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Luttinger Theorem in One Dimensional Metals
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One dimensional metals are described by Luttinger liquid theory. Recent experiments have addressed
the relation between this non-Fermi liquid behavior and the existence of a Fermi surface. We show that
Luttinger’s theorem, with few modifications, holds for the one dimensional Tomonaga-Luttinger model.
The implications for the high temperature superconductors are discussed. [S0031-9007(97)03764-2]

PACS numbers: 71.27.+a, 74.20.Mn, 74.70.Kn

Soon after the discovery of the high temperaturedistribution function atpr, the Fermi momentum of the
superconductors (HTSC), Anderson [1] noted that the twamoninteracting system and the excitations consist only
dimensional (2D) copper-oxide planes in these materialsf collective boson modes. The momentum distribution
are responsible for the high critical temperatures. Hdunction, in the vicinity of the Fermi “surface,” behaves
suggested that the essential properties of the HTSC's ams|k — pr|* [21] with nonuniversal, coupling dependent
contained in the physics of the 2D strongly correlateda, and no quasiparticles are present in the liquid. The
electron liquid. While there is a consensus on thisabsence of quasiparticles near the Fermi surface gives
question, there are debates on the nature of the low enerdlye distinct properties of the 1D metals. Nevertheless,
physics of that liquid. even in 1D, the Fermi momentum of the noninteracting

The question is whether 2D quantum fluids are describedystem plays an important role when the interactions are
by Landau’'s Fermi liquid theory or by a theory which switched on. The exact relationship between Fermi liquid
resembles the physics of one dimensional (1D) systemisehavior and the existence of a Fermi surface is not yet
with short range interactions [2—5]. Perturbation theoryclear and we feel it is important to discuss this relation in
shows that despite some peculiarities compared to thredeuttinger’s theorem. In the case of 1D metals there have
dimensions [6,7], the essential physics of the 2D weaklyeen controversial statements [22—25] about the validity
coupled electron liquid is described by Fermi liquid quasi-of this theorem and this is a question that we address in
particles. However, in 1D perturbation theory is known tothis short paper.
violate some of the exact results and therefore it is feasi- In this Letter, we prove Luttinger's theorem in 1D
ble that in 2D the same could happen leading to unknowiand therefore show that the theorem holds in a system
behavior. 1D metals with short range interactions are dein which the interactions do not produce quasiparticles:
scribed by Haldane’s Luttinger liquid theory [8]. In 1D, the 1D g-ology model [21]. This theorem has been
the exactly solvable Hubbard [9] and Tomonaga-Luttingeproven order by order in perturbation theory using the
[10,11] models capture the essential physics, where ingeneral properties of a Fermi liquidlike Green'’s function.
stead of a simple pole, the one-particle Green’s functiorHowever, in 1D there exists a closed integral equation
has a branch-cut singularity and spin and charge propagater the single-particle Green’s function obtained after
with different velocities [12,13] (the Hubbard model in the the summation of the perturbation series. A particular
metallic phase scales (in renormalization group sense) tcase permits an explicit solution ik space for the
the Tomonaga-Luttinger model [14—-16]). These properGreen’s function which is a double-valued function of
ties of 1D systems are also important in understanding ththe frequency. Nak space solution is available in the
properties of the organic and inorganic quasi-1D metalgeneral case, but few results regarding the single-particle
[17,18]. While we know that in 2D when very strong or Green'’s function can be proven without having an explicit
long range interactions are present the Fermi liquid pictur@xpression for its solutions.
breaks and the system can develop charge and/or spin den-gnoring umklapp and the backward scattering pro-
sity waves, or condense into a Wigner crystal, the questionesses, thg-ology model describes a set of electrons in
is if this is the case for arbitrary small, short range interacD with the Hamiltonian [21]:
tions as is the case in 1D.

