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Generalization of Eshelby’s Formula for a Single Ellipsoidal Elastic Inclusion
to Poroelasticity and Thermoelasticity
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Eshelby’s formula gives the response of a single ellipsoidal elastic inclusion in an elastic whole space
to a uniform strain imposed at infinity. Using a linear combination of results from two simple thought
experiments, we show how this formula may be generalized to both poroelasticity and thermoelasticity.
The resulting new formulas are important for applications to analysis of poroelastic and thermoelastic
composites, including but not restricted to rocks. [S0031-9007(97)03787-3]

PACS numbers: 81.05.Rm, 62.20.Dc, 81.40.Jj, 91.60.Ba

Probably the single most referenced work in the extenean be combined to produce a rigorous generalization
sive and rapidly growing literature on elastic compositesof Eshelby’s formula valid for either poroelasticity or
is Eshelby’s paper [1] on the response of a single ellipthermoelasticity. Then, the hard part of Eshelby’s work
soidal elastic inclusion in an elastic whole space to a straiiln computing the elliptic integrals (needed to evaluate
imposed at infinity. Eshelby found that a uniform strainthe fourth-rank tensors) can be carried over to these new
at infinity results in a uniform strain within the ellipsoidal results with only trivial modifications.
inclusion. This simple fact was then used in more de- We will first discuss the problem in terms of poroelas-
tailed calculations to obtain the fourth-rank tensors relatticity and later point out the modifications necessary to
ing these two uniform strains. The tensors themselves amaap onto thermoelasticity. In our notation, a superscript
not simple in general since they involve elliptic integrals,i refers to the inclusion phase, while superscriptsnd
but Eshelby was able to enumerate and explicitly evalurefer to host and composite media, respectively. In this
ate all of these integrals for simple shapes like spheregpplication the composite is a very simple one, being an
oblate and prolate spheroids, needles, and disks. The rafinite medium of host material with a single ellipsoidal
sults have been found to be immensely useful in the analyinclusion of theith phase. The basic result of Eshelby is
sis of composite materials, since most inclusion shapethen of the form
commonly of interest can be approximated by some el- ) = (1)
lipsoid. Effective medium theories [2—8] for elastic con- rq pari=rs >
stants have very often been based on static or dynamigheree¢” is the uniform induced strain in the inclusion,
approximations that make explicit use of Eshelby’s for-e¢* is the uniform applied strain of the composite at in-
mulas. Recent reviews of effective medium theories andinity, and T is the fourth-rank tensor relating these two
rigorous bounding methods applied to composite analysistrains [4]. The summation convention for repeated in-
are available [9-10]. dices is assumed in expressions such as (1). In elasticity,

It would be of considerable interest to have an identhe components df depend explicitly on the elastic con-
tity analogous to Eshelby’s result available in other,stants of both the host and inclusion.
more complex, problems in composites analysis (e.g., In our first thought experiment, we consider that in the
piezoelectric composites [11]). Two problems that areabsence of pore-fluid effects in poroelasticity (or thermal
themselves relatively straightforward generalizations offects in thermoelasticity), the formula (1) must remain
elasticity are poroelasticity and thermoelasticity. Inunchanged. In poroelasticity the only difference induced
poroelasticity, we allow the possibility that the elasticby the generalization from elasticity is an implicit one
materials contain connected voids or pores and that thesgising from the interpretation of the elastic constants used
pores may be filled with fluids under pressure whichin evaluating the fourth-rank tens@r Two types of bulk
then couples to the mechanical effects of an externallgnd shear moduli must be considered in poroelasticity,
applied stress or strain. In thermoelasticity, we includeframe moduli (of the overall porous medium, often called
the effects of temperature on the elastic materials anthe “frame”) and grain or mineral moduli (of the purely
consider the coupling between thermal expansion andolid constituents). In the absence of any pore fluid,
externally applied stresses and strains. In fact, it is knowmnly external confining stresses are operative and the only
that problems in these two subjects have very similapertinent moduli are the frame moduli, corresponding to
mathematical structure [12—15], so that solutions foundnoduli one would measure for a porous sample of the
in one generally carry over with only minor modifications material drained of all fluid. We will use the symb&s,
to the other. The main purpose of this paper is tok®, andk® for the frame bulk moduli of the composite,
show that the results of two simple thought experimentshe host, and the inclusion, respectively. The frame shear
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moduli are given similarly byu*, ™, and u”. The
host and inclusion frame moduli [16] are the only ones
that can appear in the expressions for the ten3oiia
poroelasticity.
The general relations between strains and stresses in an
isotropic poroelastic medium take the form
(h) — ¢(h) a®

