VOLUME 79, NUMBER 6 PHYSICAL REVIEW LETTERS 11 AcusT 1997

Averaging Theory for the Structure of Hydraulic Jumps and Separation
in Laminar Free-Surface Flows
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We present a simple viscous theory of free-surface flows in boundary layers, which can accommodate
regions of separated flow. In particular, this yields the structure of stationary hydraulic jumps, both in
their circular and linear versions, as well as structures moving with a constant speed. Finally, we show
how the fundamental hydraulic concepts of subcritical and supercritical flow, originating from inviscid
theory, emerge at intermediate length scales in our model. [S0031-9007(97)03745-9]

PACS numbers: 47.20.Ky, 47.15.Cb, 47.32.Ff, 47.35.+i

Despite the classical nature of the subject, the flow of along the surface. But in general, they becosirggular
viscous fluid with a free surface presents many unsolvedt separation points [10], where the assumption of for-
theoretical problems, even under laminar conditions. To avard flow breaks down. The boundary layer equations
large extent this is due to the lack of approximate methodsan be further simplified by using an averaging technique
for describing flows containingeparatedregions, i.e., of von Karman and Pohlhausen [9], in which the tangen-
regions in which the flow is reversed with respect totial velocity profile is approximated as a low order poly-
the mean flow. Hydraulic jumps are examples of suctmomium. This model is useful up to a separation point,
flows. They are large, sudden deformations in the fredut solutions beyond the point tend to diverge and are dis-
surface of stationary flows [1] and no theory exists forcarded. Such troubles can be cured by taking into account
their structure—save the full Navier-Stokes equationghe feedback effect from the boundary layer on the exter-
combined with the free-surface boundary conditions, fomal flow. The “inverse method” [11] makes it possible
which even numerical solution poses large problems. Ino calculate flows with separation bubbles, and analytical
this Letter we present a method for determining someesults have been obtained for the structure of separation
of these flows, which includes viscosity and variationspoints at large Reynolds numbers [12].
of the velocity profile. Stationary states are obtained as It is natural to employ the boundary layer approxima-
trajectories in a simple two-dimensional phase space. tion to describe hydraulic jumps since the fluid moves

An inviscid theory of hydraulic jumps, which is still the nearly parallel to the bottom surface. To avoid the sin-
standard hydraulic approach to the subject, is due to Lordularities near a jump encountered in earlier work [5,6]
Rayleigh in 1914 [2,3]. He regarded hydraulic jumps as
discontinuities (shocks) which can occur in the shallow
water equations [4]. Across a jump the flow decelerates
from a rapid supercritical flow, in which disturbances
propagate only down stream, to sabcritical flow, in
which they propagate in both directions.

The circular hydraulic jumpis easy to study experi-
mentally and to maintain in a laminar state. Here a jet
of fluid falls vertically onto a horizontal surface (Fig. 1). .
The fluid spreads in an axisymmetric way, and a hydraulic 41 (b)
jump is formed at some;. The value ofr; cannot be
found by the standard theory, and it depends strongly on h[mm]
viscosity v [5]. Further, experiments show clearly that a
separation bubblegr a recirculating region, forms on the
bottom in conjunction with the jump [5-8]. 0 20 40

Separationper sehas been studied more intensely in rmm]
boundary layersclose to solid bodies, e.g., airfoils, im- FiG. 1. (a) A circular hydraulic jump is formed when a liquid
mersed in a high Reynolds number flow. This line ofjet falls onto a plate from above (photo: courtesy of A.E.
research descends from Prandtl’s seminal work [9] irHansen). (b) Surface profile, streamlines, and the horizontal
which he introduced the boundary layer approximation—veloc'ty profile in a cross section, predicted from our model

dical simplificati f the Navier-Stok i (see text and Fig. 2). Note the difference in the scales for
a radical simpiification ot the Navier-olokes equationSqne o axes. The profile is nearly parabolic at large radius,

Prandtl’s equations are valid in a thin layer near solid (Nout is strongly deformed near the jump. The shaded area is a
slip) surfaces, where the fluid motion is predominantlyseparation bubble.
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we use the Karman-Pohlhausen method. The standard 3 h[mm]
hydrostatic approximation then provides the link between — °} ~  essms
pressure and layer thickness analogous to the feedback 2 (a)
mechanism in the inverse method used above [18]. 1
For a stationary, radially symmetric flow with a free r[mm]
surface the boundary layer equations take the form 0 10 30 30
uu, + wu, = —gh' + vu,,, Q)
_ - (b)
u, +u/r + w, =0, (2 -6} A

whereu(r, z) andw(r, z) are the radial) and vertical {) 5 5. (@) Measuredi(r) (dashed curves) vs our model

velocity componentsh(r) is the height, and we assume (solid curves). The model uses a shooting method from:
hydrostatic pressure. Surface tension has been neglectéd, mm towardr; = 12 mm for a fixed inner height; and two

since it does not appear to be decisive in determining theuter heightsi,. Fluid: 50% ethylene glycol @ = 27 m¢/

structure of the flow, although it is necessary for the sta$ » = 7:0 X 10 m*/s). Length and velocity scaled: =

bility of the flows as discussed below. The boundary con2s MM: # = 1.4 mm, andV = 12 cm/s. (b) The model
ity _ . y predicts a larger separation zonefasincreases.

