
VOLUME 79, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 11 AUGUST 1997

nmark

ate
in
ow

id

1038
Averaging Theory for the Structure of Hydraulic Jumps and Separation
in Laminar Free-Surface Flows
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(Received 21 March 1997)

We present a simple viscous theory of free-surface flows in boundary layers, which can accommod
regions of separated flow. In particular, this yields the structure of stationary hydraulic jumps, both
their circular and linear versions, as well as structures moving with a constant speed. Finally, we sh
how the fundamental hydraulic concepts of subcritical and supercritical flow, originating from invisc
theory, emerge at intermediate length scales in our model. [S0031-9007(97)03745-9]

PACS numbers: 47.20.Ky, 47.15.Cb, 47.32.Ff, 47.35.+i
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Despite the classical nature of the subject, the flow o
viscous fluid with a free surface presents many unsolv
theoretical problems, even under laminar conditions. To
large extent this is due to the lack of approximate metho
for describing flows containingseparatedregions, i.e.,
regions in which the flow is reversed with respect t
the mean flow. Hydraulic jumps are examples of su
flows. They are large, sudden deformations in the fr
surface of stationary flows [1] and no theory exists fo
their structure—save the full Navier-Stokes equatio
combined with the free-surface boundary conditions, f
which even numerical solution poses large problems.
this Letter we present a method for determining som
of these flows, which includes viscosity and variation
of the velocity profile. Stationary states are obtained
trajectories in a simple two-dimensional phase space.

An inviscid theory of hydraulic jumps, which is still the
standard hydraulic approach to the subject, is due to Lo
Rayleigh in 1914 [2,3]. He regarded hydraulic jumps a
discontinuities (shocks) which can occur in the shallo
water equations [4]. Across a jump the flow decelerat
from a rapid supercritical flow, in which disturbances
propagate only down stream, to asubcritical flow, in
which they propagate in both directions.

The circular hydraulic jump is easy to study experi-
mentally and to maintain in a laminar state. Here a j
of fluid falls vertically onto a horizontal surface (Fig. 1)
The fluid spreads in an axisymmetric way, and a hydrau
jump is formed at somerj. The value ofrj cannot be
found by the standard theory, and it depends strongly
viscosityn [5]. Further, experiments show clearly that
separation bubble,or a recirculating region, forms on the
bottom in conjunction with the jump [5–8].

Separationper sehas been studied more intensely i
boundary layersclose to solid bodies, e.g., airfoils, im-
mersed in a high Reynolds number flow. This line o
research descends from Prandtl’s seminal work [9]
which he introduced the boundary layer approximation—
a radical simplification of the Navier-Stokes equation
Prandtl’s equations are valid in a thin layer near solid (n
slip) surfaces, where the fluid motion is predominant
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along the surface. But in general, they becomesingular
at separation points [10], where the assumption of fo
ward flow breaks down. The boundary layer equation
can be further simplified by using an averaging techniqu
of von Karman and Pohlhausen [9], in which the tangen
tial velocity profile is approximated as a low order poly
nomium. This model is useful up to a separation poin
but solutions beyond the point tend to diverge and are d
carded. Such troubles can be cured by taking into accou
the feedback effect from the boundary layer on the exte
nal flow. The “inverse method” [11] makes it possible
to calculate flows with separation bubbles, and analytic
results have been obtained for the structure of separat
points at large Reynolds numbers [12].

It is natural to employ the boundary layer approxima
tion to describe hydraulic jumps since the fluid move
nearly parallel to the bottom surface. To avoid the sin
gularities near a jump encountered in earlier work [5,6

FIG. 1. (a) A circular hydraulic jump is formed when a liquid
jet falls onto a plate from above (photo: courtesy of A. E
Hansen). (b) Surface profile, streamlines, and the horizon
velocity profile in a cross section, predicted from our mode
(see text and Fig. 2). Note the difference in the scales f
the two axes. The profile is nearly parabolic at large radiu
but is strongly deformed near the jump. The shaded area is
separation bubble.
© 1997 The American Physical Society
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we use the Karman-Pohlhausen method. The stand
hydrostatic approximation then provides the link betwe
pressure and layer thickness analogous to the feedb
mechanism in the inverse method used above [18].