Some time ago, Luttinger [19] proved a theorem using H = Hy + Hin, (1)
perturbation theory showing that the volume enclosed

by the Fermi surface is an interaction strength invariant oo L +
(therefore the Fermi sphere is incompressible) and that 0= kaF( = PR)ay ko
the momentum distribution function has a discontinuity 7
at the Fermi momentum of the noninteracting system + Y vp(—k — t
: . A F PF)biobio (2)
[20]. In 1D, there is no discontinuity in the momentum g Lotk
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pr)] = Z. However, in 1DZ is zero and the generalized
statement is that the derivative afp) is singular with a
+ Al ot power law singularity instead of a delta function singu-
7+ ap\dkallphtp.plh-pa larity. We will show that Luttinger’s theorem is satisfied
+ o (in 1D) by the Green’s function satisfying Eq. (4), i.e.,
+ bkl,abkz,ﬁbk2+p,,8bklp,a):|, (3) that it changes sign when crossing the Fermi momentum
of the noninteracting system. In this case the interacting
wherea', a (b1, b) are the creation and annihilation oper- Green’s function is a product of [see Eq. (4)] the noninter-
ators for particles at therpr (—pr) branches, respec- acting Green’s function, which changes signpatand a
tively. T'hps = gi8ap + 8i10a,—p (i =2,4), and ||  term which, if it does not change sign when we crpss
and L correspond to particles with parallel and antiparal-Eq. (7) and therefore the first part of Luttinger’s theorem
lel spins, respectively. Using a Ward identity, one ob-will be satisfied. From now on we work with particles on
tains Dyson’s equation as a singular integral equation fothe right branch, i.e., moving to the right. Let us denote
the single-particle Green’s function for electrons movingby D(p) the term in the parentheseset= 0, i.e.,
to the right [12]:

G+(pse) = G0+(p’6)

1 toot
Hiy = — > |:rczv,ﬁakl,abkz,ﬁbkzﬂ?ﬁaklPsvf
ki.ky.p,a.B

D(p) 4W2f[dkdw Gi(p — k,—w)K(k,w).

i 8

X [1 + Mf f dkdew G+ We can integrate (we explain later in the paper in more
detail how these integrals are calculated) owerusing

X (p — k,e — w)K(k, a))i|, (4) the general properties of fermionic Green'’s function [26]:

(i) The singularities are located in the second quadrant in

where the complex-frequency plane fgr — pr < 0 and in the
A fourth quadrant forp — pr > 0; (i) G(p,w) = =.
Kk, w) = ’ i
(k, ) i=zc,s{‘” Tk T i30K] The result forp > pr is
. B; } . ! [Bfoc( k., uik) di
Py i — K, U
o tuk—oklr O 27 a7

and o
1 - Bi] G+(p —k,uik)0(pr — p +k)dk
0

. (6) o
€ UF(P pF) + lé[p PF] +Ai] G+(p—k,—u,k)0(p_k—pF)dki|
is the single particle noninteracting Green’s function, and 0
the constantsd; and B; depend on the couplingsy, 9)
g21 (for particles on different branches) and), g4,

(for particles on the same branch) [21](we assume thaffnd forp < pr

the couplings are momentum independent). The charge1 0
and spin velocitiesy. andu,, respectively, are functions 5~ Z [Bi f_m G+(p =k, uik)0(p — k — pr) dk

G0+(p’ 6) =

of the coupling constants. Hepg- = 7n/2 andd[g] = F=e,s -
8sign[q]. _ _ —~ B,-f G (p — k,u;k) dk
Luttinger’s theorem [19,20] states thatdrdimensional 0
space (i) 0
~ a1 [ Gutp =k —uik0pe — p + ) ak |
2 ] dp =2 j 0(p — pr)d -
G(p.0)>0 14 (p pr)dp (10)
= Vp = (zw)dﬁ’ 7 In the limit p — pr the last two expressions are equal
14 and the limit is
where pr is the Fermi momentum of the noninteracting
system,N is the mean number of particles in the system, lim D(p)= — Z B; |:[ Gi(pr —k,u;k)dk
V is the volume of the systenV is the volume of the 777" i=c,s -

Fermi sphere, and( p, 0) is the interacting Green’s func- _ j“’G (pr — kouik) dk | = —1
tion. (ii) The momentum distribution functiom(p) has a o pE R i

discontinuity at the point§pr}, at which the noninteract- (11)
ing distribution functionny(p) ~ 6(p — pr) is discon-

tinuous. The discontinuity of(p) is proportional to the above and belowr. Comparison of the exact expression
quasiparticle residue, i.e., lynp. [n(p < pr) — n(p >  for the momentum distribution function and its expansion
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aroundpr (both shown later) shows that i i ff dpde et _ P_F<1 _ A)
gl (2m)? Go+(p. €)e T PF
D(p = pp) = — 1 + constX | p — pp|® =ny. (15)
+ constX (p — pr). (12)

