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Luttinger Theorem in One Dimensional Metals
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One dimensional metals are described by Luttinger liquid theory. Recent experiments have addr
the relation between this non-Fermi liquid behavior and the existence of a Fermi surface. We show
Luttinger’s theorem, with few modifications, holds for the one dimensional Tomonaga-Luttinger mo
The implications for the high temperature superconductors are discussed. [S0031-9007(97)03764
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Soon after the discovery of the high temperatur
superconductors (HTSC), Anderson [1] noted that the tw
dimensional (2D) copper-oxide planes in these materia
are responsible for the high critical temperatures. H
suggested that the essential properties of the HTSC’s
contained in the physics of the 2D strongly correlate
electron liquid. While there is a consensus on th
question, there are debates on the nature of the low ene
physics of that liquid.

The question is whether 2D quantum fluids are describ
by Landau’s Fermi liquid theory or by a theory which
resembles the physics of one dimensional (1D) system
with short range interactions [2–5]. Perturbation theor
shows that despite some peculiarities compared to thr
dimensions [6,7], the essential physics of the 2D weak
coupled electron liquid is described by Fermi liquid quas
particles. However, in 1D perturbation theory is known t
violate some of the exact results and therefore it is fea
ble that in 2D the same could happen leading to unknow
behavior. 1D metals with short range interactions are d
scribed by Haldane’s Luttinger liquid theory [8]. In 1D,
the exactly solvable Hubbard [9] and Tomonaga-Luttinge
[10,11] models capture the essential physics, where
stead of a simple pole, the one-particle Green’s functio
has a branch-cut singularity and spin and charge propag
with different velocities [12,13] (the Hubbard model in the
metallic phase scales (in renormalization group sense)
the Tomonaga-Luttinger model [14–16]). These prope
ties of 1D systems are also important in understanding t
properties of the organic and inorganic quasi-1D meta
[17,18]. While we know that in 2D when very strong or
long range interactions are present the Fermi liquid pictu
breaks and the system can develop charge and/or spin d
sity waves, or condense into a Wigner crystal, the questi
is if this is the case for arbitrary small, short range intera
tions as is the case in 1D.

Some time ago, Luttinger [19] proved a theorem usin
perturbation theory showing that the volume enclose
by the Fermi surface is an interaction strength invaria
(therefore the Fermi sphere is incompressible) and th
the momentum distribution function has a discontinuit
at the Fermi momentum of the noninteracting syste
[20]. In 1D, there is no discontinuity in the momentum
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distribution function atpF , the Fermi momentum of the
noninteracting system and the excitations consist onl
of collective boson modes. The momentum distribution
function, in the vicinity of the Fermi “surface,” behaves
asjk 2 pF ja [21] with nonuniversal, coupling dependent
a, and no quasiparticles are present in the liquid. Th
absence of quasiparticles near the Fermi surface give
the distinct properties of the 1D metals. Nevertheless
even in 1D, the Fermi momentum of the noninteracting
system plays an important role when the interactions ar
switched on. The exact relationship between Fermi liquid
behavior and the existence of a Fermi surface is not ye
clear and we feel it is important to discuss this relation in
Luttinger’s theorem. In the case of 1D metals there hav
been controversial statements [22–25] about the validit
of this theorem and this is a question that we address
this short paper.

In this Letter, we prove Luttinger’s theorem in 1D
and therefore show that the theorem holds in a syste
in which the interactions do not produce quasiparticles
the 1D g-ology model [21]. This theorem has been
proven order by order in perturbation theory using the
general properties of a Fermi liquidlike Green’s function.
However, in 1D there exists a closed integral equation
for the single-particle Green’s function obtained after
the summation of the perturbation series. A particula
case permits an explicit solution ink space for the
Green’s function which is a double-valued function of
the frequency. Nok space solution is available in the
general case, but few results regarding the single-partic
Green’s function can be proven without having an explici
expression for its solutions.

Ignoring umklapp and the backward scattering pro
cesses, theg-ology model describes a set of electrons in
1D with the Hamiltonian [21]:

H  H0 1 Hint , (1)

H0 
X
k,s

yFsk 2 pFday
k,sak,s

1
X
k,s

yFs2k 2 pFdby
k,sbk,s , (2)
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1
L

X
k1,k2,p,a,b

∑
G2

a,ba
y
k1,ab

y
k2,bbk21p,bak12p,a

1
1
2

G4
a,bsay

k1,aa
y
k2,bak21p,bak12p,a

1 b
y
k1,ab

y
k2,bbk21p,bbk12p,ad

∏
, (3)

whereay, a (by, b) are the creation and annihilation ope
ators for particles at the1pF (2pF) branches, respec-
tively. G

i
a,b  gikda,b 1 gi'da,2b (i  2, 4), and k

and' correspond to particles with parallel and antipara
lel spins, respectively. Using a Ward identity, one o
tains Dyson’s equation as a singular integral equation
the single-particle Green’s function for electrons movin
to the right [12]:

