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Entropically stabilized quasicrystals are usually modeled as equilibrium ensembles of random ti
In several models, such as the two-dimensional square-triangle tiling studied here, the correspo
kinetics may be very slow because a large number of tiles must be rearranged at each step t
the ensemble. Here we consider a simple growth model that generates a single element
square-triangle tiling ensemble. Even though tile rearrangements occur only at the growth su
in the limit of slow growth one obtains a structure that is representative of the equilibrium ensem
[S0031-9007(97)03773-3]

PACS numbers: 61.43.Bn, 61.44.Br, 81.10.Aj
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The debate concerning the stability of quasicrysta
continues to revolve about the relative roles of energ
and entropy [1–3]. This debate applies to a descriptio
of structure based on tiles representing the short ran
structure in the material. The energetic mechanism po
tulates that the interactions among the tiles are such as
favor a unique quasiperiodic ground state. The entrop
mechanism, on the other hand, neglects energy differen
among tile arrangements; there is no unique quasipe
odic state but quasiperiodicity in the long range order
a property of typical elements of the ensemble of “ran
dom tilings.” The two viewpoints also differ markedly on
the issue of growth. For an energetically stabilized qu
sicrystal, growth gets in the way of perfection and is hel
accountable for the phason-disorder observed in even
highest quality quasicrystals. Taking the entropic view
point, we argue in this Letter the opposite: that, in fac
growth may be fundamental in providing a pathway to th
entropically stabilized state.

To test our ideas we have focussed on the ensem
of two-dimensional square-triangle tilings [4]. Two tiles
a square and an equilateral triangle with common ed
length a, are joined edge to edge so as to tile region
of the plane. Seen as a collection of vertices joined b
edges all having the same length and only six possib
orientations, any element of the ensemble corresponds
the projection of a corresponding set of vertices from
four-dimensional lattice. A tiling thus corresponds to
particular embedding of a surface in this space. Mo
is known about this ensemble of surfaces than any oth
random-tiling system and explains our choice of model. I
particular, exact values of the entropy per vertexs0 and the
phason stiffnessk were found by Widom [5] and Kalugin
[6] using Bethe Ansatz methods. Both quantities app
to the thermodynamic limit of the equilibrium ensemble
where each tiling contributes with the same weight.

Another reason for choosing the square-triangle tiling
the difficulty of moving through the ensemble. A typica
move consists of a zipperlike operation performed on
closed loop of tiles [4]. Since the loops can be quite lon
0031-9007y97y79(6)y1066(4)$10.00
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and the tile vertices usually represent entire clusters
atoms, such rearrangements (unless mediated by defe
can be ruled out in a real quasicrystal. Our study of
growth model was motivated by the idea that a sufficien
random growth process might be able to generate a sin
element of the equilibrium ensemble while avoiding th
slow kinetics of zippers.

The energetics of our model only distinguishes betwe
interior and boundary vertices of the tiling. Thus at ea
vertex we introduce a variableui which measures the tota
angle subtended by complete tiles (squares and triangl
Since these angles are always some integer multiple
2py12, we rescaleui to be an integer in the set0, . . . , 12.
The energy of a tiling is then given by the Hamiltonian

H ­
X

i

m 2 ui . (1)

The sum extends over all vertices of the tiling andm

represents the chemical potential of the atoms forming
cluster (at some vertex) relative to the chemical potent
of the same atoms in the liquid phase. We note th
all interior vertices, regardless of the tile arrangeme
have the same energy:m 2 12. The bulk free energy is
minimized when the tile arrangements have the maximu
entropy. Since this is known from the equilibrium
ensemble, the minimum bulk free energy per vertex
our model is given by

fmin ­ m 2 12 2 Ts0 , (2)

whereT is the temperature. This shows that a tiling cou
grow provided the parametersm andT are chosen so that
fmin , 0. Moreover, we note that growth near the boun
ary of this region in parameter space is only possible if t
tiling takes advantage of the entropy maximizing statis
cal properties of the equilibrium ensemble. This approa
is significantly different from other growth models like in
[7] because it fully respects detailed balance and enab
real thermodynamics.

To complete the description of our model we need
define our ensemble and the kinetics within that ensemb
The most primitive definition that suits our purpose
© 1997 The American Physical Society
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is to consider all finite graphs with the properties tha
(i) all edges have lengtha and relative angles a multiple
of 2py12 and (ii) the minimum distance between any two
vertices isa. The union of a graph and the interiors
of all squares and triangles (of sidea) it may contain
will be called a “tile cluster.” For technical reasons we
restrict our ensemble to include only tile clusters having
connected boundary (topological disks). Had we insiste
on only connectedness of the cluster and allowed interi
holes, for example, then moves that change the number
boundary curves would have to inspect the tiling globall
to check that it was not getting disconnected. In th
regime of slow growth at low or medium temperature
considered below, this restriction has a negligible effe
on the kinetics.

