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A Model of Quasicrystal Growth
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Entropically stabilized quasicrystals are usually modeled as equilibrium ensembles of random tilings.
In several models, such as the two-dimensional square-triangle tiling studied here, the corresponding
kinetics may be very slow because a large number of tiles must be rearranged at each step through
the ensemble. Here we consider a simple growth model that generates a single element of the
square-triangle tiling ensemble. Even though tile rearrangements occur only at the growth surface,
in the limit of slow growth one obtains a structure that is representative of the equilibrium ensemble.
[S0031-9007(97)03773-3]

PACS numbers: 61.43.Bn, 61.44.Br, 81.10.Aj

The debate concerning the stability of quasicrystalsand the tile vertices usually represent entire clusters of
continues to revolve about the relative roles of energyatoms, such rearrangements (unless mediated by defects)
and entropy [1-3]. This debate applies to a descriptiortan be ruled out in a real quasicrystal. Our study of a
of structure based on tiles representing the short ranggrowth model was motivated by the idea that a sufficiently
structure in the material. The energetic mechanism posandom growth process might be able to generate a single
tulates that the interactions among the tiles are such as tlement of the equilibrium ensemble while avoiding the
favor a unique quasiperiodic ground state. The entropislow kinetics of zippers.
mechanism, on the other hand, neglects energy differences The energetics of our model only distinguishes between
among tile arrangements; there is no unique quasiperinterior and boundary vertices of the tiling. Thus at each
odic state but quasiperiodicity in the long range order isvertex we introduce a variablg which measures the total
a property of typical elements of the ensemble of “ran-angle subtended by complete tiles (squares and triangles).
dom tilings.” The two viewpoints also differ markedly on Since these angles are always some integer multiple of
the issue of growth. For an energetically stabilized qua2 /12, we rescale@; to be an integer in the sét. .., 12.
sicrystal, growth gets in the way of perfection and is heldThe energy of a tiling is then given by the Hamiltonian
accountable for the phason-disorder observed in even the
highest quality quasicrystals. Taking the entropic view- H = ZM —0:. 1)

. R o~ ; ;
point, we argue in this Letter the opposite: that, in fact,The sum extends over all vertices of the tiling and

gﬁxt;crgﬁ?// Stzgﬂ?z%%rlfgtt: |in providing & pathway to therepresents the chemical potential of the atoms forming a

To test our ideas we have focussed on the ensembf uster (at some vertex) relative to the chemical potential

of two-dimensional square-triangle tilings [4]. Two tiles, 2 the same atoms in the liquid phase. ‘We note that

a square and an equilateral triangle with common edg gv'gtgéo;;’rﬁg";se’r re_ga_rcilzess_rﬁfe r&kt']!fe:gﬁg?e”}:m’
length a, are joined edge to edge so as to tile region g ' 9y

of the plane. Seen as a collection of vertices joined bym|n|m|zed vv_hen the_ t||§ arrangements have the maximum
ntropy. Since this is known from the equilibrium

edges all having the same length and only six possiblg y .
orientations, any element of the ensemble corresponds %nsemble,_the_ minimum bulk free energy per vertex in
the projection of a corresponding set of vertices from Ca model is given by
four-dimensional lattice. A tiling thus corresponds to a Smin = p — 12 = Tso, (2)
particular embedding of a surface in this space. MorevhereT is the temperature. This shows that a tiling could
is known about this ensemble of surfaces than any othegrow provided the parametegsandT are chosen so that
random-tiling system and explains our choice of model. Infi, < 0. Moreover, we note that growth near the bound-
particular, exact values of the entropy per vergand the  ary of this region in parameter space is only possible if the
phason stiffnesg were found by Widom [5] and Kalugin tiling takes advantage of the entropy maximizing statisti-
[6] using Bethe Ansatz methods. Both quantities applycal properties of the equilibrium ensemble. This approach
to the thermodynamic limit of the equilibrium ensembleis significantly different from other growth models like in
where each tiling contributes with the same weight. [7] because it fully respects detailed balance and enables
Another reason for choosing the square-triangle tiling igeal thermodynamics.
the difficulty of moving through the ensemble. A typical To complete the description of our model we need to
move consists of a zipperlike operation performed on alefine our ensemble and the kinetics within that ensemble.
closed loop of tiles [4]. Since the loops can be quite longThe most primitive definition that suits our purposes
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is to consider all finite graphs with the properties that
() all edges have length and relative angles a multiple
of 277 /12 and (ii) the minimum distance between any two
vertices isa. The union of a graph and the interiors
of all squares and triangles (of sidg it may contain
will be called a “tile cluster.” For technical reasons we
restrict our ensemble to include only tile clusters having a
connected boundary (topological disks). Had we insisted
on only connectedness of the cluster and allowed interior
holes, for example, then moves that change the number of
boundary curves would have to inspect the tiling globally
to check that it was not getting disconnected. In the
regime of slow growth at low or medium temperatures
considered below, this restriction has a negligible effect
on the kinetics.