For a stationary, radially symmetric flow with a fre
surface the boundary layer equations take the form

uur 1 wuz ­ 2gh0 1 nuzz , (1)

ur 1 uyr 1 wz ­ 0 , (2)

whereusr , zd andwsr, zd are the radial (r) and vertical (z)
velocity components,hsrd is the height, and we assum
hydrostatic pressure. Surface tension has been neglec
since it does not appear to be decisive in determining
structure of the flow, although it is necessary for the s
bility of the flows as discussed below. The boundary co
ditions are no-slip on the bottom:usr , 0d ­ wsr , 0d ­ 0,
no stress on the top:uzsr , hd ­ 0 (strictly valid only
for small deformationsjh0j), and the kinematic bound-
ary condition at the top:wsr , hd ­ usr , hdh0, which en-
sures the mass conservation:2pr

Rh
0 udz ­ const­ Q ­

2pq. By rescaling the horizontal and vertical length
and velocities byL ­ sq5n23g21d1y8, H ­ sqng21d1y4,
andV ­ sqng3d1y8, respectively, all parameters are elim
nated from (1),(2) [5].

We average these equations overz, but in contrast
to earlier approaches [5,6] we shall not assume a s
similar velocity profile. Instead the velocity profile is
parametrized as

usr , zd ­ ysrd
£
a1srdh 1 a2srdh2 1 a3srdh3

§
, (3)

where h ­ zyhsrd. Implementing the boundary condi
tions reduces the parameters to just one:lsrd, i.e., a1 ­
l 1 3, a2 ­ 2s5l 1 3dy2, and a3 ­ 4ly3. Thus the
profile is parabolic whenl ­ 0 and separation occurs fo
l ­ 23. With these assumptions the averaged mome
tum equation (1) takes the form [13]

ysssF2sldyddd ­ 2h0 2 sl 1 3dyyh2 , (4)

whereF2sld ­ s
Rh

0 u2dzdyhy2 ­ 6y5 2 ly15 1 l2y105
and rhy ­ 1. To determinel, one more equation is
needed, and this is (as in the standard Karman-Pohlhau
approach [9]) taken to be (1) evaluated on the botto
(z ­ 0), which gives

h0 ­ 2s5l 1 3dyyh2. (5)

When y ­ 1yrh is inserted into (4),(5) we obtain a
nonautonomous flow for the two-dimensional vector fie
sh, ld. The flow has singularities only on the linesh ­ 0
andl ­ 7y2. It is thus possible to obtain both separatio
and parabolic profiles without crossing singularities.

We solve the system with two boundary condition
Since the velocity profiles are not measured, we impo
two surface pointsh1sr1d and h2sr2d, read from a recent
measurement of Ellegaardet al. [8]. Iterative adjustment
of l at one end converges to a solution which pass
through the two chosen points. Figure 2(a) shows co
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FIG. 2. (a) Measuredhsrd (dashed curves) vs our model
(solid curves). The model uses a shooting method fromr2 ­
30 mm towardr1 ­ 12 mm for a fixed inner heighth1 and two
outer heightsh2. Fluid: 50% ethylene glycol (Q ­ 27 m,y
s, n ­ 7.6 3 1026 m2ys). Length and velocity scales:L ­
28 mm, H ­ 1.4 mm, and V ­ 12 cmys. (b) The model
predicts a larger separation zone ash2 increases.

parison of the calculated heighthsrd and the measure-
ments, for two differenth2 values. The surface profiles
nearrj show fair agreements, considering the simplicity
of the model, butrj is off by around 15%. Figure 2(b)
shows the calculatedlsrd. A separation zone (l , 23)
occurs just behind the jump and its size increases ash2
is raised, just as observed. The streamlines and veloc
profiles are determined froml, and this leads to a graphi-
cal representation of the flow as shown in Fig. 1(b).

