­ 6
p

l2l3 ≠xf6 1

D1≠2
xf6 6

p
l2yl3 g2s≠xf6d2 1 f6, a pair of indepen-

dent KPZ [13] equations with oppositely directed kine-
matic wave [15] terms, and nonlinear couplings with
opposite signs. Clearly, for these parameter values, th
stable driven crystal should exhibit KPZ exponents in
its correlation functions. The relevance of perturbations
about the highly symmetric EK limit, as well as the stat-
ics and dynamics of the “stable” casel2l3 . 0 will be
studied in later work. In the present paper we focus on
l2l3 , 0.

Let us first look for steady-state solutions to (4) in
the absence of noise, in terms ofr ­ ≠xux (the local
concentration fluctuation) andu ­ ≠xuz (the local up
or down tilt). If we restrict ourselves for simplicity to
spatially uniform states with left-right symmetry (so that
u ­ 0, and the net currents ofr and u are zero), we
are left with only two possibilities:r ­ u ­ 0 or r ­
2l3yg2, u ­ 0. In the vicinity of r ; l2l3 ­ 0, the
former is stable forr . 0, the latter forr , 0. This
exchange of stabilities leads to a continuous onset of th
r fi 0 state,r , jr jb with b ­ 1. Similar analysis [16]
gives a correlation length diverging asjr j2n with n ­ 1y2.

Instead of attempting a perturbative treatment of the ef
fect of nonlinearities and fluctuations on the above mean
field picture, we replace the continuous variablex by
a discrete indexi, and ≠uxy≠x by ri ­ uxsi 1 1d 2

uxsid [similarly ui ­ uzsi 1 1d 2 uzsid], with ri andui

restricted to61. Such an approach [7] has proved very
successful for simulating the KPZ equation. The “para
magnetic” phase of these Ising variables corresponds
the the undistorted crystal, and the “ferromagnetic” phas
represents a macroscopically clumped and tilted state,
terms of suitable order parameters which we define be
low. The best way to visualize the discrete model is to
think of two sublattices: a typical configuration can then
be described by a sequence of spinsr1u1r2u2r3u3 . . . .
The dynamics of the spins is constructed by analogy wit
lattice models [7] for the KPZ equation, retaining the
essential features of (4), viz., conservation ofu and r,
stochasticity, lack of up-down symmetry, and the bias pro
vided by each species on the motion of the other. The tw
approaches should yield identical long-distance propertie

Let us denote the states ofri by “1,” “ 2” and those
of ui by “y” (up tilt) and “n” (down tilt). In the update
1151
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rule corresponding to the linearly unstable case of (4), t
rates for the following exchanges are enhanced relative
the corresponding reverse rates:1n2 ! 2n1, 2y1 !

1y2, y 1 n ! n 1 y, and n 2 y ! y 2 n Since we
are modeling charge-stabilized suspensions, it is use
to introduce a repulsion between regions of high dens
in the form of an enhanced probability for1 1 2 or
2 1 1 to go to 1 2 1. Combining all of the above,
we get the following exchange probabilities for adjacen
pairs of concentration and tilt:

Pri ,ri11 ­ Dr 2 eruiri

1 ahs1 1 rid s1 1 ri21d

1 s1 1 ri11d s1 1 ri12dj , (5a)

Pui ,ui11 ­ Du 1 euri11ui 1 g1ri11 1 g2ui , (5b)

where Dr and Du are related to the elastic constants
er , eu, g1, and g2 to the gi and li in (4), and a is
the repulsion [17]. Note that decreasinga reduces the
stiffness of the system, thus increasing the effective Péc
number. The last two terms in (5b) arise because of t
lack of up-down symmetry. Our results in this paper a
for ereu . 0, corresponding tol2l3 , 0 in (4).

The mean value of bothr andu are expected to be zero
in the experimental system. We worked, therefore, at ze
total “magnetization” for both fields and studied the mode
starting from random initial conditions, evolving it accord
ing to the above update rules for various system sizesN .
Periodic boundary conditions were used for all the run
For high values of repulsion the spin configurations co
tinued to be homogeneous under time evolution. When t
repulsion was small or absent, there was a phase separa
into regions of high and low concentration and of up an
down tilt, separated by interfaces. Thus the lattice see
to be stable for strong repulsion, but undergoes Crowley
clumping instability [6] for weak repulsion. The same be
havior, qualitatively, is observed asDr or Du are increased
keeping other parameters fixed [16].

