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Numerically minimizing a continuous free-energy functional which yields several modulated pha
we obtain the order-parameter profiles and interfacial free energies of symmetric and nonsymm
tilt boundaries within the lamellar phase, and of interfaces between coexisting lamellar, hexago
and disordered phases. Our findings agree well with chevron, omega, and T-junction tilt-boun
morphologies observed in diblock copolymers and magnetic garnet films. [S0031-9007(97)03772

PACS numbers: 61.25.Hq, 61.41.+e, 83.70.Hq
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Modulated phases are found in a surprisingly diverse
of physical and chemical systems, including supercond
tors, thin-film magnetic garnets and ferrofluids, Langmu
monolayers, and diblock copolymers [1]. Such phases
characterized by periodic spatial variations of the pertine
order parameter in the form of lamellae, cylinders, or cub
arrangements of spheres or interwoven sheets. This s
organization results from competing interactions: a sho
ranged molecular one favoring a homogeneous state, a
long-ranged contribution, which can have a magnetic, el
tric, or elastic origin, favoring domains. Because of th
modulation, interfaces between different phases or gr
boundaries within a single phase are most interesting,
they have received much less attention than those occur
in solids. Recently, experimental studies of grain bound
ries within lamellar phases of diblock copolymer hav
been carried out [2,3] which illustrate the rich interfacia
behavior exhibited by such systems. In particular, thr
morphologies of tilt boundaries [2(b)], denoted chevro
omega, and T-junction, were observed. Such interfac
are more difficult to describe theoretically than those b
tween uniform phases, which have been the subject of c
sic work [4]. In this article we study not only tilt grain
boundaries within lamellar phases but also interfaces
tween coexisting modulated phases of different symmet

The dimensionless free-energy functional we use,
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includes an enthalpic term (proportional to the interacti
parameterx) that favors an ordered state in whichjfj

is nonzero, an entropy of mixing preferring a disordere
state, f ­ 0, and confiningjfj to be less than unity,
and derivatives of the order parameter. The order
state occurs with a modulation of a dominant wav
vector qp ­ 1y

p
2 because of the competition betwee
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the negative gradient square term (favoring domains
large length scales) and the positive Laplacian squa
(preferring a homogeneous state at small length scale
Such a free-energy functional has been used to descr
the bulk phases of magnetic layers [5], Langmuir film
[6], amphiphilic systems [7], diblock copolymers [8], and
the effects of surfaces on isotropic [9] and hexagon
phases [10] of the latter.

In our numerical studies, we determine the minimum
of (1) by directly using a conjugate-gradient method
which is more convenient than solving the correspondin
Euler-Lagrange equation. We discretizef on a square
lattice, approximate the derivatives by nearest-neighb
differences, and employ a mesh size sufficiently small th
discretization effects are negligible within the numerica
precision. A typical grid contains 40 000 points. Figure 1
shows the resulting two-dimensional bulk phase diagra
as a function ofx and (a) the average order paramete
F ; kflV and (b) the chemical potentialm. It is in good
agreement with previous calculations based on singl
mode approximations [5,6]. In addition to the disordere
sDd phase, there is a lamellarsLd and two hexagonal

FIG. 1. Two-dimensional bulk phase diagram, showing diso
deredsDd, lamellar sLd, and hexagonalsHd phases, as a func-
tion of the interaction strengthx, and (a) the average order
parameterF and (b) the chemical potentialm. Dashed lines
in (a) denote triple lines and dashed lines in (b) denote th
(metastable)L-D transitions which exhibit tricritical points (de-
noted by solid circles).
© 1997 The American Physical Society
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sHd phases, which all join at the critical point atxC ­
3y4, m ­ F ­ 0. (In three dimensions, one expect
additional cubic phases, which are not studied here.) F
larger values ofx, the H andL phases each terminate a
a triple point, whereas experimentally one sees that th
modulated phases exist even for very large values ofx.
This unphysical part of the phase diagram is due to
breakdown of the gradient expansion in (1).

We first present results for grain boundaries in lame
lar phases, and begin with the asymmetric tilt gra
boundary (GB) between two perpendicularL phases.
This is theT-junction of Ref. [2(b)], for which the layer
continuity between the two adjoining phases is disrupte
Figures 2(a)–2(c) show order-parameter profilesf for
different x and m ­ 0 (symmetric stripes), while
Figs. 2(d)–2(f) show profiles for varying chemical po
tentialsm and x ­ 1 (asymmetric stripes). Figure 2(b
clearly shows the enlarged end caps noted in experim
[1,2], and the series 2(a)–2(c) predicts that they beco
less pronounced with increasingx. The GB interfacial
energygGB scales asgGB , sx 2 xCdmp with mp ­ 3y2,