ditions are no-slip on the bottona(r,0) = w(r,0) = 0,

no stress on the topi,(r,h) = 0 (strictly valid only

for small_ fjeformationsjh’l), and the kinematiq bound- parison of the calculated heighitr) and the measure-
ary condition at the topw.(r,h) = u(r,h)h', which en-  ents for two differents, values. The surface profiles
sures the mass conservatian:r Joudz = const= 0 = nearr; show fair agreements, considering the simplicity
27Tq Byresca“ng the hOfIZOﬂtal and Vert|Ca| IengthSOf the model, butr] |S Off by around 15%. F|gure 2(b)
and velocities byL = (¢°v g8, H = (gv¢™)'"*,  ghows the calculated(r). A separation zoneA(< —3)
andV = (qvg*)"/%, respectively, all parameters are elimi- occurs just behind the jump and its size increasessas
nated from (1),(2) [5]. _ _ is raised, just as observed. The streamlines and velocity
We average these equations owverbut in contrast profiles are determined from, and this leads to a graphi-
to earlier approaches [5,6] we shall not assume a sellg representation of the flow as shown in Fig. 1(b).
similar VeIOC|ty pI’Oflle Instead the Ve|OCI'[y prOfIle is The model Captures the expenmenta' feature ﬂ‘(a)
parametrized as inside the jump is little affected by the change /s.
u(r,z) = v(r)|a\(r)n + ax(r)n* + as(r)n®], (3) Tht_e curves in Fig. 2(a) a_pparerjtly fqllow a single curve
inside the jump, from which trajectories diverge when
is increased. Backward integration fromautomatically
T = settles down to this value of, which helps us since the
Sr;fili ’ igzpa_ra;)gsli)c\: vthi )42,:%ngnad3 s_e;ja)\rél ii.onT:éJcSurt:?or entrance velocity profile need not be specified. _Further
A — —3. With these assumptions the averaged momen(_jetalls of the phqse space structure can be found in [1:_3].
fum equ.ation (1) takes the form [13] Another quantity measured in [8] is the surface velocity
U(r) = u(r,z = h). Comparison is made in Fig. 3,
v(F2(Mv) = —h' — (X + 3)v/h?, (4)  which shows quantitative agreement, althoughagain

where F5(A) = ([} u?dz)/hv* = 6/5 — A/15 + A2/105

and rhv = 1. To determineA, one more equation is

needed, and this is (as in the standard Karman-Pohlhausen Ulcm/s]
approach [9]) taken to be (1) evaluated on the bottom

- : 200t ~
(z = 0), which gives L

h' = —(51 + 3)v/h?. (5)

When v = 1/rh is inserted into (4),(5) we obtain a 100 -

nonautonomous flow for the two-dimensional vector field % 3 5 7 10

(h,A). The flow has singularities only on the lines= 0 I

andA = 7/2. ltis thus possible to obtain both separation "'\

and parabolic profiles without crossing singularities. 0 ' :t‘ﬂ s
We solve the system with two boundary conditions.

Since the velocity profiles are not measured, we impos&!G. 3. Measured surface velocity(r) (dots) vs our model

two surface pointsz;(r;) and h(r»), read from a recent (dotted lines). Parameters: 80% ethylene gly@l=€ 34 m¢/

. . S, v=144X 10" m*/s), L =25 mm, H = 1.7 mm, and
measurement of Ellegaasd al. [8]. Iterative adjustment 7y, _ ¢ cm/s. The jump is located at, ~ 24 mm (experi-

of A at one end converges to a solution which passefent) and 20 mm (model). The inset is an enlargement at
through the two chosen points. Figure 2(a) shows comlarger in a log-log scale.

where n = z/h(r). Implementing the boundary condi-
tions reduces the parameters to just ohg:), i.e.,a; =

