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A method for controlling low-order chaotic behavior of continuous spatiotemporal systems i
developed and demonstrated in a complex, realistic 3D partial differential equation model that is us
successfully for predicting El Niño events in the equatorial Pacific. An unstable periodic orbit tha
involves a full-domain oscillation is stabilized using a feedback control applied to a single degre
of freedom at a carefully chosen single “choke point” in space. A general criterion is presented f
determining the optimal points in reconstructed delay-coordinate phase space at which to apply
feedback control. [S0031-9007(97)03780-0]

PACS numbers: 05.45.+b, 47.52.+ j, 92.10.Gk
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There has been significant interest in recent years
the control of low-order chaotic dynamical systems usi
small systematic perturbations that lead to the stabiliz
tion of unstable periodic orbits (UPO) [1,2]. Controlling
large- or infinite-dimensional systems, however, such
spatiotemporal systems that are governed by partial diff
ential equations, is still in its infancy [3–10]. We prese
here a new approach to the control of spatiotemporal s
tems that are continuous in both space and time. T
proposed method is successfully used to control a hig
complex model, composed of a 3D spatiotemporal syst
of partial differential equations (PDE’s), which simulate
the El Niño phenomenon in the equatorial Pacific oce
and atmosphere. Spatiotemporal systems often do
have a system-wide adjustable parameter that can be u
for an Ott-Grebogi-York (OGY) [1,10] control. Our ap
proach does not require the existence of such a global
rameter; rather it is based on applying OGY-like feedba
perturbations to a single degree of freedom of the syst
[11], at a single point in space. The spatiotemporal sy
tem successfully controlled here seems to be significan
more complicated than the previously controlled discre
systems of coupled chaotic elements [4,6], or relative
simple or isotropic 1D or 2D systems of PDE’s [3,5,7,8
Often, the precise dynamics responsible for the chao
behavior of systems of such complexity, whether they a
models or experimental systems, is not known. We the
fore use delay-coordinate phase space reconstruction
deriving and applying the control law, thus not requi
ing a knowledge of the detailed dynamics of the syste
[12]. Our approach controls the continuous spatiotemp
ral system using a continuous reconstruction of the UP
in phase space; we consequently find that not every po
on the continuous UPO may be used to apply the contr
and present a novel general criterion for determining t
controllability of phase space points along a given UPO

While we obviously do not propose here the contr
of actual El Niño events, we do show that chaos cont
0031-9007y97y79(6)y1034(4)$10.00
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in a realistic El Niño model can contribute to the unde
standing of El Niño’s dynamics. El Niño events involve
widespread warming of the equatorial Pacific Ocean s
face water (Fig. 1). They occur irregularly in time, abou
every 2–6 years, dramatically affect worldwide weathe
and have important social and economic implication
[13]. Recent theories [14,15] attribute El Niño’s irreg
ularity to a low order chaos. An important lesson of th
present work is that the control of complex spatiotempor
systems may not be achieved using an “out-of-the-bo
algorithm, but requires a good understanding of the re
vant dynamics. We thus briefly describe now the mod
complexity and the relevant aspects of El Niño dynam
ics before proceeding to the control algorithm. The E