The moves within the ensemble involve either deletin
a boundary vertex or adding a vertex in the cluster ext
rior. Lists of the removable and potentially new vertice
are tabulated and we imagine each being subject to ha
ing its status changed within a time intervaltc. Physi-
cally, tc corresponds to the time needed for an atom
cluster to melt or crystallize from the melt [8]. The proba
bility of changing the status of a vertex is determine
by the Metropolis rule applied to the Hamiltonian (1)
Our simulations considered two topologies of the amb
ent space: plane and cylinder. For growth in the plan
the initial seed cluster was a circular patch taken from
quasiperiodic square-triangle tiling; later, circular patche
were excised from clusters grown with the appropriate p
rameters and used as seeds. For growth on the cylinde
quasiperiodic boundary curve that spanned the circumfe
ence was used as a seed. Inevitably, simulations on
cylinder introduce a small average phason strain due
the periodic boundary conditions.

Simulations in the plane confirmed our basic expect
tions. At sufficiently low temperatures (T & 4) the sur-
face tension is positive and the clusters have a comp
shape at early times. Aside from a small correction
scaling as the mean curvature of the cluster surfac
we find that the boundary of the region in paramete
space where growth occurs coincides with the conditio
fmin ­ 0. Simulations on the cylinder, where surface cur
vature is absent, are consistent with the exact values0 ­
lns2233d 2 2

p
3 lns2 1

p
3d . 0.120 06 [5,6]. Extrapo-

lating to zero growth velocity we finds0 ­ 0.1200s5d.
In the limit of very slow growth the fluctuations of the
surface are just as important as its average drift and t
tiling is continuously being disassembled and reassemb
in different random ways. Since the maximum entrop
state appears to be accessible without the need for co
plicated “zipper” moves, our method should prove usefu
in determinings0 in models where the analogs of zipper
are poorly understood.

After a sufficiently long time the growth morphology
appears dendritic due to the formation of “tears” (Fig. 1
[8]. Tears represent discontinuities in the correspondin
t
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FIG. 1. Surface of a tile cluster containing1.8 3 105 vertices.
The relatively high growth velocity in this simulation (T ­ 3,
m ­ 11.50) leads to a high density of tears.

embedded surface, i.e., a jump in thex' coordinates that
are orthogonal to the tiling plane into which the surface
normally projected. In physical terms, the two sides of t
tear cannot be sewn together because a new vertex pla
in the gap would be too close to an already existing verte
On the other hand, as the discontinuity inx' increases, an
ever smaller relative displacement of the two sides of t
tear is needed to allow closure. In real quasicrystals te
would thus mend, forming dislocations. Whether mend
or not, tears limit the long range order in the quasicrys
and must be eliminated if our model is to apply to th
highest quality quasicrystals.

The mean separation of tears along the surface
the growing cluster can be estimated by measuring
fraction of surface vertices,fsurf. In the asymptotic
regime when the cluster is fragmented into many finge
of width ltear , fsurf ~ l21

tear . Our simulations at fixedT
andm nearmmax ­ 12 1 Ts0 find (Fig. 2)

ltear , smmax 2 md21. (3)

This behavior can be understood in terms of a coupli
between the local growth velocity and thex' degrees
of freedom, or phasons, of the corresponding embedd
surface. Suppose a piece of the boundary of the emb
ded surface is dominated by one phason mode of la
amplitude and wavelengthl along the boundary (Fig. 3).
The entropically generated phason stiffness will relax th
mode by diffusion of tiles along the surface with a re
laxation timetl , l2yD in the limit of large l. The
“surface phason” diffusion constantD has a nonsingu-
lar behavior form nearmmax. The growth velocity will
vary along the boundary, being smallest where the ph
son gradient is largest. This again is an entropic e
fect: A finite phason gradient lowers the entropy there
increasing the local free energy density and decreas
the local growth velocity. Ify is the average (positive)
1067
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FIG. 2. Fraction of surface vertices as a function of chemic
potentialm for three temperatures: (s) T ­ 2, (e) T ­ 3, and
(n) T ­ 3.5. From the proportionalityfsurf ~ l21

tear , one infers
that the mean separation of tears diverges asm ! mmax.

growth velocity, the variation in the local growth velocity
can be of ordery if the phason amplitude is sufficiently
great. Thus the point of maximum phason gradient w
form the nucleus of a tear unlessytl ø l. Conversely,
one expects tears to nucleate on a length scalel when
y , lytl , Dyl. Combining this with the proportion-
ality betweenmmax 2 m and the average growth velocity
one obtains Eq. (3). Themmax determined by this kind of
measurement yields the estimates0 ­ 0.120s3d.

