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Noise and Fluctuations of Rough Surfaces
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Correlated non-Gaussian noise of the quenched disorder on rough surfaces is analyzed on the basis
of stochastic differential and integral equations. The irregular fluctuations reflect the microstructure of
rough surfaces and the stochastic process is treated as Brownian motion. The microstructure refers
to the standard deviationr, correlation lengthé, and roughness exponeat that defines the scaling
properties of the surface. We have derived the noise correlation fun¢tit®n(r)) ~ (r/€)%* 2
for 1/2 < a <1 on a self-affine rough surface. This provides a physical justification of noise
with long-range correlation, and the anomalous behavioraof> 1/2 observed experimentally.
[S0031-9007(97)03827-1]

PACS numbers: 68.35.Ct, 05.40.+j, 05.70.Ln

Rough surfaces are the main focus of a great deal dfo, &, a) of rough surfaces in the discussion of long tails.
recent research on the stochastic growth and fractal gén a disordered medium, the quenched noise generated
ometry of the surface. These are the topics of interestingy the disorder is usually more important than that
and timely reviews [1—-3] where extensive references canf temporal noise [2,3,12]. Through this Letter, we
be found. On a rough surface or interface, the quencheshall focus on surface roughening affected by quenched
noise is generated by disorder and does not change witfisorder which does not change with time.
time. It is much more important than the thermal noise The height of a continuous rough surface from its
that is always present. In the cases when the statistics siooth reference is represented by the functigp),
the noise is uncorrelated Gaussian, as is almost always asherer is the position vector on the reference surface. It
sumed [1], the microscopic details are not important ons usual to ensure thdk) = 0 where the angular bracket
the large scales. This is known as universality and the&enotes the average across the surface. Three independent
correspondingr has the well-known value 05 parameters are needed to describe the microstructure of

Experimental results, however, have revealed that mang rough surface. The standard deviatienis the root
rough surfaces, though self-affite < 1), behave anoma- mean square fluctuation normal to the surface, and the
lously with & =~ 0.6-0.8 [2,4—6] that exceeds = % correlation length¢ parallel to the surface. In addition to
Additional references can be found in section 4 of [2].the length scales, the third independent parameter is the
Therefore, it is reasonable to expect that the microstructuréoughness exponent = d — dy whered is the spatial
of rough surfaces can indeed influence the noise correlatioWimension andd, is the local fractal dimension. The
function, which violates the concept of universality. In or- roughness exponent defin?s the scaling properties of the
der to explain this observed anomaly, alternative physicasurface and is equal t@ = 5 in the case of uncorrelated
ideas like correlated noise, non-Gaussian, and power-lagaussian noise.
noise have been suggested [2,3,7-11]. Perhaps the earli-For a self-affine rough surface, the change of the height
est study of this anomaly involving the spatially correlatedcorrelation function with distanceis given by
Gaussian noise was reported by Medeataal. [7]. They sy - SN ARy L 2a
made approximate predictions of scaling exponents, but C) = (Ao +7) = hG)]) ~ r
did not quite resolve the problem [2]. Zhang [8] proposed @
t_hat the amplitude of noise follows a power-law dlstrlbu-At long range, the global behavior is describeddf) —
tion, and showed that the roughness exponent may chan%ez for r > ¢ The correlation lengtg can be defined
even in the presence of uncorrelated noise. Despite the irp)— | N £ 1 . e 9 L
terest in this power law as a possible mechanism to accouny a corre at|o.n of fluctuations af(¥) at two points

1 . andry + r [13]:
fora > 5, severe obstacles remain, because the power law
is solely on mathematical expediency with essentially no () = (h(#o)h(Fy + 7)) — (h(io))* = o — C(7),
physical justification [2,8]. 2)

In this paper, the irregular fluctuations of a rough
surface will be analyzed as a stochastic process expressetiich goes to zero when the two heights become un-
in terms of Brownian motion. We would like (1) to seek correlated at the distance of the order &f Therefore,

a better understanding of the long-range noise correlatiort = [ry dr/ [ ¢ dr.
and (2) to derive an explicit expression that links the noise An exact solution of the height correlation function
correlation function(n(0)n(7)) to the microstructure in the entire range ofr can be determined by the

forr < £.
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following stochastic differential equation which describes Spectral distribution is often used to discuss the ob-

the fluctuations of local slope on a rough surface: served surface topography [16]. An important measure of
the surface statistics is the autocorrelation funcijen)
d(Ah) Ah i . .
i 2 ‘ + n(r), (3) that is real. For stationary surfaces the autocorrelation

R function can be expressed in terms of the power spectral
whereAh(7) = h(#) — h(0). The first term on the right densityys(¢) by a Fourier transform:

hand side is the average local slope, andis the o e

noise term that is the source of fluctuations A&h. ¥(q) =f Y (r)exp—igr) dr

It has zero average. Differing from the uncorrelated - .
noise [8], the nature of noise in this Letter is described _ .

by a correlation function. Our main purpose is to —2Ref0 ylrexp=igr)dr, (8)
derive a nontrivial average of quenched noise alongyhereq is the spatial frequency of the undulations on the
a given interface. Equation (3) has the form of thesurface. The functioms(r) is given by the second term