FIG. 1(color). The deviation of the sea surface temperatu
(±C) from the long-term mean during a peak of a model E
Niño (warming) event (lower panel) and during the peak of
La Nina (cooling) event (upper panel) which typically occur
between El Niño events.
© 1997 The American Physical Society
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Niño model used here (described in detail in [16]) ha
proven quite successful in predicting El Niño events up
one and a half years in advance [17]. It is based on s
of nonlinear partial differential equations for the ocea
and for the atmosphere, with specified coupling betwe
them. The equations are written for the deviations fro
the observed spatially variable long-term mean state
the equatorial Pacific. This mean state may be season
varying [16], and in the model version used here is set
the time-independent mean July state. In the model eq
tions t is the time,sx, y, zd are the (east, north, up) coordi-
nates,su, y, wd the corresponding ocean water velocities
sua, yad the atmospheric wind velocity in the (east, north
directions,v ­ su, yd, va ­ sua, yad, and = ­ s≠x , ≠yd;
the total depth of warm surface waters in the model, al
known as the “thermocline” depth, ishsx, y, td; Tsx, y, td
is the sea surface temperature (SST).v, T , andw are the
spatially variable specified observed long-term July me
fields;b ­ dfydy is the gradient of the Coriolis parame-
ter; and the terms withr anda represent dissipation pro-
cesses. H is a mean thermocline depth, andg0 denotes
gravity acceleration. The model oceanic currents a
driven by the atmospheric wind stress,stsxd, ts ydd, which
is quadratically related to the wind velocitysua, yad. The
atmospheric winds are driven by a heating,QfT , =vag
which is a nonlinear function of the SST and of the a
mospheric wind divergence. The model is composed
four sets of PDE’s. The first set is of the ocean mome
tum and mass conservation equations,

ut 2 byy ­ 2g0hx 1 tsxdfua, yag 2 ru

byu ­ 2g0hy 1 ts ydfua, yag 2 ry (1)

ht 1 H=v ­ 2rh .
A second similar set of PDE’s is used to simulat
the vertical velocity shear in the ocean and a thir
effectively 2D set of PDE’s models the momentum an
mass balances of the atmosphere. Finally, the SST
determined by a nonlinear advection-dissipation equati
roughly of the form

Tt 1 v=T 1 v=sT 1 Td 1 wTz 1

sw 1 wdTz ­ 2aT . (2)
The model’s finite-difference discretization is based o

many thousands of grid point variables. The model s
lution is aperiodic and involves unstable interactions b
tween the ocean and the atmosphere, which are manifes
through multiple spatial and temporal scales of all mod
fields. Yet, the previously demonstrated low-order temp
rally chaotic behavior of this model [15] makes it a perfec
candidate for testing chaos-control ideas in a complex, hi
dimensional, spatially extended system. The challenge,
course, is to control an UPO that represents the full-doma
oscillation of the El Niño cycle without applying the chaos
control corrections at many spatial locations.

One of the main keys to controlling chaos in a comple
spatiotemporal system using the approach suggested h
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is the careful identification of the correct spatial point a
degree of freedom (model variable or physical quant
in an experimental system) to which control correctio
are applied, based on an understanding of the syste
dynamics. The variation of the Coriolis parameter wi
latitude [by in (1)] results in the equator being
waveguide for trapped ocean wave modes which ha
the form Hns yy,d exps2 1

2 y2y,2d expiskx 2 sntd, with
Hn being the Hermite polynomial of ordern, and where
, ­ 3.2 degrees latitude. The moden ­ 0 is eastward
propagating and is known as an equatorial Kelvin wav
and the n . 1 modes are westward propagating, o
equatorial, Rossby modes. These equatorial ocean Ke
and Rossby waves play a central role in El Niño
dynamics [13]. To see how these modes may be u
to control the chaotic behavior in this model, let us briefl
examine the mechanism of the El Niño cycle, known
the “delayed oscillator” mechanism [18].

Consider a weakening of the easterly winds (ua) in the
central equatorial Pacific, which causes warm water
shift from higher latitudes toward the equator, creating
warm perturbation at the equator and cold perturbatio
off the equator. The resulting deepening thermocli
(largerh) perturbation at the equator propagates eastw
as a warm Kelvin wave, reaching the eastern bound
after about 1 month. Upon reaching the eastern bou
ary, the thermocline deepening signal induces a wa
SST perturbation which reduces the east-west SST gr
ent, and thus further weakens the easterly winds above
equator. The weakened easterly winds amplify the de
ening waves, creating a positive feedback (i.e., a coup
ocean-atmosphere instability) that leads to a rapid wa
ing in the eastern equatorial Pacific Ocean, starting an
Niño event. Meanwhile, the initial cold SST perturbation
off the equator in the central Pacific excite upwelling (i.e
smallerh) perturbations which travel westward as Ross
waves, and are reflected at the western boundary as
equatorial Kelvin waves. Amplified again by the atmo
spheric feedback, these cold Kelvin waves reach the E
ern Pacific, delayed by about 6 months after the origin
wind perturbation, and terminate the El Niño event.

