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Controlling Spatiotemporal Chaos in a Realistic El Nifio Prediction Model
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A method for controlling low-order chaotic behavior of continuous spatiotemporal systems is
developed and demonstrated in a complex, realistic 3D partial differential equation model that is used
successfully for predicting El Nifio events in the equatorial Pacific. An unstable periodic orbit that
involves a full-domain oscillation is stabilized using a feedback control applied to a single degree
of freedom at a carefully chosen single “choke point” in space. A general criterion is presented for
determining the optimal points in reconstructed delay-coordinate phase space at which to apply the
feedback control. [S0031-9007(97)03780-0]

PACS numbers: 05.45.+b, 47.52.+], 92.10.Gk

There has been significant interest in recent years iin a realistic El Nifio model can contribute to the under-
the control of low-order chaotic dynamical systems usingstanding of El Nifio’s dynamics. El Nifio events involve a
small systematic perturbations that lead to the stabilizawidespread warming of the equatorial Pacific Ocean sur-
tion of unstable periodic orbits (UPO) [1,2]. Controlling face water (Fig. 1). They occur irregularly in time, about
large- or infinite-dimensional systems, however, such asvery 2—6 years, dramatically affect worldwide weather,
spatiotemporal systems that are governed by partial differand have important social and economic implications
ential equations, is still in its infancy [3—10]. We present[13]. Recent theories [14,15] attribute El Nifio’s irreg-
here a new approach to the control of spatiotemporal sysslarity to a low order chaos. An important lesson of the
tems that are continuous in both space and time. Thpresent work is that the control of complex spatiotemporal
proposed method is successfully used to control a highlgystems may not be achieved using an “out-of-the-box”
complex model, composed of a 3D spatiotemporal systeralgorithm, but requires a good understanding of the rele-
of partial differential equations (PDE’s), which simulatesvant dynamics. We thus briefly describe now the model
the El Nifio phenomenon in the equatorial Pacific oceatomplexity and the relevant aspects of El Nifio dynam-
and atmosphere. Spatiotemporal systems often do nats before proceeding to the control algorithm. The El
have a system-wide adjustable parameter that can be used
for an Ott-Grebogi-York (OGY) [1,10] control. Our ap-
proach does not require the existence of such a global pa-
rameter; rather it is based on applying OGY-like feedback @ 20N
perturbations to a single degree of freedom of the system 5 10N

[11], at a single point in space. The spatiotemporal sys- = EQ
tem successfully controlled here seems to be significantly © 103
more complicated than the previously controlled discrete ~ 208
systems of coupled chaotic elements [4,6], or relatively

simple or isotropic 1D or 2D systems of PDE’s [3,5,7,8]. 20N
Often, the precise dynamics responsible for the chaotic -5 10N
behavior of systems of such complexity, whether they are 3 EQ
models or experimental systems, is not known. We there- = 108
fore use delay-coordinate phase space reconstruction forﬂ o6
deriving and applying the control law, thus not requir-

ing a knowledge of the detailed dynamics of the system 120E 140E 160E 1B0 160W 140W 120W 100W BOW

[12]. Our approach controls the continuous spatiotempo-
ral system using a continuous reconstruction of the UPO
in phase space; we consequently find that not every point
on the continuous UPO may be used to apply the control

and presept a novel general cr|t.er|on for detgrmlnlng th °C) from the long-term mean during a peak of a model El
controllability of phase space points along a given UPO. y;iso (warming) event (lower panel) and during the peak of a

