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Wave Dynamical Chaos in a Superconducting Three-Dimensional Sinai Billiard
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Based on very accurate measurements performed on a superconducting microwave resonator shaped
like a desymmetrized three-dimensional Sinai billiard, we investigate for the first time spectral properties
of the vectorial Helmholtz, i.e., nonquantum wave equation for a classically totally chaotic and theoreti-
cally precisely studied system. We are thereby able to generalize some aspects of quantum chaos and
present some results which are consequences of the polarization features of the electromagnetic waves.
[S0031-9007(97)03807-6]

PACS numbers: 05.45.+b, 03.65.Sq, 41.20.Bt, 41.20.Jb

For nearly 20 years, billiard systems have provided alously increases the resolution of the measured spectra
very effective tool for the investigation of semiclassicaldue to quality factors of up td0’ compared tol0? in
quantization of conservative chaotic systems [1,2]. Thisrormal conducting resonators and signal-to-noise ratios
is due to the fact that even two-dimensional (2D) billiardsof up to 70 dB. The resonator was cooled down to a
(as opposed to billiards of higher dimensionality) aretemperature of 4.2 K and finally evacuated to a pres-
able to model a wide range of fully ergodic systems insure of 0.2 mbar inside a bath cryostat. We were able
Gutzwiller's sense of “hard chaos” [3]. As a matter of to excite the cavity via four different antennas up to a
fact, properties of the wave dynamical spectra of suctrequency limit of 20 GHz given by our HP8510B vec-
low-dimensional but classically nonintegrable systems ar¢or network analyzer which was used for the generation
fully described by the Gaussian orthogonal ensembland detection of the microwave signal. Either the re-
(GOE) of random matrix theory (RMT) [4,5] if the flected signal from one antenna or the transmitted signal
underlying motion is invariant under time reversal. Onbetween two different antennas was measured. Figure 2
the other hand, classically regular, i.e., integrable systemshows a typical transmission spectrum between 6.50 and
lead to totally uncorrelated spectra. 6.75 GHz. Identifying accurately per hand the positions

Up to now investigations on chaotic 3D billiards were of significant peaks of every single spectrum and per-
performed in experiments with electromagnetic [6,7] andorming in the next step a detailed comparison of all the
acoustic [8,9] waves, whereas the hardly feasible numerpossible spectra, a total set of 1881 experimental eigen-
cal modeling was restricted to very special geometries ofnodes was obtained which form the base of the following
high symmetry for the pure Schrddinger problem [10].  investigations.

The goal of the present Letter is to provide for the To check for the mechanical accuracy of the cavity
first time a detailed analysis of a fully chaotic three-and to estimate the effects due to the coupling of the
dimensional (3D) electromagnetic billiard with a clas-isolated resonator to the external world (coupling holes
sically well known and theoretically precisely studied and slightly penetrating coupling wires of the rf cables),
geometry: the 3D-Sinai billiard, specifically its desym-
metrized version given by /48 of a cube with a sphere
in its center; see Fig. 1. The system has to be described
by the time-independent, fully vectorial Helmholtz equa-
tion with electromagnetic boundary conditions. The same
geometry was recently investigated numerically in the
quantum regime [10] described by the time-independent
Schrédinger equation and experimentally with acoustic
waves [9]. Our analysis therefore allows a very distinct
comparison of totally different wave dynamical phenom-
ena in a system with exactly the same classical analogue.
Our results should agree with those of [10] and [9] if the

conjecture holds that RMT is adequate to describe spectra , o
of arbitrary wave phenomena. FIG. 1. Geometry of the desymmetrized 3D-Sinai billiard

. (boldface line) which constitutes one-sixth of the dashed cube.
As several ZD and 3D billiards before' [7:11_13_]’ theEight of those cubes form the full system. As indicated in
electromagnetic resonator was made of niobium which beme figure, one antenna was located in the center of each plane

comes superconducting below 9.2 K. This feature tremensurface of the cavity.

R=85mm
A=170mm
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0+——" L e finally determined by a fast Fourier transform, yielding
a resolution of about 1.2 MHz over a wide frequency
range. Limited by this resolution, a comparison with

m
% 10 the experimental spectrum (with a resolution of 10 kHz)
o allows a one-to-one correspondence between simulation
xg ~80 | and experiment within a region up to 7.5 GHz, including
- , i 94 resonances.

