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Generalization of Eshelby’s Formula for a Single Ellipsoidal Elastic Inclusion
to Poroelasticity and Thermoelasticity
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(Received 26 December 1996)

Eshelby’s formula gives the response of a single ellipsoidal elastic inclusion in an elastic whole sp
to a uniform strain imposed at infinity. Using a linear combination of results from two simple thoug
experiments, we show how this formula may be generalized to both poroelasticity and thermoelast
The resulting new formulas are important for applications to analysis of poroelastic and thermoela
composites, including but not restricted to rocks. [S0031-9007(97)03787-3]

PACS numbers: 81.05.Rm, 62.20.Dc, 81.40.Jj, 91.60.Ba
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Probably the single most referenced work in the exte
sive and rapidly growing literature on elastic composite
is Eshelby’s paper [1] on the response of a single elli
soidal elastic inclusion in an elastic whole space to a stra
imposed at infinity. Eshelby found that a uniform strai
at infinity results in a uniform strain within the ellipsoida
inclusion. This simple fact was then used in more d
tailed calculations to obtain the fourth-rank tensors rela
ing these two uniform strains. The tensors themselves
not simple in general since they involve elliptic integral
but Eshelby was able to enumerate and explicitly eva
ate all of these integrals for simple shapes like spher
oblate and prolate spheroids, needles, and disks. The
sults have been found to be immensely useful in the ana
sis of composite materials, since most inclusion shap
commonly of interest can be approximated by some
lipsoid. Effective medium theories [2–8] for elastic con
stants have very often been based on static or dynam
approximations that make explicit use of Eshelby’s fo
mulas. Recent reviews of effective medium theories a
rigorous bounding methods applied to composite analy
are available [9–10].

It would be of considerable interest to have an ide
tity analogous to Eshelby’s result available in othe
more complex, problems in composites analysis (e.
piezoelectric composites [11]). Two problems that a
themselves relatively straightforward generalizations
elasticity are poroelasticity and thermoelasticity. I
poroelasticity, we allow the possibility that the elasti
materials contain connected voids or pores and that th
pores may be filled with fluids under pressure whic
then couples to the mechanical effects of an externa
applied stress or strain. In thermoelasticity, we includ
the effects of temperature on the elastic materials a
consider the coupling between thermal expansion a
externally applied stresses and strains. In fact, it is know
that problems in these two subjects have very simil
mathematical structure [12–15], so that solutions fou
in one generally carry over with only minor modification
to the other. The main purpose of this paper is
show that the results of two simple thought experimen
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can be combined to produce a rigorous generalizatio
of Eshelby’s formula valid for either poroelasticity or
thermoelasticity. Then, the hard part of Eshelby’s wor
in computing the elliptic integrals (needed to evaluat
the fourth-rank tensors) can be carried over to these ne
results with only trivial modifications.

We will first discuss the problem in terms of poroelas
ticity and later point out the modifications necessary t
map onto thermoelasticity. In our notation, a superscrip
i refers to the inclusion phase, while superscriptsh andp
refer to host and composite media, respectively. In th
application the composite is a very simple one, being a
infinite medium of host material with a single ellipsoida
inclusion of theith phase. The basic result of Eshelby is
then of the form

esid
pq ­ Tpqrsep

rs , (1)

whereesid is the uniform induced strain in the inclusion,
ep is the uniform applied strain of the composite at in
finity, and T is the fourth-rank tensor relating these two
strains [4]. The summation convention for repeated in
dices is assumed in expressions such as (1). In elastic
the components ofT depend explicitly on the elastic con-
stants of both the host and inclusion.

In our first thought experiment, we consider that in th
absence of pore-fluid effects in poroelasticity (or therma
effects in thermoelasticity), the formula (1) must remain
unchanged. In poroelasticity the only difference induce
by the generalization from elasticity is an implicit one
arising from the interpretation of the elastic constants use
in evaluating the fourth-rank tensorT . Two types of bulk
and shear moduli must be considered in poroelasticit
frame moduli (of the overall porous medium, often called
the “frame”) and grain or mineral moduli (of the purely
solid constituents). In the absence of any pore fluid
only external confining stresses are operative and the on
pertinent moduli are the frame moduli, corresponding t
moduli one would measure for a porous sample of th
material drained of all fluid. We will use the symbolsKp,
K shd, andK sid for the frame bulk moduli of the composite,
the host, and the inclusion, respectively. The frame she
© 1997 The American Physical Society
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moduli are given similarly bymp, mshd, and msid. The
host and inclusion frame moduli [16] are the only one
that can appear in the expressions for the tensorsT in
poroelasticity.