Langevin equation for Brownian motion, whose conceptsn Eq. (7) in accordance with Eq. (2). Two special cases
and methods are applicable to a wide class of physicalan be calculated analytically:

phenomena. In this paper, the velocity of a Brownian

2
particle [14] is replaced byh, the variable time by, and Flg) = 20—52 . fora = 1 ) (9)
the frictional coefficient by(2¢)~!. Integrating Eq. (3), I+ (q8) 2
squaring it, and taking the mean, we get and
(AR(NT) = exp(—r/§) U(q) = Jma?é exd—(q€)* /4], fora =1. (10)
T These two functions are illustrated in Fig. 1, which
), ex(r + r2)/2¢] provides us with the essential information about the noise
and fluctuations of rough surfaces. Chaotic behavior is
X An(ri)n(r)) drydrs. (4} marked by a broad band of continuous power spectrum

Our main interest is the noise correlation function. In[17]. In Fig. 1, we see such broad spectrum and the

cases when the statistics of noise is Gaussian, as is assunetitively uninformative regioryé < 1. Therefore, we
in most applications [1], one has the uncorrelated whiteshall focus our attention to the regiopé > 1 in the
noise with(n) = 0 and following study of correlated noise.

_ _ _ _ Each Langevin equation has a corresponding Fokker-

Gln = r2) = ((ron(r2)) = A8(n = 1) (5) Planck equation. From this we can derive an integral

The constant A is determined by the requirement ofequation that establishes the relation between the autocor-
(Ar?) = o*.  This gives A= ¢?/£%. Substituting relation functiong(r) and the noise correlation function

Eq. (5) into Eq. (4) yields G(r) [14]:
C(r) = o?[1 — exp(—r/é)] = o/ + ..., dy(r) L B
forr < ¢. (6) dr 02]0 . o

. . 1 This integral equation follows directly from a statistical
Compar'lng'Eqs. (1) and (6), we obtain ()1)=1§,and (2)a average of the Fokker-Planck equation for Brownian
generalization of Eq. (6) to the casesmf# ; as motion, and it has automatically taken into account the

C(r) = o*{1 — exd—(r/&)**]}. (7)  non-Gaussian memory effect. Replacing= p/& in

A straightforward mathematical deduction is used in the
derivation of Eq. (7). We have exponentiated an infinite
series similar to that of Eq. (6). The infinite series-
(r/€)%* + ...is uniformly convergent ir0 < r/& = 1.

At the same time, the roughness exponenhappens to
be significant only within the domain of convergence (see
Fig. 7.4 in [13]). A physical justification has now been

o
py

Power spectrum \T;(q)/(zcza)

obtained for Eq. (7) whose form was previously proposed — a=05

but without explanation [13,15]. Equation (7) notonly & | L o=190

gives the exact limits ofC(r) when r is either much 1

greater or smaller thag as shown in Eq. (1), but is also 00001 0.01 04 1 10

in good agreement with the numerical result based on

computer simulations [3]. It covers the crossover region ®

in the vicinity of r/¢ = 1 between the above mentioned FiG. 1. The surface spectral power(g) versus the nondi-
limits. mensional spatial frequengy of rough surfaces.
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Eq. (8), we consider the Laplace transform of Eq. (11): solid can be related to a forde per unit length on the

o % contact line by
G(p) = ]0 G(u) exp(—pu) du y(cos# — cosby) = F — F,, (17)
p#(p) — o2 wherey is the interfacial tension of liquid-vapor interface,

U0 with A = 0/£%. (12) ¢, is Young's contact angle, and, is the critical
. . depinning force per unit length. Quenched disorder
According to a matheLnatlcaI theorem [18] plays an important role in the depinning transition [2,3].
lim py(p) = lim ¢ (u) (13)  Our newly derived correlation functions suggest that

) b um0 . roughness enhances wetting. Further advances in this area

we write the series expansion of the autocorrelation, .« needed and can be benefited by good experiments

function: that relate macroscopic behavi¢f) to microstructure
Y(u)/o? = exp(—u*®) (0, &,a). This could be another example showing the
) uhe 4o« essence of anomalous interface that exhibits the long-
=1—-u"+ BT o range noise correlation.
) ) ’ In summary, analytical expressions for the noise corre-
withu = r/§. (14) " Jation function, Egs. (15) and (16), and the height correla-

Equations (11) and (14) clearly reveal the non-Gaussiation function, Eq. (7), have been derived as a function of
characteristics of a non-Markovian process [19]. Takinghe quenched microstructufe, &, «) of a rough surface.
the Laplace transform of Eq. (14) and then substituting itFrom the calculated behavior of surface spectral power,

into Eqg. (12), we obtain we see that the correlated noise should occur in the region
® L TQant1) gé > 1. On the basis of the stochastic differential and
o P Zl(_l) nlp¥an integral equations, a better understanding of the physics
G(p)=-A—"— ; (15)  behind the noise with long-range correlation is obtained.
L+ > (=1 F(,ff;,?;l) The long tail is a result of the non-Markovian fluctuations
n=1 on a rough surface which carries a memory effect. In

Wher_e I' is the gamma function. Whem = % we  addition, we have derived that > % for the correlated
get G(p)/A = 1 whose Laplace inversion is the delta non-Gaussian noise on a self-affine rough surface. This
function mentioned in Eq. (5). The Laplace inversion ofprovides a physical justification of the observed anoma-

the leading term in Eq. (15) gives lous roughness exponent. Furthermore, our theory has the
a2 TQRa + 1) [ r\*2 potential to improve the understanding of the wetting of
(n(0)n(r)y = 2 Tea = 1) <E> rough surfaces.
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