€pg = SparsTrs T+ Wpf‘qu’ )
where o is the applied external stres$!” is the com-
pliance tensor of the host frame material, ard is the
Biot-Willis parameter [17] of the host medium. When a
uniform saturating fluid is present in the pores of a micro-
homogeneous poroelastic medium, the resulting uniform
strains in an isotropic medium are related to applied uni-
form (hydrostatic) stresses by

— ™
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1 ] ) ) (3) FIG. 1. An ellipsoidal inclusion of one poroelastic medium
where p. = —30,, is a uniform external (at infinity imbedded in another poroelastic medium. Assumed boundary
in these inclusion problems) confining pressure (positiveonditions are welded contact between porous solid frames and
under compression) anﬂx) is the grain or mineral ©OPen pores for the saturating fluid. The same figure applies

. (although with different assumed level of magnification) to
bulk modulus of the host material. From (2) and (3)’both the initial unstrained state and to the state of uniform

the Biot-Willis parameter [17] is seen to be given by expansiogicontraction in the second thought experiment.
a® =1—-KW/KW  Expressions similar to (3) apply

* O wi : :
toe,, andepq, with the corresponding changes in the bUIkdepending only on the (assumed known) physical proper-

moduli and other parameters. . .. ties of the host and inclusion. This result was obtained by
Now for our second thought experiment, we consider

) . ettinge = ¢ and solving for thep./p ratio.
gnde_r wh_at circumstances the host medium and the eP Then, the strains of the reference states of the compos-
lipsoidal inclusion will expand or contract at the same,.

rate. See Fig. 1. This scenario is possible in poroelastic'ge’ host, and inclusion materials are given by

ity because there are two adjustable fields present. (No & (pr) = — by (R — a*)s 5)
such possibility exists in the purely elastic problem of el 3K* ba>

Eshelby.) Analogous problems were first discussed origi-

nally in thermoelasticity [18—20] and more recently in eM(py) = — Py (R — a™)s (6)
poroelasticity [13]. The trick is that, if a ratio gf. and pa by 3K™ ba>

ps can be found so that® ande” change at the same gng

rate, then so must* and, furthermore, no local concentra-

tions of stress develop. The resulting macroscopic strains 8(i>(pf) = _p_f_ (R — a(i))é,,q, (7)
are uniform; the macroscopic stresses are uniform; and, P 3KW

therefore, stress equilibrium conditions are trivially satis-g|| of which are equale®, = ngq) — 8% = 8,,(ps/

fied. Thus, the entire analysis of these stress states r
duces to simple algebra. We know from earlier work [13]

that the uniform expansidnontraction ratio can be found equating (6) and (7) and solving f&. [The remaining

for any two-phase poroelastic composite, and the Smgl%quality among (5)—(7) determines the valuexsfof the
ellipsoidal inclusion example considered here is just ar}:omposite [13].]

especially simple two-phase problem.
In the uniform expan_smfpontrgctlon scenario, Once o 14 't poroelasticity is given by

the pore pressurg, (which is uniform throughout host 4 _ . .

and inclusion because of assumed open-pore boundary el — &) = Tpyuler, — &) (8)

conditions) has been specified, then we know that thgye see that, if the pore-fluid pressure vanishes (e.g.,
confining pressurép. needed to produce a uniformly ps = 0 in the absence of a pore fluid), then the uniform

$Y(a™ — a)/(k™ — KO), by construction. The ratio
R is the one defined in (4), which is easily verified by

Thus, the final form of the generalization of Eshelby’s

expanded or contrachted s’;cate is given by strains ¢ disappear from (8), and it reduces exactly to
o/ ps = (@™ /KW — o) /K@) _ R 4) (1) as it should. For the other limiting case, when the
o/ Pf 1/K®m — 1/K@ ’ pore pressure has been specified tophe# 0, then the
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uniform strainse in (8) can be computed from (5) and (7). strain determined by (12)—(14), then (8) guarantees that the
Now, if the strain at infinity happens to be chosen to beuniform strain outside is the same one that results inside
equal to this uniform strain, (8) shows that the inclusionthe inclusion. If there is no change in temperatéire: 0,
strain takes the value at infinity as it should. Since thethen the termsis drop out of (8), and the problem reduces
equation fore'”) is linear, these two cases are enough tocorrectly to Eshelby’s original problem.
determine the behavior for arbitrary valuesetfand p. It is worthwhile to note that (8) could have been derived
The deceptively simple equation (8) is the main resultin an equally rigorous, but perhaps less intuitive manner,
of this paper. The same formula with slightly different without the use of our two thought experiments—ijust as
interpretations of the symbols also applies to the thermokevin’s derivation [18] of the thermoelastic composites’