G1sp, ed  G01sp, ed

3

∑
1 1

i
4p2

Z Z
dk dv G1

3 sp 2 k, e 2 vdKsk, vd
∏

, (4)

where

Ksk, vd 
X

ic,s

Ω
Ai

v 2 uik 1 idfkg

1
Bi

v 1 uik 2 idfkg

æ
, (5)

and

G01sp, ed 
1

e 2 yFsp 2 pFd 1 idfp 2 pFg
(6)

is the single particle noninteracting Green’s function, a
the constantsAi and Bi depend on the couplingsg2k,
g2' (for particles on different branches) andg4k, g4'

(for particles on the same branch) [21](we assume t
the couplings are momentum independent). The cha
and spin velocities,uc andus, respectively, are functions
of the coupling constants. HerepF  pny2 anddfqg ;
dsignfqg.

Luttinger’s theorem [19,20] states that ind dimensional
space (i)

2
Z

Gsp,0d.0
dp  2

Z
usp 2 pFd dp

 VF  s2pdd N
V

, (7)

wherepF is the Fermi momentum of the noninteractin
system,N is the mean number of particles in the system
V is the volume of the system,VF is the volume of the
Fermi sphere, andGsp, 0d is the interacting Green’s func-
tion. (ii) The momentum distribution functionnspd has a
discontinuity at the pointshpFj, at which the noninteract-
ing distribution functionn0spd , usp 2 pFd is discon-
tinuous. The discontinuity ofnspd is proportional to the
quasiparticle residue, i.e., limp!pF fnsp , pFd 2 nsp .
r-

l-
b-
for
g

nd

hat
rge

g
,

pFdg  Z. However, in 1DZ is zero and the generalized
statement is that the derivative ofnspd is singular with a
power law singularity instead of a delta function singu
larity. We will show that Luttinger’s theorem is satisfied
(in 1D) by the Green’s function satisfying Eq. (4), i.e
that it changes sign when crossing the Fermi momentu
of the noninteracting system. In this case the interacti
Green’s function is a product of [see Eq. (4)] the noninte
acting Green’s function, which changes sign atpF and a
term which, if it does not change sign when we crosspF ,
Eq. (7) and therefore the first part of Luttinger’s theore
will be satisfied. From now on we work with particles on
the right branch, i.e., moving to the right. Let us deno
by Dspd the term in the parentheses ate  0, i.e.,

Ds pd 
i

4p2

Z Z
dk dv G1s p 2 k, 2vdKsk, vd .

(8)

We can integrate (we explain later in the paper in mo
detail how these integrals are calculated) overv using
the general properties of fermionic Green’s function [26
(i) The singularities are located in the second quadrant
the complex-frequency plane forp 2 pF , 0 and in the
fourth quadrant forp 2 pF . 0; (ii) Gsp, vd v!`

!
1
v .

The result forp . pF is

1
2p

X
ic,s

∑
Bi

Z 0

2`

G1sp 2 k, uikd dk

2 Bi

Z `

0
G1sp 2 k, uikduspF 2 p 1 kd dk

1 Ai

Z `

0
G1sp 2 k,2uikdusp 2 k 2 pFd dk

∏
(9)

and forp , pF

1
2p

X
ic,s

∑
Bi

Z 0

2`

G1sp 2 k, uikdusp 2 k 2 pFd dk

2 Bi

Z `

0
G1sp 2 k, uikd dk

2 Ai

Z 0

2`
G1sp 2 k, 2uikduspF 2 p 1 kd dk

∏
(10)

In the limit p ! pF the last two expressions are equa
and the limit is

lim
p!pF

Dspd 
1

2p

X
ic,s

Bi

"Z 0

2`
G1spF 2 k, uikd dk

2
Z `

0
G1spF 2 k, uikd dk

#
 21

(11)

above and belowpF . Comparison of the exact expressio
for the momentum distribution function and its expansio
1107



VOLUME 79, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 11 AUGUST 1997

c-

ide
uce
-
of
he
lar-
me
ne
ral
of

eal
he
re-
le.

14)
ble

ple
ion
in-
ion
aroundpF (both shown later) shows that

Dsp > pFd  2 1 1 const3 j p 2 pFja

1 const3 sp 2 pFd . (12)

Therefore

G1sp > pF , 0d , 2const3
j p 2 pFja

p 2 pF
(13)

and therefore the Green’s function changes sign atp 
pF which completes the proof of the first part of Lut-
tinger’s theorem.