The moves within the ensemble involve either deleting
a boundary vertex or adding a vertex in the cluster exteFIG. 1. Surface of a tile cluster containingd x 103 vertices.
rior. Lists of the removable and potentially new verticesThe relatively high growth velocity in this simulatio” (= 3,
are tabulated and we imagine each being subject to haw = 11.50) leads to a high density of tears.
ing its status changed within a time interval. Physi-
cally, 7. corresponds to the time needed for an atomieembedded surface, i.e., a jump in the coordinates that
cluster to melt or crystallize from the melt [8]. The proba- are orthogonal to the tiling plane into which the surface is
bility of changing the status of a vertex is determinednormally projected. In physical terms, the two sides of the
by the Metropolis rule applied to the Hamiltonian (1). tear cannot be sewn together because a new vertex placed
Our simulations considered two topologies of the ambi-in the gap would be too close to an already existing vertex.
ent space: plane and cylinder. For growth in the planen the other hand, as the discontinuityxin increases, an
the initial seed cluster was a circular patch taken from a@ver smaller relative displacement of the two sides of the
quasiperiodic square-triangle tiling; later, circular patchesear is needed to allow closure. In real quasicrystals tears
were excised from clusters grown with the appropriate pawould thus mend, forming dislocations. Whether mended
rameters and used as seeds. For growth on the cylinderca not, tears limit the long range order in the quasicrystal
quasiperiodic boundary curve that spanned the circumferand must be eliminated if our model is to apply to the
ence was used as a seed. Inevitably, simulations on theighest quality quasicrystals.
cylinder introduce a small average phason strain due to The mean separation of tears along the surface of
the periodic boundary conditions. the growing cluster can be estimated by measuring the

Simulations in the plane confirmed our basic expectafraction of surface verticesfq. In the asymptotic
tions. At sufficiently low temperatured'(< 4) the sur-  regime when the cluster is fragmented into many fingers
face tension is positive and the clusters have a compaef width Aear, fsurr * Aol Our simulations at fixed”
shape at early times. Aside from a small correctionandu nearum., = 12 + Tso find (Fig. 2)
scaling as the mean curvature of the cluster surface, e~ -1 3
we find that the boundary of the region in parameter tear ~ (Kmax = )" 3)
space where growth occurs coincides with the conditiorThis behavior can be understood in terms of a coupling
Sfmin = 0. Simulations on the cylinder, where surface cur-between the local growth velocity and thxa degrees
vature is absent, are consistent with the exact vajue of freedom, or phasons, of the corresponding embedded
In(223%) — 24/3In(2 + +/3) = 0.12006 [5,6]. Extrapo- surface. Suppose a piece of the boundary of the embed-
lating to zero growth velocity we findy, = 0.1200(5).  ded surface is dominated by one phason mode of large
In the limit of very slow growth the fluctuations of the amplitude and wavelength along the boundary (Fig. 3).
surface are just as important as its average drift and th&he entropically generated phason stiffness will relax this
tiling is continuously being disassembled and reassembleasiode by diffusion of tiles along the surface with a re-
in different random ways. Since the maximum entropylaxation timer, ~ A?>/D in the limit of large A. The
state appears to be accessible without the need for corfsurface phason” diffusion consta® has a nonsingu-
plicated “zipper” moves, our method should prove usefular behavior foru nearum.x. The growth velocity will
in determinings, in models where the analogs of zippersvary along the boundary, being smallest where the pha-
are poorly understood. son gradient is largest. This again is an entropic ef-

After a sufficiently long time the growth morphology fect: A finite phason gradient lowers the entropy thereby
appears dendritic due to the formation of “tears” (Fig. 1)increasing the local free energy density and decreasing
[8]. Tears represent discontinuities in the correspondinghe local growth velocity. Ifv is the average (positive)
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107a and for the parameters chosen there was typically
just one tear. In terms of our microscopic time scale the
] growth velocity was measured to Bé03(a/7.). Using
the rough estimater, ~ 107° sec [8] and a cluster-
7 cluster separation ofi = 5 A, the velocity required to
achievel,; = 1 mm extrapolates t6.3 mm/h.