—120 ! i For comparison, the numerically simulated eigenfre-

— = - guencies are given as dashed vertical lines in Fig. 2. Asa
6.50 6.55 6.60 6.65 6.70 6.75

matter of fact, the experimental eigenfrequencies are sys-
tematically up-shifted due to the contraction of the res-
FIG. 2. Excerpt of a typical transmission spectrum. Theonator during the cooldown. From this shift (linearly

figna‘.'thdis.p'ayslthe{ﬁtio of OU.tp‘flt PoweT tto O:”PUt power On increasing with frequency) we extracted the relative con-
ogarithmic scale. The numerically simulated eigenfrequencies, . ... . g B
are given by dashed lines. The shift between experiment an?ﬁraCtIon coefflc:lent(Ax/x)exp ~ 2.0 X 1077, which is

simulation is mainly due to the contraction of the resonatorclose to the value for niobium as given in the literature
during the cooldown. [15], (Ax/x)i = 1.4 X 1073. Beside this effect, every

experimental resonance is individually shifted due to the
we also simulated the spectrum using the electromagnetfgPUPling holes and antennas and the mechanical fabrica-
CAD program maFiA (solution of Maxwell's equation tion tolerances. Howevez, these individual shifts are on
by the finite integration algorithm [14]). The resonator the order of some X 107 and thus much smaller than
was modeled using a mesh consisting 6 points, the effect of the cooldown.
and a full 3D broadband time domain calculation with 10 Prepare the experimental spectrum of extracted
a total number of 150000 time steps was performed, §|genfr¢qgenC|es for the statistical ana!y5|s, we first un-
task which is feasible on a standard workstation witholded it, i.e., rescaled the frequency axis to a mean level

one week of CPU time. The eigenfrequencies werePacing of unity. According to this, in applying the gen-
? eralized electromagnetic Weyl formula [16,17]

Frequency (GHz)

- 8 4 (d 1 — Q)7 - 50
wm () = ST~ : [ aa TG conn .
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to describe the smooth part of the integrated level deneorrelations up to a length afne mean level spacing is
sity (spectral staircase), the spectrum is again checked fgjiven by the nearest neighbor spacing distribution (NND),
completeness. Her&y counts the total number of reso- displaying the probability?(s) for a certain spacing of
nances up to a certain frequengyV denotes the volume two adjacent resonances in the spectrum. Figure 3 [left-
of the geometry, and, is the speed of light. In the linear hand side (I.h.s.)] displayB(s) of the experimental spec-
term, R labels the mean radius of curvature over the surtrum as well as the two limiting curves, “Poisson” for
face o and ) is the dihedral angle along the edges a totally uncorrelated spectrum corresponding to regular
Note that the leading cubic term of this expression is twicanotion on the classical side, and “GOE” for the totally
the corresponding term in the scalar, i.e., quantum probehaotic case. Obviously, the experimental histogram is
lem, and that there is no quadratic term. Both features areery close to the GOE distribution. In the next step we
due to the vectorial character of the electromagnetic fieldinalyzed the spectrum on a larger scale in order to inves-
inside the cavity and thus a consequence of two trandigate long-range correlations. For this purpose we calcu-
verse polarizations of the electromagnetic wave. A comiated 2?(L), which expresses the variance of a number of
parision between Eq. (1) and the integrated experimentaksonances inside an interval of lengtton the unfolded
level density yields an estimate for the number of uncerscale, as well as the related Dyson-Mehta statistig§l.),
tain resonanceAN = (Vexp/Vineo — )Nwta = 4. Here,  also sensitive up ta, i.e., severalmean level spacings.
Ny denotes the complete set of 1881 resonances. Aftefhe result for both properties is given as well in Fig. 3
the extraction of this smooth part, the expected nonsysd.h.s.). Here, two observations can be made. First, the
tematic fluctuations around zero could be observed; thegxperimental curves rapidly deviate from the GOE predic-
are the carrier of all accessible information about the clastion and lie in between the regular and the chaotic case,
sical dynamics inside the billiard. and second, above a certain vallgs,, which is differ-
Statistical measures developed to display the correent for both statisticsIC,, =~ 40, L3, =~ 150), the ex-
lations embedded in these fluctuations were originallyperimental curves run into saturation. This last feature
introduced in the 1950s to describe spectra of nuclear syss exactly what is expected from theory [18], displaying
tems with many degrees of freedom [4]. An adequate anthe fact that for increasingy the given statistics are more
widely tested statistical measure to examine short-rangand more sensitive to specific, i.e., nonuniversal features
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3D bbos included 3D bbos extracted on a more specific scale which provides a bridge be-
1.0 . . - - tween the classical chaotic features and their impact on
~ GOE the electromagnetic spectrum. This scale is given by the
L 05 1 length spectrum of the billiard, which is practically ob-
& Poisson tained through the Fourier transform of the spectral level
0.0/ P T 3 density or its fluctuating part, respectively,
o Poisson ' ' ~ fluc Jmax fluc 27
. e = [ "o e 2 ir)ar. @
S 6 {mllﬂllllllll[”m” ” l i | fain co
hos _;‘i Hm I“""“l 1 Here | denotes the physical length scale. Since the
I OTSTSUTTIUTIUII (1)) covan i s LI propertys1'(1) maps the long periods in frequency space
- Poisson HH”“ onto short scales in length space, the resulting spectrum
g ° mHHHHIIHIIHH 1 shows peaks near the classical periodic orbits of the
< 1t _,,.-s*'"” GOE . billiard. Figure 4 exhibits the lower part of this length
0 spectrum up td = 1.5 m. Here a rich structure of peaks