FIG. 2. Grain boundary (GB) between two perpendicul
lamellar phases. (a)–(c) Contour plots of the order parame
profiles form ­ 0 andx ­ 0.78, 1, 1.5; throughout the article
the order parameter rangef21, 1g is represented by 20 gray
scales. (d)–(f) Profiles forx ­ 1 andm ­ 20.02, 0.02, 0.06.
(g) GB interfacial energygGB for m ­ 0 as a function ofx,
showing asymptotic scaling with an exponentmp ­ 3y2 (inset).
The dashed line gives the surface free energy density of o
lamellar layer for comparison. (h)gGB for x ­ 1 as a function
of m for two GB configurations which are degenerate atm ­ 0,
but distinct otherwise.
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Fig. 2(g), in accord with mean-field predictions [11]. To
demonstrate that the interfacial energygGB is indeed
quite small, we show, with a dashed line, the differenc
in bulk free energies between the disordered and lamell
phases multiplied by one wavelength of the latter. This i
roughly the cost per unit area of disordering such a widt
of lamellar phase. Clearly, the actual grain boundar
bridges the two grains in a manner much less expensi
than the insertion of a region of disorder. In Fig. 2(h)
we plot the interfacial energies of two distinct GB struc-
tures, which are degenerate atm ­ 0, being related by
order-parameter reflection symmetryf ! 2f. For
m fi 0 this symmetry is broken, and the two structure
correspond to distinct local free energy minima, on
metastable and the other globally stable. The free-ener
barriers between such interfacial structures are responsib
for slow interface motion and, thus, long healing times in
multigrain lamellar samples [12].

In Figs. 3(a)–3(c) we show symmetric tilt-boundary
(TB) configurations for a fixed angleu ­ 90± between the
layer normals as a function ofx . Here the layer conti-
nuity is maintained across the boundary, and thechevron
morphology is quite evident. In Figs. 3(d)–3(f), the tilt

FIG. 3. Tilt boundary (TB) between two lamellar phases
(a)–(c) Profiles form ­ 0, a fixed angleu ­ 90± between
the layer normals, andx ­ 0.78, 1, 1.5. (d)–(f) Profiles for
m ­ 0, x ­ 1, andu ­ 28.08±, 53.14±, and126.86±. (g) TB
interfacial energygTB for m ­ 0 as a function ofx, showing
asymptotic scaling with an exponentmp ­ 3y2 (inset). (h)gTB
for x ­ 1 as a function ofu, showing agTB , u3 behavior for
small u (dashed line) and linear behavior foru ! 180±.
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angle is progressively increased at fixedx, and one clearly
sees the change from the chevron to theomegastructure.
The omega shape of the layers at the boundary results fr
frustration due to an imposed local lamellar waveleng
much larger than the equilibrium value. Figures 3(d)
3(f) resemble micrographs of undulating lamellar pattern
in garnet films [13], and the similarity of Fig. 3(f) to the
micrographs [2(b)] of diblock copolymer TBs is striking.
The scaling of the TB energygTB is again described by
an exponentmp ­ 3y2 [Fig. 3(g)]. Close to criticality,
one finds pronounced reconstruction in terms of a squa
like modulation, Fig. 3(a). For smallu, gTBsud , u3,
Fig. 3(h), in accord with the bending behavior of elas
tic sheets; theu ! 180± limit is expected to be linear,
gTBsud , 180± 2 u, in accord with a description in terms
of decoupled dislocations of finite creation energy.

We now turn to interfaces between thermodynamical
distinct phases. Interfacial structures between coexisti
lamellar and disordered phases for three different valu
of the angleq between the lamellae and the interfac
are shown in Figs. 4(a)–4(c) forx ­ 1 (where the
phases and, therefore, also the interfacial structure a
metastable), and in 4(d)–4(f) forx ­ 1.5 (where they

FIG. 4. Lamellar-disordered interface. (a)–(c) Profiles fo
x ­ 1 and different anglesq ­ 0±, 45±, and 90± between
the lamellae and the interface. (d)–(f) Profiles forx ­ 1.5.
(g) Interfacial energygLD for q ­ 90± (dashed line) and
q ­ 0± (solid line), the latter scaling withmp ­ 2 on approach
to the metastable tricritical point (inset). (h)gLD as a function
of the angleq for x ­ 1 (dashed line) and forx ­ 1.5 (solid
line).
1060
om
th
–
s

re-

-

ly
ng
es
e

re

r

are stable). The metastableL-D boundary is shown as
a dashed line in Fig. 1(b). In Figs. 4(a) and 4(d), fo
q ­ 0±, there is a relaxation of the outermost layers
the interface is approached, leading to a small increase
the wavelength, as in solids.