The model captures the experimental feature thathsrd
inside the jump is little affected by the change inh2.
The curves in Fig. 2(a) apparently follow a single curve
inside the jump, from which trajectories diverge whenr
is increased. Backward integration fromr2 automatically
settles down to this value ofl, which helps us since the
entrance velocity profile need not be specified. Furthe
details of the phase space structure can be found in [13]

Another quantity measured in [8] is the surface velocity
Usrd ­ usr , z ­ hd. Comparison is made in Fig. 3,
which shows quantitative agreement, althoughrj again

FIG. 3. Measured surface velocityUsrd (dots) vs our model
(dotted lines). Parameters: 80% ethylene glycol (Q ­ 34 m,y
s, n ­ 14.4 3 1026 m2ys), L ­ 25 mm, H ­ 1.7 mm, and
V ­ 16 cmys. The jump is located atrj ø 24 mm (experi-
ment) and 20 mm (model). The inset is an enlargement a
larger in a log-log scale.
1039
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comes out smaller. There is no free parameter other th
h1,2, taken from the experiments.

One can apply these methods to time-dependent flo
Since the time-dependent circular jumps typically involv
breaking of the radial symmetry [8], we take, as an e
ample, the two-dimensional (Cartesian) flow down an i
clined plane. There exists a large body of literature [14
17] on such flows to which we shall be able to compar
We nondimensionalize in terms of the parabolic lamin
solution [17] with a constant heighth0, mean velocity
y0, and flux q0 related byq0 ­ h0y0 ­ gh3

0 sinay3n,
where a is the bottom slope. The Reynold number
R ­ y0h0yn ­ q0yn while the Froude number isF ­
y

2
0ygh0 cosa ­ R tanay3. We obtain [13]

ht 1 shydx ­ 0 , (6)

R
3h

£
shydt 1 ssshy2F2slddddx

§
1 hx cota

­ 1 2 sl 1 3dyy3h2 , (7)

hx cota ­ 1 2 s5l 1 3dyy3h2, (8)

wherex is the scaled downward distance along the plan
We first study stationary solutions to the equation

Then,hy ­ 1 from (6), and (7),(8) form an autonomous
two-dimensional system forsl, hd, that can be easily
studied on a phase portrait. [This is the Cartesian vers
of (4),(5).] There is a unique fixed pointh ­ 1 andl ­
0, and thus one cannot find stationary states connect
two different states with constantsh, ld. (This can,
however, be done for traveling waves; see below.) On t
other hand, an interesting solution [18] is represented
the stable manifold of the fixed point emerging fromh ­
0 as shown in Fig. 4. The first part of the trajectory ha
hx nearly constant [19], i.e.,h ø Asx 2 x0dyR andl ø
23y5 until it suddenly jumps up to the fixed point values
Inserting into (6),(7), we getA ­ 2.4yF2s23y5d ø 1.93.
We believe this represents flows that are observed beh
sluice gates though we treat the flow as laminar [20]. T
conventional hydraulic theory predicts [3] that a jum
occurs behind a gate when the bottom slope is “mild

FIG. 4. Stationary solutions to the inclined plane equatio
(6)–(8) with R ­ 30 and a ­ 1[deg]. Phase portrait (a)
has a saddle fixed point atsh, ld ­ s1, 0d. Dashed curves
are nullclinesh0 ­ 0 or l0 ­ 0. Among trajectories (solid
curves), one stable manifold (drawn thicker) to the saddle po
corresponds to the hydraulic jump solution shown in (b).
1040
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(i.e., a being less than a critical slope). Correspondingly
the jump structure in Fig. 4 disappears asR tana ­ 3F
is increased beyondA [13].

It is also possible to find a traveling wave solution [16
which connects two parabolic laminar solutions of heigh
h1 at x ­ 2` and h2 at x ­ ` [21]. These two limits
thus carry different fluxes, such that the flux is conserve
in the moving frame only. By choosing the characteristi
height appropriately, we may seth1h2 ­ 1 without loss
of generality. Then we define the moving frame byj ­
x 2 ct, and look for a stationary solutions inj, which by
(6) must satisfyc ­ h2

1 1 h1h2 1 h2
2s. 3d. There are

two fixed pointsh ­ h1,2, both withl ­ 0, and a hetero-
clinic solution fromh1 to h2s, h1d asj increases can be
found [13] iff R tana , 60h3

1ys25c2h4
1 2 61ch2

1 1 33d.
Such river-bore-like solutions are calculated and shown
Fig. 5 for a fixedh1 anda and varyingR. Note that the
velocity profile always remains near parabolic asl de-
parts only slightly from zero, and that the width of the
“shock” is much larger than the thickness of the layer, un
like the steady jump (Fig. 4).