Heren. is the density of particles moving to the right.
Using the mentioned properties of the Green's func-
tion, first we integrate over the frequencies Because
| p — prl of the second property, the integrals on the left-hand side
G+(p = pr,0) ~ —constxX ————— (13)  of Eq. (14) are convergent and therefore one can introduce
p—pr the limit under the integral and perform it explicitly be-

and therefore the Green’s function changes sigp at fore intt_egrating.. This_ allows us to close the contour of
pr Which completes the proof of the first part of Lut- Integration on either side of the real frequency axis in the
tinger's theorem. complex plane. Therefore, when the branch-cut singular-

Next, we show that the Green’s function given byity of the Green'’s function and the pole occur on the same
Eq. (4) gives the same number of particles as ihdalf plane we close the contour in the other .half_ plane
noninteracting one. We use a band width cutdff gnd from the Cauchy theorem the correspom_:hng mt_egral
Practically, that means that when the Green’s functiortS Z€ro. When the pole and the branch-cut singularity of

is integrated over the momentum, one integrates in thé1€ Green’s function are on the opposite side of the real
interval [pr — A, pr + A] and then takes the limit @xiS we choose to close the contour of integration in the

A/pr — 0, where A = pr — A. The number of par- half complex plane where the pole is located and there-

Therefore

ticles will be the same if and only if fore we obtain the branch-cut part evaluated at that pole.

Then we evaluate the second frequency integration in (14)

1 lim ] f dp dGG (p. €)' % using the same procedure. After performing the double
472 -0+ Q)2 * P, frequency integration, tha; terms give zero both in the

charge and spin sectors. This is the reason why the simple

[ f dkdw Gi(p — k,e — w)K(k,w) =0 (14) square root Green's function [12] leads to the step-function
momentum distribution function, the same as for the nonin-

teracting case. However, the double frequency integration

since . .
| of the B; terms is nonzero and the result is

ni(p > pr) = % Z BifG+(P — k,vp(p — pr) + w;k)0(pr — p + k)0(k) dk
i=c,s (16)
ni(p <pr)=1+ i D BifG+(P — k,vp(p — pr) + uwik)0(p — k — pr)0(—k)dk .

i=c,s

The exact value of the last two integrals cannot be obtaineihfinity with a power law. We adopt the general definition
without an explicit expression for the function. However,that the Fermi surface is the set bfpoints at which the
from the exact solution [27] and from perturbative cal-mth derivative of the momentum distribution function has
culations [12,21,28,29], it is known that the momentuma singularity, i.e{pr} = {V k: dzmk) is singulaf. These
distribution function is continuous and without a jump atwe shall call Fermi points of orde#. In the usual Fermi
p = prandforp = pris liquid the Fermi surface consists of zero order Fermi
points while in the Luttinger liquid these are of first order.
Although the zero order Fermi surface has disappeared,
n(p < pp) ~ 1 Y Cilp = prl* = Colpr) the first order Fermi surface is left and the generalized
2 ’ statement of the second part of Luttinger’s theorem holds.

whereC, and C, are constants [28]. From the last two Whena > 1 liquid droplets form and as long asis not
representations of the momentum distribution function fol-an integer the derivative is zero at, but there will exist
lows the behavior of the integrals of the type encountere@d numberm so that% is singular atprand this will
in the expression fo6, (p, 0) in the neighborhood opr.  correspond to a Fermi surface of order

In the perturbation theory accessible regime < 1) At the end we must show that the following expression
the derivative% ~ |p — pr|®*!is singular approaching| is zero in the limitA — 0:

1
n(p > pr) ~ 5 Cilp — prl® = Cao(p — pr),
(17)

1 PFr P—Pr
=L ]A dp ] dgGi(q.vr(p = pr) + uilp = q))

=c,s oA .
+ f dp f dqG(q.ve(p — pr) + w(p — D). (18)
Pr P—Pr
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