The power spectrum of phason fluctuations provides a
. more critical comparison with the equilibrium ensemble.
Denoting the Fourier amplitude at wave vectgr of
the phason coordinates by, (q), the hydrodynamical
theory of the equilibrium ensemble predicts that the
two components ofx, (q) are independent, Gaussian-
000 — 10 1E 20 25 distributed random variables with variance [3]

" (Ix (@) = (<ula) (gl — 0). (4)

s hon o Serfce verioes s & futon of chertcaalloning the conventions of Ref. (4 the phason sif-

(A) T = 3.5. From the proportionalitys o A-L one infers Ness constant (determined by Bethe Ansatz [5,6]) has the

that the mean separation of tears divergeg.as fmax- value k, = 2\/3— — 3 =0.464. To check whether the
phason fluctuations in the grown tilings approach the equi-
librium spectrum in the limit of slow growth, we fixed the

growth velocity, the variation in the local growth velocity temperaturel’ = 3 and grew a sequence of samples in
can be of ordew if the phason amplitude is sufficiently the cylindrical topology at values of that approached
great. Thus the point of maximum phason gradient will4max = 12.360. The periodic dimension of the tilings
form the nucleus of a tear unless, < A. Conversely, Wwas chosen small enougll, = 1074, so that no tears
one expects tears to nucleate on a |ength saalkehen were formed at even the lowest ValueSLDf Each Sample
v ~ A/7), ~ D/A. Combining this with the proportion- Was grown to a length of about_, thereby minimizing
ality betweenum,, — w and the average growth velocity the influence of the seed. Phason amplitudey) were
one obtains Eq. (3). Themax determined by this kind of measured for allq| between upper and lower momentum
measurement yields the estimage= 0.120(3). Cutoffs, gmax = 25(27/L) and gpin = 27 /L. Although

By choosing u very close toumsx We have been there are longer wavelength modes along the growth di-
able to grow tile clusters of ovel0® vertices that rection, these reflect the statistics of a one-dimensional
were completely free of tears. Assuming that the saméndom walk and therefore provide no useful information.
disordering mechanism and scaling law (3) applies ifn analyzing our data, we noted that in the equilibrium
three dimensions, one can ask how slowly a quasicrystal
should be grown so that no tears (dislocations) are present
in the entire sample. Figure 4 shows part of a cluster
grown in the cylindrical topology. The strip has width

0.14

0.12

0.10

0.08

0.06

0.04

0.02

FIG. 3. Relationship between phason gradients near the sur-

face of a growing tile cluster and variations in the local growthFIG. 4. Detail of a tiling grown on the cylinder in the regime
velocity (arrows in the lower part). Only one component of of moderate growth velocitied' (= 3, u = 12.225, L = 1074a)

the phason coordinate (upper part) can be represented in thigith one tear. The growth direction is vertical. The nucleation
three-dimensional sketch. of the tear in a region of high phason strain can clearly be seen.
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10° ¢ ; TABLE |. Phason stiffness constart, as a function of the
; ] chemical potentialuw of samples grown on the cylinder at
T = 3. The errors given represent fitting errors.

M Ku Lt Ku s Ku

12.300 0.34(2) 12.330 0.37(2) 12.345 0.41(2)
12.310 0.35(2) 12.335 0.37(2) 12.350 0.44(2)
12.320 0.36(2) 12.340 0.39(2)

Our simulations also suggest that “tearing” of the tiling’s
embedded surface (and subsequent formation of disloca-
i tions) is a principal disordering mechanism.
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nential distribution with decay constant given ky. A

typical distribution of the same random variable obtained

from one of our grown samples is shown in Fig. 5. The

slope of the data yields,; values for each of the grown [1] F. G&hler and H.-C. Jeong, J. Phys28, 1807 (1995).
samples are given in Table I. We see that the phasorn2] M. Baake and D. Joseph, Phys. Rev4B 8091 (1990).
stiffnesses of the grown samples are always smaller but[3] C.L. Henley, in Quasicrystals: The State of the Art,
as expected, appear to approach the equilibrium value as €dited by D. DiVincenzo and P.J. Steinhardt (World
the growth velocity tends to zero. Scientific, Singapore, 1991).

In summary, our simulations support the proposition [ l\/iéé);borrow and C.L. Henley, Phys. Rev. &, 6966
that t_he uniqge, maxim.um entropy state of a random_tiling [5] ,(v' WiZj.om, Phys. Rev. Lett70, 2094 (1993).
quasicrystal is access@le through growth alone, W|t_hout[6] P. A. Kalugin, J. Phys. 27, 3599 (1994).
the need for complex tile-rearrangement processes in th§7] 5| Robertson and S. C. Moss, Z. Phys88 391 (1991).
bulk. The slow kinetics of bulk rearrangments is, in fact, [g] v. Elser, in Extended Icosahedral Structuresdited by
a blessing, since otherwise the entropically stabilized qua-  M.V. Jaric and D. Gratias (Academic Press, Boston,
sicrystal would transform to a crystal at low temperature. 1989).

FIG. 5. Probability distribution ofY = |q|*|x,(q)]*> and a
least squares fit to determing, at7 = 3, u = 12.345. The
results are summarized in Table 1.
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