Finally, we study the dispersion of small disturbance
in the time-dependent system. The spectrum of th
uniform state (h ­ y ­ 1, l ­ 0) allows the distinc-
tion between supercritical and subcritical flows, which i
fundamental to hydraulics but not obvious for viscou
flows. Surface tension is necessary for the stability calc
lations. An additional terms1RWhxxxy3d thus appears on
the right hand sides of (7),(8), whereW ­ syrh0y

2
0 ­

9sn2yrgh5
0 sin2 a is the Weber number.

Assuming that all disturbances vary like expsikx 2

ivtd, we obtain [13] two dispersion branches. In th
k ! 0 limit they behave asv1skd , 3k 1 ik2s5Ry4 2

cotad 1 Osk3d and v2skd , 214ky25 2 12iy5R 1

Osk3d. Thus, thev2 branch moves backwards, and the
flow is, irrespective of the Froude number, “subcritical.
From the imaginary parts, both branches are stable f
a small R, but the v1 branch becomes unstable for
R tana . 4y5. This is in qualitative agreement with
other models, notably those coming from perturbatio
expansions [15,16,22] and from averaging [17]. Th

FIG. 5. Traveling wave solutions to the inclined plane equa
tions. h1 ­ 1yh2 ­ 5y4, a ­ 2[deg], andR ­ 3, 7, 9.4. The
u profile stays near parabolic (l ­ 0). Oscillation starts when
R tana is near a critical value.
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FIG. 6. Real part of the dispersion relationvskd.

so-called “Shkadov model” [17] is identical to our system
(6),(7) with a rigid parabolic profile, i.e.,l ; 0, and
omitting (8).

For very largek the model shows unphysical behavior
as one branch becomes unstable.A priori we have no
reason to expect our model to be well defined at leng
scales much smaller than the normalized height, sin
our starting point is the boundary layer approximation
High-frequency oscillations are expectednot to penetrate
far into the fluid, but our assumption of the hydrostati
pressure still connectsl and h rigidly. We can remedy
this by modifying (8), such thatl depends on a spatial
average ofh and hx over an interval of the order of a
fraction of h [23]. In this way, the limit k ! ` now
corresponds to the Shkadov model [17] and is stable.

For intermediatek, the dispersion behavior is very
interesting. WhenR tana . 20y11 ø 1.82, the group
velocity of both branches will have positive real parts
and the flow is “supercritical.” In terms of the Froude
number, this inequality becomesF . 20y33, which is
similar to the classical criterion ofF . 1 even though
our theory includes viscosity. For largeR tana, the
subcritical range ofk is so small that this supercritical
behavior dominates. In Fig. 6, we show dispersion curv
(the real parts ofv6) for R ­ 25, a ­ 5 [deg], and
W ­ 0.01. The slope of thev1 branch is always
positive. On the other hand, the slope of thev2 branch
changes its sign. The subcritical small-k region is small,
and such long-wave disturbances become hard to cre
Note that the criterionR tana ­ 3F , A ø 1.93 for
the existence of a stationary jump (Fig. 4) is almo
equivalent to the demand that the final stateh ­ 1 be
subcritical (R tana , 1.82). On the other hand, the
linearly increasing part before the jump in Fig. 4 i
expected to be supercritical, but the dispersion arou
the solution is hard to obtain due to its finite extent an
the nonuniform character. In contrast, for the movin
jumps in Fig. 5, supercriticality or subcriticality must be
determined with respect to the jump. It can be show
[13] that the flow is supercritical in front of the jump and
subcritical behind, as expected.

To conclude, we have presented a simple model
free-surface flows which can describe separation and
structure of the circular and linear hydraulic jumps.
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