Before presenting the interfacial free energies, w
describe our method of obtaining them because
calculation of such free energies between coexisti
phases which can be modulated is nontrivial [14]. W
calculate the total free energy,FI, of phase I in a box
employing periodic boundary conditions parallel to th
left and right faces, and reflecting (Dirichlet) boundar
conditions on those faces themselves. We adjust
length of the box so that the free-energy density
minimized. This occurs when the length of the bo
is some integer number of wavelengths of the period
structure of phase I. The volume of the box isV 0. By this
means, there isno surface contribution to the total free
energy, so that the bulk free energy is obtained direct
fI

b ­ FIsV 0dyV 0. In a similar way we obtainfII
b ­

FIIsV 00dyV 00. For the system in I, II coexistence, we
calculate the total free energy in a box large enough t
the order parameters attain their bulk values on the l
and right faces at which reflecting boundary conditions a
employed, and we vary the length of the box to minimiz
the interfacial excess free energy. The volume of the b
is V . Again, there are no surface contributions so th
we obtain FI,IIsV , Ad ­ V s fI

b 1 fII
b dy2 1 AgI,II. As

the bulk free energies are known, the desired interfac
energy follows directly.

The interfacial energygLD is shown in Fig. 4(g). As
x is decreased, the coexistence betweenL and D is
preempted by the hexagonal phase [see Fig. 1(b)]. T
is manifest in the behavior ofgLD for q ­ 90± [dashed
line in Fig. 4(g)] which becomes negative. This value
gLD is obtained by assuming an interfacial reconstructi
locally resembling the energetically preferred hexagon
phase [see Fig. 4(c)]. The value ofgLD for q ­ 0± [solid
line in Fig. 4(g)] remains positive down tox . 0.82
and vanishes there with the classical tricritical expone
mp ­ 2 [15]. Strong anisotropy ofgLD as function ofq
is observed [Fig. 4(h)], from which the shape of lamell
droplets in an isotropic phase can be qualitatively inferre
For x . 1.34 the drops are elongated parallel to th
lamellae; forx , 1.34 theL andD phases are metastabl
at coexistence and the drops are elongated perpendic
to the lamellae.

Hexagonal-disordered interfacial structures are depic
in Figs. 5(a)–5(c); the corresponding interfacial ener
gHD , shown in Fig. 5(g), scales again withmp ­ 2.
Structures for the hexagonal-lamellar interface are plot
in Figs. 5(d)–5(f), where we chose the mutual orientati
in accord with the epitaxial relationship found for amph
philic systems [16]. The corrugation of the lamellae ne
the interface, particularly evident in Fig. 5(d), resembl
that seen in experiments on diblock copolymer blen
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FIG. 5. (a)–(c) Hexagonal-disordered interfacial profiles fo
x ­ 0.78, 0.9, and 1.2. (d)–(f) Hexagonal-lamellar profiles
for x ­ 0.78, 0.9, and 1.2. (g) Interfacial energygHD along
HD coexistence as a function ofx, scaling withmp ­ 2 (inset).
(h) gHL as a function ofx, scaling withmp ­ 3y2 (inset).

[17]. The interfacial free energy of this interface,gHL,
is plotted in Fig. 5(h) and scales with the classical critica
exponentmp ­ 3y2. This reflects the fact that, in contrast
to the L-D and H-D interfaces, theH and L phases
are locked into a fixed relative position with respect to
translations perpendicular to theH-L interface.

At the triple point between disordered, lamellar, an
hexagonal phases,x . 1.34, we find gLD . gHL 1

gHD . It follows that theL-D interface that we have cal-
culated is not the thermodynamically stable one. Withi
our model, theL-D interface is therefore wetted by the
hexagonal phase at the triple point. As the occurrence
such points between these three phases is not uncomm
experimentally [18], it would be interesting to determine
whether this wetting does indeed occur.

Density fluctuations will decrease the interfacial critica
exponent to a valuemp , 3y2, but leave the classical
tricritical exponentmp ­ 2 intact [11], while fluctuations
of the direction of the modulation normals will eliminate
the critical point [19]. By introducing uniaxiality, these
latter fluctuations can be suppressed.

In summary, we have employed a simple Ginzburg
Landau free-energy functional to calculate profiles an
free energies of several interfaces of modulated phas
Qualitative agreement with experiment is very good. Th
observed chevron and omega morphologies at lamel
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grain boundaries emerge naturally, as do the expanded e
caps, characteristic of the T-junction. We also calculate
profiles and free energies of interfaces between disordere
and modulated phases, and between modulated phases
different symmetry. In all but the simplest cases, there i
significant reconstruction which leads to low interfacial
energies. An extreme example of such reconstructio
is the lamellar-disordered interface, which we find to be
wetted by the hexagonal phase at anL-H-D triple point.
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