The western boundary of the ocean at the equato
a “choke point” which affects the entire tropical Pacifi
through the reflection of the Rossby waves into Kelv
waves [18]. We therefore chose to control the entire eq
torial Pacific model ocean and atmosphere by apply
small perturbations to the oceanic model fields at the we
ern boundary (x ­ xw) of the Pacific Ocean. The applie
control perturbations have they structure of the Kelvin
mode. Our control variable is thus the Kelvin mode am
plitude at the western boundary,Kwstd, and is a single
degree of freedom out of thousands which exist in t
model. Because the Kelvin mode amplitude decays l
exps2 1

2 y2y,2d away from the equator, the control correc
tion directly affects the oceanic model fields only in a ve
small region near the equator, at the western boundary
1035
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As the first step in applying our method to the con
trol of chaos in this model, we determine its UPO’
in an N dimensional delay-coordinate phase-space r
constructed from the Kelvin wave amplitude at th
western boundaryXstd ­ hXi , i ­ 1, ..., Nj ­ hKwft 2

sN 2 1dtg, ..., Kwst 2 td, KwstdjT . For a given periodp,
we search for phase space pointsXstd that return to the
same neighborhood after a periodp, so that jjXstd 2

Xst 2 pdjj , e for some smalle. Using t ­ 1 year,
and plotting the number of such close pairs as a fun
tion of p, the UPO’s show up as peaks [Fig. 2(a)]. Tw
of the UPO’s are shown in Figs. 2(c) and 2(d). The firs
UPO corresponds to a relatively weak El Niño event eve
4.3 years, while the second corresponds to a strong ev
followed by a very weak one, repeating every 7.83 year

Next, anN 3 N linear map,M, is least-square-fitted to
the model dynamics over a small neighborhood in pha
space near a point that is located along the controll
unstable periodic orbit, and that serves as the cont
point in phase space, by minimizingJsMd ­

P
t jjXstd 2

MXst 2 pdjj2.
The feedback control correction is now calculate

so that when the system approaches the control po
in phase space, the correction brings the phase sp
trajectory toward the stable manifold of the UPO. Th

FIG. 2. (a) Log of number of near returns as a function o
the periodp. Each peak corresponds to an UPO, and the pe
at p ­ 4.3 years is the one stabilized here. (b) A segment
phase space trajectory during a typical standard run, show
the trajectory switching between the two UPO’s of panels (
and (d). The three axes arefKwst 2 2td, Kwst 2 td, Kwstdg.
(c) A 3D reconstructed delay coordinate phase space p
of the near returns forming thep ­ 4.3 years UPO that is
stabilized in the controlled run. Larger balls along the UP
denote smallerGNN and thus more controllable phase spac
points (see text). The most controllable phase space po
with the smallestGNN , where the control correction is actually
applied, is marked by “3”. (d) A UPO with a period of
p ­ 7.83 years.
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model evolution will then bring the trajectory of the
control variable toward the UPO itself [1]. If our choice
of a choke point in space is appropriate, the entire 3
model solution will follow the control variable and settle
on the UPO as well. Suppose that the linear mapM,
evaluated at the control point, hasNs stable eigenvalues
whose eigenvectors span the stable manifold. LetS be an
N 3 Ns rectangular matrix composed of theseNs stable
eigenvectors. LetXstd be the phase space location o
the model trajectory at timet, defined with the origin at
the control point along the controlled UPO. The phas
space location in the stable manifold to which we wish t
bring the model trajectory can be written asSa wherea
is someNs 3 1 coefficient vector. The control correction
can be applied only to the present time Kelvin amplitud
Kwstd ­ XN std, so that the phase space trajectory ca
only be corrected in the direction of a unit vectorX̂N