The general relations between strains and stresses i
isotropic poroelastic medium take the form

eshd
pq ­ Sshd

pqrssrs 1
ashd

3K shd pfdpq , (2)

where s is the applied external stress,Sshd is the com-
pliance tensor of the host frame material, andashd is the
Biot-Willis parameter [17] of the host medium. When
uniform saturating fluid is present in the pores of a micr
homogeneous poroelastic medium, the resulting unifo
strains in an isotropic medium are related to applied u
form (hydrostatic) stresses by

2eshd
pq ­

∑
pc 2 pf

3K shd 1
pf

3K shd
m

∏
dpq ­

pc 2 ashdpf

3K shd dpq ,

(3)

where pc ­ 2
1
3 sss is a uniform external (at infinity

in these inclusion problems) confining pressure (positi
under compression) andK shd

m is the grain or mineral
bulk modulus of the host material. From (2) and (3
the Biot-Willis parameter [17] is seen to be given b
ashd ­ 1 2 K shdyK shd

m . Expressions similar to (3) apply
to ep

pq andesid
pq, with the corresponding changes in the bu

moduli and other parameters.
Now for our second thought experiment, we consid

under what circumstances the host medium and the
lipsoidal inclusion will expand or contract at the sam
rate. See Fig. 1. This scenario is possible in poroelas
ity because there are two adjustable fields present. (
such possibility exists in the purely elastic problem
Eshelby.) Analogous problems were first discussed ori
nally in thermoelasticity [18–20] and more recently i
poroelasticity [13]. The trick is that, if a ratio ofpc and
pf can be found so thateshd and esid change at the same
rate, then so mustep and, furthermore, no local concentra
tions of stress develop. The resulting macroscopic stra
are uniform; the macroscopic stresses are uniform; a
therefore, stress equilibrium conditions are trivially sati
fied. Thus, the entire analysis of these stress states
duces to simple algebra. We know from earlier work [1
that the uniform expansionycontraction ratio can be found
for any two-phase poroelastic composite, and the sin
ellipsoidal inclusion example considered here is just
especially simple two-phase problem.

In the uniform expansionycontraction scenario, once
the pore pressurepf (which is uniform throughout host
and inclusion because of assumed open-pore bound
conditions) has been specified, then we know that t
confining pressurepc needed to produce a uniformly
expanded or contracted state is given by

pcypf ­
sashdyK shd 2 asidyK sidd

1yK shd 2 1yK sid ; R , (4)
s
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FIG. 1. An ellipsoidal inclusion of one poroelastic mediu
imbedded in another poroelastic medium. Assumed bound
conditions are welded contact between porous solid frames
open pores for the saturating fluid. The same figure app
(although with different assumed level of magnification)
both the initial unstrained state and to the state of unifo
expansionycontraction in the second thought experiment.

depending only on the (assumed known) physical prop
ties of the host and inclusion. This result was obtained
settingeshd ­ esid and solving for thepcypf ratio.

Then, the strains of the reference states of the comp
ite, host, and inclusion materials are given by

´p
pqspfd ­ 2

pf

3Kp
sR 2 apddpq , (5)

´shd
pqspfd ­ 2

pf

3K shd sR 2 ashdddpq , (6)

and

´sid
pqspfd ­ 2

pf

3K sid sR 2 asidddpq , (7)

all of which are equal´p
pq ­ ´shd

pq ­ ´sid
pq ­ dpqspfy

3d sashd 2 asiddysKshd 2 K sidd, by construction. The ratio
R is the one defined in (4), which is easily verified b
equating (6) and (7) and solving forR. [The remaining
equality among (5)–(7) determines the value ofap of the
composite [13]. ]

Thus, the final form of the generalization of Eshelby
formula to poroelasticity is given by

esid
pq 2 ´sid

pq ­ Tpqrssep
rs 2 ´p

rsd . (8)

We see that, if the pore-fluid pressure vanishes (e
pf ­ 0 in the absence of a pore fluid), then the unifor
strains ´ disappear from (8), and it reduces exactly
(1) as it should. For the other limiting case, when t
pore pressure has been specified to bepf fi 0, then the
1143
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uniform strainś in (8) can be computed from (5) and (7).
Now, if the strain at infinity happens to be chosen to b
equal to this uniform strain, (8) shows that the inclusio
strain takes the value at infinity as it should. Since th
equation foresid is linear, these two cases are enough t
determine the behavior for arbitrary values ofep andpf .