While we obviously do not propose here the controlia Nina (cooling) event (upper panel) which typically occurs
of actual El Nifio events, we do show that chaos controbetween El Nifio events.
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Nifio model used here (described in detail in [16]) hass the careful identification of the correct spatial point and
proven quite successful in predicting El Nifio events up tadegree of freedom (model variable or physical quantity
one and a half years in advance [17]. It is based on seis an experimental system) to which control corrections
of nonlinear partial differential equations for the oceanare applied, based on an understanding of the system’s
and for the atmosphere, with specified coupling betweerlynamics. The variation of the Coriolis parameter with
them. The equations are written for the deviations fronlatitude [y in (1)] results in the equator being a
the observed spatially variable long-term mean state ofvaveguide for trapped ocean wave modes which have
the equatorial Pacific. This mean state may be seasonaltite form H,(y/¢) exp(—%yz/ﬁ) expi(kx — o,t), with
varying [16], and in the model version used here is set t&, being the Hermite polynomial of order, and where
the time-independent mean July state. Inthe model equd-= 3.2 degrees latitude. The mode= 0 is eastward
tionst is the time,(x, y, z) are the (east, north, up) coordi- propagating and is known as an equatorial Kelvin wave,
nates,(u, v, w) the corresponding ocean water velocities,and then > 1 modes are westward propagating, off
(uq, v,) the atmospheric wind velocity in the (east, north) equatorial, Rossby modes. These equatorial ocean Kelvin
directions,v = (u,v), v, = (u4,v,), andV = (d,,9,); and Rossby waves play a central role in El Nifio’s
the total depth of warm surface waters in the model, alsalynamics [13]. To see how these modes may be used
known as the “thermocline” depth, is(x, y,?); T(x,y,t)  to control the chaotic behavior in this model, let us briefly
is the sea surface temperature (SST)T, andw are the examine the mechanism of the El Nifio cycle, known as
spatially variable specified observed long-term July mearthe “delayed oscillator” mechanism [18].
fields; B = df/dy is the gradient of the Coriolis parame-  Consider a weakening of the easterly windg)(in the
ter; and the terms with and o represent dissipation pro- central equatorial Pacific, which causes warm water to
cesses. H is a mean thermocline depth, agt denotes shift from higher latitudes toward the equator, creating a
gravity acceleration. The model oceanic currents arevarm perturbation at the equator and cold perturbations
driven by the atmospheric wind stregs'®), 7(+)), which  off the equator. The resulting deepening thermocline
is quadratically related to the wind velocity,, v,). The (largerh) perturbation at the equator propagates eastward
atmospheric winds are driven by a heatim@[7,Vv,] as a warm Kelvin wave, reaching the eastern boundary
which is a nonlinear function of the SST and of the at-after about 1 month. Upon reaching the eastern bound-
mospheric wind divergence. The model is composed oéry, the thermocline deepening signal induces a warm
four sets of PDE’s. The first set is of the ocean momenSST perturbation which reduces the east-west SST gradi-
tum and mass conservation equations, ent, and thus further weakens the easterly winds above the
u, — Byv = —g'h, + T(X)[ua,va] — ru equator. The weakened easterly winds amplify the deep-
.y ) B ening waves, creating a positive feedback (i.e., a coupled
Byu = =g'hy + 70ug, vl = rv- (1) ocean-atmosphere instability) that leads to a rapid warm-
h, + HVv = —rh. ing in the eastern equatorial Pacific Ocean, starting an El
A second similar set of PDE's is used to simulateNifio event. Meanwhile, the initial cold SST perturbations
the vertical velocity shear in the ocean and a thirdOff the equator in the central Pacific excite upwelling (i.e.,
effectively 2D set of PDE’s models the momentum angsmallerrz) perturbations which travel westward as Rossby
mass balances of the atmosphere. Finally, the SST #aves, and are reflected at the western boundary as cold
determined by a nonlinear advection-dissipation equatiofquatorial Kelvin waves. Amplified again by the atmo-

roughly of the form spheric feedback, these cold Kelvin waves reach the East-
T, + VT + vW(T + T) + wT. + ern Pacific, de_Iayed by abqut 6 months z_;\jter the original
wind perturbation, and terminate the El Nifio event.
W+ w)T, = —aT. (2) The western boundary of the ocean at the equator is

The model’s finite-difference discretization is based ona “choke point” which affects the entire tropical Pacific
many thousands of grid point variables. The model sothrough the reflection of the Rossby waves into Kelvin
lution is aperiodic and involves unstable interactions bewaves [18]. We therefore chose to control the entire equa-
tween the ocean and the atmosphere, which are manifestéatial Pacific model ocean and atmosphere by applying
through multiple spatial and temporal scales of all modekmall perturbations to the oceanic model fields at the west-
fields. Yet, the previously demonstrated low-order tempoern boundaryX = x,,) of the Pacific Ocean. The applied
rally chaotic behavior of this model [15] makes it a perfectcontrol perturbations have the structure of the Kelvin
candidate for testing chaos-control ideas in a complex, higinode. Our control variable is thus the Kelvin mode am-
dimensional, spatially extended system. The challenge, gflitude at the western boundar¥,,(s), and is a single
course, is to control an UPO that represents the full-domaidegree of freedom out of thousands which exist in the
oscillation of the El Nifio cycle without applying the chaos- model. Because the Kelvin mode amplitude decays like
control corrections at many spatial locations. exq—%yz/ﬁ) away from the equator, the control correc-