along the N th axis in phase space. The phase spa
location after the application of the control perturbatio
dXN is, therefore,Xstd 1 X̂NdXN . We are interested in
the control correctiondXN for which the distance of the
corrected phase space location to the stable manifold,d ­
jjSa 2 fXstd 1 X̂N dXNgk, vanishes. dXN is obtained
by solving≠dy≠a ­ 0 and≠dy≠dXN ­ 0 for the a and
dXN which minimized, finding

dXN ­ sXN 2 X̂T
NGXdysX̂T

N GX̂N 2 1d , (3)

where G ­ SsST Sd21ST . Given a time series from
any spatiotemporal system, this simple control law ma
always be derived without additional knowledge of th
dynamics. In the present case, we usedN ­ 3 and
found that typically there is one unstable eigenvalue
M (whose value, representing the amplification over a fu
orbit around the UPO, typically varies around 1.5), on
neutral (value close to 1) and one stable eigenvalue (,1),
so that we setNs ­ 2.

One of our more generally applicable results here
a procedure for choosing the phase space points alo
a given UPO at which control may be applied. Ou
control correction is always applied in the direction o
X̂N in the reconstructed phase space. If, for some cont
point, this direction is parallel to the stable manifold, th
control perturbations alonĝXN cannot bring the phase
space trajectory away from the unstable manifold. Th
uncontrollable situation can be shown to happen whe
GNN ­ X̂T

N GX̂N ­ 1, leading according to (3) to an
infinite amplitude correction. Likewise, a smallerGNN

implies a smaller perturbationdXN required to bringXstd
to the stable manifold, and thus a better phase space po
to apply the control. Figure 2(c) shows how the variatio
of GNN along the stabilized UPO may be used to choos
an appropriate control point in phase space.

During the model integration, the control correction
dXN is calculated using (3). The Kelvin wave amplitude
at xw is corrected bydXN only when the model trajectory
in phase space nears the control point, and only wh
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FIG. 3(color). (a) Left curve: a time series of the Kelvin wave
amplitude on the western boundary of the Pacific Ocean,
which the control is applied from year 150 to 200. Righ
curve: the magnitude of the applied control perturbation
(b) (color) A plot of the equatorial sea surface temperature (±C)
as a function of longitude and time during the same run. Th
controlled, periodic behavior during years 150–200 represen
a full-domain oscillation of a complex spatial structure and
temporal evolution.

dXN is smaller than a prespecified threshold. Figure
shows the model solution with and without control
demonstrating that the procedure outlined here inde
works most efficiently for this complex El Niño model.

Previous works debated whether the aperiodicity i
the El Niño model used here is due to low-order chao
[15], or due to high frequency, small spatial-scale, air-se
interactions in the western Pacific [reflected in Fig. 3(a
as an intermittent noise signal at years 130–135, fo
example] [19]. The existence of unstable manifolds o
the UPO’s and the successful control of chaos in this E
Niño model are a clear demonstration that the aperiodici
in this model is due to low-order chaos (whether E
Niño events in the actual equatorial Pacific are aperiod
due to chaos or noise is still under debate). Eac
unstable spatiotemporal UPO in this system is, of cours
characterized by both different temporal evolution an
different spatial patterns. This leads to an especial
interesting possibility that the small-scale, high-frequenc
“noise” in spatiotemporal systems (such as seen in th
Western Pacific in this model) may be a result o
to
t
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low-order behavior, due to the large-scale spatial field
readjusting when jumping from one UPO to another.

The successful application of the chaos control metho
presented here to a complex PDE El Niño model is
clear demonstration of the robustness and potential of t
method. In addition, the results presented here may a
contribute to the important problem of understanding an
predicting El Niño events in the equatorial Pacific.
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