—_

N W NS
.
4

r[cm]
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comes out smaller. There is no free parameter other thafie., @ being less than a critical slope). Correspondingly,
hy >, taken from the experiments. the jump structure in Fig. 4 disappears Rsana = 3F
One can apply these methods to time-dependent flowss increased beyond [13].
Since the time-dependent circular jumps typically involve It is also possible to find a traveling wave solution [16]
breaking of the radial symmetry [8], we take, as an exawhich connects two parabolic laminar solutions of height
ample, the two-dimensional (Cartesian) flow down an in-; atx = — andh; atx = » [21]. These two limits
clined plane. There exists a large body of literature [14-thus carry different fluxes, such that the flux is conserved
17] on such flows to which we shall be able to comparein the moving frame only. By choosing the characteristic
We nondimensionalize in terms of the parabolic laminatheight appropriately, we may sét/s, = 1 without loss
solution [17] with a constant heighiy, mean velocity of generality. Then we define the moving frame &€y=
vo, and flux ¢y related bygy = hovo = ghisina/3v, x — ct, and look for a stationary solutions i which by
where « is the bottom slope. The Reynold number is(6) must satisfyc = A7 + hih, + h3(> 3). There are
R = voho/v = qo/v while the Froude number i =  two fixed pointsh = h;,, both withA = 0, and a hetero-
vé/gho cosa = Rtana/3. We obtain [13] clinic solution from#h; to h,(< hy) asé increases can be
b+ (h), — 0 6) found [13] iff Rtana < 60h7 /(25¢2hT — 61ch} + 33).
* ’ Such river-bore-like solutions are calculated and shown in
R 5 Fig. 5 for a fixedh; anda and varyingR. Note that the
3 [(hv): + (hv*F2(M)x] + h, cota velocity profile always remains near parabolic asle-
5 parts only slightly from zero, and that the width of the
=1-(A+3)v/3h", (7)  *“shock” is much larger than the thickness of the layer, un-
like the steady jump (Fig. 4).
hecOtar = 1 = (54 + 3)v/3n%, (8) Finally, we study the dispersion of small disturbances
wherex is the scaled downward distance along the planein the time-dependent system. The spectrum of the
We first study stationary solutions to the equationsuniform state § = v = 1, A = 0) allows the distinc-
Then,hv = 1 from (6), and (7),(8) form an autonomous tion between supercritical and subcritical flows, which is
two-dimensional system fofA, &), that can be easily fundamental to hydraulics but not obvious for viscous
studied on a phase portrait. [This is the Cartesian versioflows. Surface tension is necessary for the stability calcu-
of (4),(5).] There is a unique fixed point= 1 andA = lations. An additional terng+RWh,.,/3) thus appears on
0, and thus one cannot find stationary states connectinge right hand sides of (7),(8), whel& = o/phovi =
two different states with constants, A). (This can, 9012/pghjsir? a is the Weber number.
however, be done for traveling waves; see below.) Onthe Assuming that all disturbances vary like éMpc —
other hand, an interesting solution [18] is represented byw:), we obtain [13] two dispersion branches. In the
the stable manifold of the fixed point emerging frém=  k — 0 limit they behave asv. (k) ~ 3k + ik*(5R/4 —
0 as shown in Fig. 4. The first part of the trajectory hascota) + O(k*) and w-_(k) ~ —14k/25 — 12i/5R +
h, nearly constant [19], i.es = A(x — xo)/R andA =  O(k?). Thus, thew_ branch moves backwards, and the
—3/5 until it suddenly jumps up to the fixed point values. flow is, irrespective of the Froude number, “subcritical.”
Inserting into (6),(7), we ged = 2.4/F,(—3/5) = 1.93.  From the imaginary parts, both branches are stable for
We believe this represents flows that are observed behira small R, but the w. branch becomes unstable for
sluice gates though we treat the flow as laminar [20]. Thertana > 4/5. This is in qualitative agreement with
conventional hydraulic theory predicts [3] that a jumpother models, notably those coming from perturbation
occurs behind a gate when the bottom slope is “mild”expansions [15,16,22] and from averaging [17]. The

h,
_—
(b) 1 R=3 h,
Se=E 7>\”
SEEE==S 0.5 94
ff i Y™ :
: s , 0 fire
-4 0 2 § X 150 VU"” 300
FIG. 4. Stationary solutions to the inclined plane equations -0.5 A

(6)—(8) with R =30 and o = 1[deg]. Phase portrait (a)

has a saddle fixed point &t,A) = (1,0). Dashed curves FIG. 5. Traveling wave solutions to the inclined plane equa-
are nullclinesh’ =0 or A’ = 0. Among trajectories (solid tions. h; = 1/h, = 5/4, a = 2[deg], andR = 3,7,9.4. The
curves), one stable manifold (drawn thicker) to the saddle point profile stays near parabolia (= 0). Oscillation starts when
corresponds to the hydraulic jump solution shown in (b). Rtana is near a critical value.
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FIG. 6. Real part of the dispersion relatiar(k).
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