One of the main keys to controlling chaos in a complextion directly affects the oceanic model fields only in a very
spatiotemporal system using the approach suggested hesemall region near the equator, at the western boundary.
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As the first step in applying our method to the con-model evolution will then bring the trajectory of the
trol of chaos in this model, we determine its UPQO’s control variable toward the UPO itself [1]. If our choice
in an N dimensional delay-coordinate phase-space reef a choke point in space is appropriate, the entire 3D
constructed from the Kelvin wave amplitude at themodel solution will follow the control variable and settle
western boundaryX(z) = {X;,i = 1,..,N} = {K,[t — on the UPO as well. Suppose that the linear miép
(N — Dr],...K,(t — 7),K,(t)}'. Foragiven periogp, evaluated at the control point, hag stable eigenvalues
we search for phase space point&) that return to the whose eigenvectors span the stable manifold. SLbé an
same neighborhood after a perigd so that||X(r) — N X N, rectangular matrix composed of theSeg stable
X(r — p)ll < € for some smalle. Using 7 = 1 year, eigenvectors. LefX(z) be the phase space location of
and plotting the number of such close pairs as a functhe model trajectory at time, defined with the origin at
tion of p, the UPQO’s show up as peaks [Fig. 2(a)]. Twothe control point along the controlled UPO. The phase
of the UPQO'’s are shown in Figs. 2(c) and 2(d). The firstspace location in the stable manifold to which we wish to
UPO corresponds to a relatively weak El Nifio event evenbring the model trajectory can be written 8s wherea
4.3 years, while the second corresponds to a strong eveistsomeN; X 1 coefficient vector. The control correction
followed by a very weak one, repeating every 7.83 yearscan be applied only to the present time Kelvin amplitude

Next, anN X N linear mapM, is least-square-fitted to K, (t) = Xy(¢), so that the phase space trajectory can
the model dynamics over a small neighborhood in phasenly be corrected in the direction of a unit vect&ry
space near a point that is located along the controlledlong the Nth axis in phase space. The phase space
unstable periodic orbit, and that serves as the contrdbcation after the application of the control perturbation
point in phase space, by minimizidgM) = >, ||X(r) —  6Xy is, therefore X(r) + Xy6Xy. We are interested in
MX(t — p)l|>. the control correctior Xy for which the distance of the

The feedback control correction is now calculatedcorrected phase space location to the stable manifotd,
so that when the system approaches the control pointSa — [X(r) + Xy8Xx]ll, vanishes. 8Xy is obtained
in phase space, the correction brings the phase spabg solvingdd/da = 0 andad/d6Xy = 0 for thea and
trajectory toward the stable manifold of the UPO. Thedé Xy which minimized, finding

§Xy = Xy — X3GX)/(X{GXy — 1), (3)

where G = S(STS)"'ST. Given a time series from
any spatiotemporal system, this simple control law may
always be derived without additional knowledge of the
dynamics. In the present case, we us¥d= 3 and
found that typically there is one unstable eigenvalue of

4 (a)

log(# returns)
-
Q

10° 2 a "6 5 10 M (whose value, representing the amplification over a full
period (years) orbit around the UPO, typically varies around 1.5), one

neutral (value close to 1) and one stable eigenvatub (
so that we sel, = 2.

One of our more generally applicable results here is
a procedure for choosing the phase space points along
a given UPO at which control may be applied. Our
control correction is always applied in the direction of
Xy in the reconstructed phase space. If, for some control
point, this direction is parallel to the stable manifold, the
control perturbations alon&,y cannot bring the phase
space trajectory away from the unstable manifold. This
FIG. 2. (a) Log of number of near returns as a function ofuncontrollable situation can be shown to happen when
the periodp. Each peak corresponds to an UPO, and the pealGyy = Xy GXy = 1, leading according to (3) to an
at p = 4.3 years is the one stabilized here. (b) A segment ofinfinite amplitude correction. Likewise, a small€yy

phase space trajectory during a typical standard run, showin ; ; ; ;
the trajectory switching between the two UPO’s of panels (C)ﬁ‘nplles a smaller perturbatiodXy required to bring(s)

and (d). The three axes af&,.(t — 27), Ku(t — 7), Ku(7)]. to the stable manifold, 'and thus a better phase space point
(c) A 3D reconstructed delay coordinate phase space pld© apply the control. Figure 2(c) shows how the variation
of the near returns forming the = 4.3 years UPO that is of Gyy along the stabilized UPO may be used to choose
stabilized in the controlled run. Larger balls along the UPOgn appropriate control point in phase space.

denote smalletGyy and thus more controllable phase space During the model integration, the control correction

points (see text). The most controllable phase space poin . . . .
with the smallestGyy, where the control correction is actually 8Xy is calculated using (3). The Kelvin wave amplitude

applied, is marked by %”. (d) A UPO with a period of atx, is corrected bys Xy only when the model trajectory
p = 7.83 years. in phase space nears the control point, and only when

© g
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il low-order behavior, due to the large-scale spatial fields
230 (a) e readjusting when jumping from one UPO to another.
220} _————%—: The successful application of the chaos control method

presented here to a complex PDE EI Nifio model is a
clear demonstration of the robustness and potential of the
method. In addition, the results presented here may also
contribute to the important problem of understanding and
predicting El Nifio events in the equatorial Pacific.
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