Next, we show that the Green’s function given b
Eq. (4) gives the same number of particles as th
noninteracting one. We use a band width cutoffA.
Practically, that means that when the Green’s functio
is integrated over the momentum, one integrates in t
interval fpF 2 A, pF 1 Ag and then takes the limit
LypF ! 0, where L  pF 2 A. The number of par-
ticles will be the same if and only if

1
4p2

lim
t!01

Z Z dp de

s2pd2
G01sp, edeiet3Z Z

dk dv G1sp 2 k, e 2 vdKsk,vd  0 (14)

since
n

a

o
o
r
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Z Z dp de

s2pd2
G01sp, edeiet 

pF

p

µ
1 2

L

pF

∂
 n1 . (15)

Heren1 is the density of particles moving to the right.
Using the mentioned properties of the Green’s fun

tion, first we integrate over the frequenciese. Because
of the second property, the integrals on the left-hand s
of Eq. (14) are convergent and therefore one can introd
the limit under the integral and perform it explicitly be
fore integrating. This allows us to close the contour
integration on either side of the real frequency axis in t
complex plane. Therefore, when the branch-cut singu
ity of the Green’s function and the pole occur on the sa
half plane we close the contour in the other half pla
and from the Cauchy theorem the corresponding integ
is zero. When the pole and the branch-cut singularity
the Green’s function are on the opposite side of the r
axis we choose to close the contour of integration in t
half complex plane where the pole is located and the
fore we obtain the branch-cut part evaluated at that po
Then we evaluate the second frequency integration in (
using the same procedure. After performing the dou
frequency integration, theAi terms give zero both in the
charge and spin sectors. This is the reason why the sim
square root Green’s function [12] leads to the step-funct
momentum distribution function, the same as for the non
teracting case. However, the double frequency integrat
of theBi terms is nonzero and the result is
n1sp . pFd 
1

2p

X
ic,s

Bi

Z
G1sssp 2 k, yFsp 2 pFd 1 uikddduspF 2 p 1 kduskd dk

n1sp , pFd  1 1
1

2p

X
ic,s

Bi

Z
G1sssp 2 k, yFsp 2 pFd 1 uikdddusp 2 k 2 pFdus2kd dk .

(16)
n

s

mi
r.
ed,
ed
ds.

on
The exact value of the last two integrals cannot be obtai
without an explicit expression for the function. Howeve
from the exact solution [27] and from perturbative ca
culations [12,21,28,29], it is known that the momentu
distribution function is continuous and without a jump
p  pF and forp . pF is

nsp . pFd ,
1
2

2 C1jp 2 pF ja 2 C2sp 2 pFd ,

nsp , pFd ,
1
2

1 C1jp 2 pF ja 2 C2spFd ,
(17)

whereC1 and C2 are constants [28]. From the last tw
representations of the momentum distribution function f
lows the behavior of the integrals of the type encounte
in the expression forG1sp, 0d in the neighborhood ofpF .

In the perturbation theory accessible regime (a , 1)
the derivativedn

dp , jp 2 pFja21 is singular approaching
ed
r,
l-
m
t

l-
ed

infinity with a power law. We adopt the general definitio
that the Fermi surface is the set ofk points at which the
mth derivative of the momentum distribution function ha
a singularity, i.e.,hpFj ; h; k: dmnskd

dkm is singularj. These
we shall call Fermi points of orderm. In the usual Fermi
liquid the Fermi surface consists of zero order Fer
points while in the Luttinger liquid these are of first orde
Although the zero order Fermi surface has disappear
the first order Fermi surface is left and the generaliz
statement of the second part of Luttinger’s theorem hol
Whena . 1 liquid droplets form and as long asa is not
an integer the derivative is zero atpF , but there will exist
a numberm so that dmn

dpm is singular atpFand this will
correspond to a Fermi surface of orderm.

At the end we must show that the following expressi
is zero in the limitL ! 0:
I 
1

2p

X
ic,s

Bi

" Z pF

L

dp
Z p2pF

2`

dq G1sssq, yFsp 2 pFd 1 uisp 2 qdddd

1
Z 2pF 2L

pF

dp
Z `

p2pF

dq G1sssq, yFsp 2 pFd 1 uisp 2 qddddg . (18)
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Taking into account the two representations of the m
mentum distribution function one sees that in the abo
mentioned limit the two integrals cancel each other a
the total number of particles on the right branch
n1  pFyp .

In this paper, we have shown from Dyson’s equatio
that Luttinger’s theorem holds for the one dimension
Tomonaga-Luttinger model. In general, the theorem
based on the counting of the fermionic degrees of freed
before and after the interactions are turned on. In the c
of Fermi liquids, the one-to-one correspondence betw
the noninteracting particles and the quasiparticles ens
the validity of the theorem. In the case of 1D Lutting
liquids, the number of charge particles in the interacti
system is exactly equal to the number of electrons
the noninteracting system. Our conjecture is that
long as the number of states and excitations with a
without interactions are the same, Luttinger’s theore
will be satisfied. Some recently proposed 2D Luttinge
type Green’s functions satisfy this condition [4,30]. Th
HTSC’s, at zero doping and below the Néel temperatu
are antiferromagnetic insulators. Doping destroys
antiferromagnetic order and a metallic phase occurs ab
the superconducting critical temperature. Our discuss
indicates that in the high temperature superconduct
cuprates, Luttinger’s theorem will be satisfied in th
temperature and doping interval regardless of the na
of the electronic liquid (Fermi or Luttinger).
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