To describe the ordered phase in this model with co
served dynamics, we use two essentially equivalent o

der parameters:Fr ­
q

2
1
N

P
i riri1Ny2 (similarly Fu

for tilt), which measure how anticorrelated the spins a
across half the system size; and (jCrj, jCuj), the moduli
of the Fourier amplitudes of the spin fields at the sma
est nonzero wave vectork1 ­

2p

N [18] (the amplitude at
k ­ 0 is zero). Figure 1 shows that the order param
ter Fr is appreciable for small repulsion and decreas
rapidly to a value consistent with zero for sufficiently
large repulsiona. Moreover,Fr increaseswith N for
a small anddecreases[16] roughly as1y

p
N for a large.

There must thus be a continuous nonequilibrium pha
transition ata around 0.05, although to pin down the criti-
cal value ofa would require careful finite-size scaling.

We now present an independent check that the observ
phase separation is not merely the result of transients.
truly phase-separated state in a system of lengthN should
1152
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FIG. 1. Order parameter (Fr) as a function of repulsion
strengtha for various system sizesN. Increasinga is like
decreasing Péclet number.

have barriers to remixing which grow asNz for some
power z . The lifetime of such a state would then go
expsNz d. To look for such barriers, we define a lifetim
tsNd to be the mean time of first passage of the ord
parameterjCrj from a value b2jCrjmax to b1jCrjmax,
where jCrjmax is the maximum value ofjCrj over the
runs. b1 andb2 are numbersindependentof N, chosen to
get good statistics; we tookb2 ­ 0.8, b1 ­ 0.5.

Figure 2 shows thattsNd is roughly exponential in
N for a ­ 0 and distinctly faster than a power law
presumably a stretched exponential, fora ­ 0.015. This
is strong evidence [19] for a true clumped phase at we
repulsion.

To see why phase separation can occur in this o
dimensional model one has to look at the positions of
concentration and tilt domains. We find in our simulatio
that the system goes into a steady state in which
domains are staggered with respect to each other
an approximate distanceNy4. This happens in such a
way that a concentration interface1 1 1 2 22 lives
in a region crowded with up tiltsy which inhibit the
exchange of a pair12. The dissolution of the interface
by interdiffusion of1 and2 thus requires uphill motion
over a nonzero fraction ofN.

Since our simple one-dimensional model undergoe
clumping transition, it is reasonable to expect that a r
charge-stabilized colloidal crystal in a fluidized bed [4,
will do so as well. The repulsion between polyballs m
be decreased by adding salt to the fluid, which should l
to an observable clumping transition at ionic streng
much lower than those required to produce melting
aggregation at equilibrium. The clumping will manife
itself as a breakup of the crystal into smaller crystallit
(since the crystal is stable at small enough system si
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FIG. 2. Lifetime of the ordered phasetsNd, from the concen-
tration order parameterjCr j. a ­ 0: (a) log-log and (b) semi-
log plot. a ­ 0.015: (c) log-log and (d) semi-log plot. Similar
results hold for the tilt order parameter [16]. Note the upward
curvature of the log-log plots in either case, indicating lifetimes
growing faster than any power ofN . The downward curvature
in (d) indicates thattsNd is slower thaneN for a ­ 0.015.
The error in t is determined by allowing the system to run
for several lifetimes and statistically estimating the standar
deviation.

separated by regions of strong upward fluid flow [20]
A detailed analysis of this dynamics would require the
inclusion of the hydrodynamic flow.

In summary, we have demonstrated that the long
wavelength dynamics of a crystal moving steadily throug
a dissipative medium is qualitatively different from its
equilibrium counterpart. In particular, we have shown
that a natural driven lattice-gas model for this system
shows a dramatic nonequilibrium phase transition to
clumped state, and we urge experimenters to test o
predictions.
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