elastic problem as we will now show. formula was obtained in a less intuitive fashion than
For thermoelasticity, (2) is replaced by the one of Cribb [19]. For example, the book of Mura

h 21] makes extensive use of the rather technical concepts
egﬂhq) - Sz(alq)rso'” + ,3(’1)95174, 9) [21] " ow P

of “eigenstress,” “eigenstrain,” and “stress-free strain,”
where o is again the applied external stress in the hOStspeciaj cases of which could have been designed to
S™ is the compliance tensor of the host materigl”’  permit an alternative derivation of (8) for the case of
is the linear thermal expansion coefficient of the hosthermoelasticity. We believe, however, that the derivation
material, andd is the temperature change. Equation (3)presented here is much simpler, more intuitive, and easier

is replaced by to grasp.
e The result (8) is of great practical value for many appli-
—eﬁ,h,; = [W - ,B(h)ﬁ}épq, (10)  cations as mentioned earlier in the paper. For example,

the result can be used in a very direct way to re-
where K is the bulk modulus of the host material and derive the results of Berryman and Milton [13] and then
p. is again the uniform confining pressure at infinity. generalize these results approximately to multicomponent
(We do not need to distinguish types of pressure in th@porous composites using effective medium theory [8].
thermoelastic problem, so the subscripts superfluous Another important application is the computation of long-
in this case.) Again similar expressions are obtained fowavelength scattering from an ellipsoidal inclusion in an
the inclusion phase and for the composite medium as #finite medium. Such results have been shown to be
whole. To ensure uniform expansion or contraction in thevery useful in effective medium theories [6-8] for elas-
thermoelastic problem, we see that the ratio of pressure ¢ composites. Scattering from a spherical inclusion of

temperature change must be one poroelastic material imbedded in another has been

w 0 computed previously by Berryman [22] and by Zimmer-

P/ = 3'3;:3' =X, (11) man and Stern [23], but to date no results are known
1/K® — 1/K® for scatterers having more general shapes (such as ellip-

again depending only on the physical properties of the0ids) in poroelastic applications. Earlier work of Mal

host and inclusion phases. and Knopoff [24] writing elastic scattering formulas in
The uniform strains in the composite, host, and incly-terms of integraln equati_ons valid_for long Wavelengths has
sion phases whep. /0 = X are given by been used previously in scattering-based formulations of

¢ effective medium theory for elasticity [5,7]. By gener-

. 0 S—_— alizing the methods of Mal and Knopoff to poroelastic-

0) = — X — 3B°K")é,,, 12 . - .

epg(0) 3K* ( BTK)Spg (12) ity and thermoelasticity, the formulas presented here will

make it possible to obtain scattering formulas for arbitrary
, P . ellipsoidal-shaped inclusions with much less effort than

el(9) = ~3k® (X —38"WK"™)5,,, (13) has been expended previously just for the spherical case,
and also permit the generalization of effective medium
and theory [25-27] to proceed more easily into the complex

i o realms of poroelasticity and thermoelasticity.

3K (x = 389KkM)5,,. (14) Work performed under the auspices of the U.S. De-
partment of Energy by the Lawrence Livermore National

Again, all three of these strains (12)-(14) are equal by aboratory under Contract No. W-7405-ENG-48.
construction.

Now Eq. (8) can be reinterpreted for the thermoelastic
single ellipsoidal inclusion problem by simply using (12)
and (14) in place of (5) and (7). Ifachange of temperature,; j  gqnelby, Proc, R. Soc. London 241, 376 (1957);
6 occurs, then a straia,,, imposed at infinity will result J.D. Eshelby, inProgress in Solid Mechanicgdited by
in the straineg()l in the inclusion. If the imposed strain R. Hill (North Holland, Amsterdam, 1961), Chap. 3.
happens to equal the one that would produce the uniform[2] R. Hill, J. Mech. Phys. Solid&3, 213 (1965).

00 =
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