By choosing m very close to mmax we have been
able to grow tile clusters of over105 vertices that
were completely free of tears. Assuming that the sam
disordering mechanism and scaling law (3) applies
three dimensions, one can ask how slowly a quasicrys
should be grown so that no tears (dislocations) are pres
in the entire sample. Figure 4 shows part of a clust
grown in the cylindrical topology. The strip has width

FIG. 3. Relationship between phason gradients near the s
face of a growing tile cluster and variations in the local growt
velocity (arrows in the lower part). Only one component o
the phason coordinate (upper part) can be represented in
three-dimensional sketch.
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107a and for the parameters chosen there was typica
just one tear. In terms of our microscopic time scale t
growth velocity was measured to be0.003saytcd. Using
the rough estimatetc ø 1029 sec [8] and a cluster-
cluster separation ofa ­ 5 Å, the velocity required to
achieveltear ø 1 mm extrapolates to0.3 mmyh.

The power spectrum of phason fluctuations provides
more critical comparison with the equilibrium ensembl
Denoting the Fourier amplitude at wave vectorq of
the phason coordinates byx'sqd, the hydrodynamical
theory of the equilibrium ensemble predicts that th
two components ofx'sqd are independent, Gaussian
distributed random variables with variance [3]

kjx'sqdj2l ­ skmjqj2d21sjqj ! 0d . (4)

Following the conventions of Ref. [4], the phason stif
ness constant (determined by Bethe Ansatz [5,6]) has
value km ­ 2

p
3 2 3 . 0.464. To check whether the

phason fluctuations in the grown tilings approach the eq
librium spectrum in the limit of slow growth, we fixed the
temperatureT ­ 3 and grew a sequence of samples
the cylindrical topology at values ofm that approached
mmax ­ 12.360. The periodic dimension of the tilings
was chosen small enough,L ­ 107a, so that no tears
were formed at even the lowest values ofm. Each sample
was grown to a length of about4L, thereby minimizing
the influence of the seed. Phason amplitudesx'sqd were
measured for alljqj between upper and lower momentum
cutoffs, qmax ­ 25s2pyLd andqmin ­ 2pyL. Although
there are longer wavelength modes along the growth
rection, these reflect the statistics of a one-dimensio
random walk and therefore provide no useful informatio
In analyzing our data, we noted that in the equilibriu

FIG. 4. Detail of a tiling grown on the cylinder in the regime
of moderate growth velocities (T ­ 3, m ­ 12.225, L ­ 107a)
with one tear. The growth direction is vertical. The nucleatio
of the tear in a region of high phason strain can clearly be se
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FIG. 5. Probability distribution ofY ­ jqj2jx'sqdj2 and a
least squares fit to determinekm at T ­ 3, m ­ 12.345. The
results are summarized in Table I.

ensemble the random variablejqj2jx'sqdj2 has an expo-
nential distribution with decay constant given bykm. A
typical distribution of the same random variable obtaine
from one of our grown samples is shown in Fig. 5. Th
slope of the data yieldskm; values for each of the grown
samples are given in Table I. We see that the phas
stiffnesses of the grown samples are always smaller b
as expected, appear to approach the equilibrium value
the growth velocity tends to zero.

In summary, our simulations support the propositio
that the unique, maximum entropy state of a random tilin
quasicrystal is accessible through growth alone, witho
the need for complex tile-rearrangement processes in
bulk. The slow kinetics of bulk rearrangments is, in fac
a blessing, since otherwise the entropically stabilized qu
sicrystal would transform to a crystal at low temperatur
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TABLE I. Phason stiffness constantkm as a function of the
chemical potentialm of samples grown on the cylinder a
T ­ 3. The errors given represent fitting errors.

m km m km m km

12.300 0.34(2) 12.330 0.37(2) 12.345 0.41(2
12.310 0.35(2) 12.335 0.37(2) 12.350 0.44(2
12.320 0.36(2) 12.340 0.39(2)

Our simulations also suggest that “tearing” of the tiling
embedded surface (and subsequent formation of disl
tions) is a principal disordering mechanism.
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