The deceptively simple equation (8) is the main resu
of this paper. The same formula with slightly differen
interpretations of the symbols also applies to the therm
elastic problem as we will now show.

For thermoelasticity, (2) is replaced by

eshd
pq ­ Sshd

pqrssrs 1 bshdudpq , (9)

wheres is again the applied external stress in the hos
Sshd is the compliance tensor of the host material,bshd

is the linear thermal expansion coefficient of the ho
material, andu is the temperature change. Equation (3
is replaced by

2eshd
pq ­

∑
pc

3K shd 2 bshdu

∏
dpq , (10)

whereK shd is the bulk modulus of the host material and
pc is again the uniform confining pressure at infinity
(We do not need to distinguish types of pressure in th
thermoelastic problem, so the subscriptc is superfluous
in this case.) Again similar expressions are obtained f
the inclusion phase and for the composite medium as
whole. To ensure uniform expansion or contraction in th
thermoelastic problem, we see that the ratio of pressure
temperature change must be

pcyu ­ 3
bshd 2 bsid

1yK shd 2 1yK sid ; X , (11)

again depending only on the physical properties of th
host and inclusion phases.

The uniform strains in the composite, host, and inclu
sion phases whenpcyu ­ X are given by

´p
pqsud ­ 2

u

3Kp
sX 2 3bpKpddpq , (12)

´shd
pqsud ­ 2

u

3K shd sX 2 3bshdK shdddpq , (13)

and

´sid
pqsud ­ 2

u

3K sid sX 2 3bsidKsidddpq . (14)

Again, all three of these strains (12)–(14) are equal b
construction.

Now Eq. (8) can be reinterpreted for the thermoelast
single ellipsoidal inclusion problem by simply using (12
and (14) in place of (5) and (7). If a change of temperatu
u occurs, then a strainep

pq imposed at infinity will result
in the strainesid

pq in the inclusion. If the imposed strain
happens to equal the one that would produce the unifo
1144
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strain determined by (12)–(14), then (8) guarantees that
uniform strain outside is the same one that results ins
the inclusion. If there is no change in temperatureu ­ 0,
then the terms iń drop out of (8), and the problem reduce
correctly to Eshelby’s original problem.

It is worthwhile to note that (8) could have been derive
in an equally rigorous, but perhaps less intuitive mann
without the use of our two thought experiments—just a
Levin’s derivation [18] of the thermoelastic composites
formula was obtained in a less intuitive fashion tha
the one of Cribb [19]. For example, the book of Mur
[21] makes extensive use of the rather technical conce
of “eigenstress,” “eigenstrain,” and “stress-free strain
special cases of which could have been designed
permit an alternative derivation of (8) for the case o
thermoelasticity. We believe, however, that the derivatio
presented here is much simpler, more intuitive, and eas
to grasp.

The result (8) is of great practical value for many appl
cations as mentioned earlier in the paper. For examp
the result can be used in a very direct way to r
derive the results of Berryman and Milton [13] and the
generalize these results approximately to multicompone
porous composites using effective medium theory [8
Another important application is the computation of long
wavelength scattering from an ellipsoidal inclusion in a
infinite medium. Such results have been shown to
very useful in effective medium theories [6–8] for elas
tic composites. Scattering from a spherical inclusion
one poroelastic material imbedded in another has be
computed previously by Berryman [22] and by Zimme
man and Stern [23], but to date no results are know
for scatterers having more general shapes (such as e
soids) in poroelastic applications. Earlier work of Ma
and Knopoff [24] writing elastic scattering formulas in
terms of integral equations valid for long wavelengths h
been used previously in scattering-based formulations
effective medium theory for elasticity [5,7]. By gener
alizing the methods of Mal and Knopoff to poroelastic
ity and thermoelasticity, the formulas presented here w
make it possible to obtain scattering formulas for arbitra
ellipsoidal-shaped inclusions with much less effort tha
has been expended previously just for the spherical ca
and also permit the generalization of effective mediu
theory [25–27] to proceed more easily into the comple
realms of poroelasticity and thermoelasticity.

Work performed under the auspices of the U.S. D
partment of Energy by the Lawrence Livermore Nation
Laboratory under Contract No. W-7405-ENG-48.
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