0 50 100 150 200 0 50 100 150 200 250 can be observed above a minimum length = 0.34 m.

o This first peak belongs to the shortest 3D bouncing ball
FIG. 3. Short-range and Iong-range statistical measures befogg it (3D bbo) of the billiard, propagating along one edge
and after the extraction of 3D bbos; see text of the desymmetrized cube without striking the sphere,
see sketch in the inset.

of the system. In this senda,., separates the universal Exactly this shortest length was used to estimate the
3% . ax Sep saturation parametdro of A3 (see above). In fact, this

;cale which is QOmlnated by the gengral dynamical beh.a\ﬁrst 3D bbo is the shortest nonisolated, neutrally stable
ior of the classical analogue —described by the collectiv

behavior of alllong periodic orbits of the system—rfrom eperiodic orbit of the system. It is highly remarkable that

the non-universal scale which is generated by individua his is not the first periodic orbit of the billiard. The
Iy ) X 9 y ihd hortest unstable periodic orbit runs along the shortest
system-specific attributes—in the present case given b

the shortestperiodic orbits of the billiard. Note that the gdge of the desymmetrized billiard which is intersected

difference betweetl,, of 22 and the value obtained for g()e/eths?«;?:ﬂeirr?’tﬁg?ngergos'?isesiir?eéer(i)??&in: O'é;in i;n the
Ayis LAy ~ 4L¥ [19], which is well reproduced by the ' ponding p

. : ourier spectrum is drastically suppressed due to the
gg’ﬁgdiscpgfgitjsrln ) ggeg;%técc?&y&th:clceor;gm Otfotr[]?] Shortesgesymmetrization of the system itself [10,21]. As a
P min AP max g matter of fact, the obtained length spectrum is totally

1A = 3co  Niowl 2 dominated by bbos of all possible dimensions, not only
M Ininfmax 20 in the quantum case [10], but also in the electromagnetic
where fmax denotes the upper frequency limit of 20 GHz. counterpart. To demonstrate this, we considered the
Using the length of the first observable periodic orbit,contribution of the leading 3D bbos to the given length
Imin = 0.34 m (see below), one estimatdsy,, =~ 125,  spectrum. Therefore, we used a lattice vector description
which is close to the value of Fig. 3. of Berry [22] to label and generate all 3D bbos up to
To characterize all statistical measures more quantita-
tively and in order to checkhow wellthe GOE prediction
describes the results, we also analyzed the experimental 5 prrr T T T T T T
curves according to a model of Berry and Robnik [20]
within the universal region. The basic intention of this
model is to provide a continuous interpolation between
the pure Poissonian and GOE using a mixing-parameter
g which corresponds to the relative phase space volume
that is covered by chaotic trajectories. In the present case
we obtained, for the three statistical measures on the l.h.s.

--- reconstruction
o 3D bbos
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of Fig. 3, gyvp = 0.95 = 0.01, g5 = 0.89 * 0.02, and 0 W W

ga, = 0.91 = 0.02, indicating a small but systematic de- S T T TR P P VAT A
viation from unity, the limit for pure chaotic systems. 00 02 04 06 08 10 12 14
Thus, although the system is fully ergodic on the classical Orbit length I (m)

Zlde Wl_th(?ut.gny st?bl(z ISItzm.jS n rihase Sr_Jrace, t(?e V;IavlﬁG. 4. Experimental length spectrum of the billiard (full
ynamical side pretends their exisience. 10 unders anﬂwe) and the semiclassical reconstruction using only 3D bbos

this pheno_menon, we analyzed the ClaSSica_| a”a[OQU_e f@ashed line). The pictures in the inset show the first unstable
more detail. Therefore, we continued our investigationand the first 3D bouncing ball orbit, respectively.
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2
X ( Z (X* —n?) - §X3 + EX contraction coefficient of niobium. This work has been
0<n<X

27§
NS (x) = =
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and Sy,,, the perpendicular area on which this orbit
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given range up td = 1.5 m, we obtained 55 3D bbos

of different degeneracies and with positiig,,; their 1] S.W. McDonald and A.N. Kaufman, Phys. Rev. Letp
superimposed semiclassical reconstruction due to Eq. (4)[ 1189 (1979). ’ '

is given by the dashed line in Fig. 4. It is highly [2] m.v. Berry, Proc. R. Soc. London 413 183 (1987).
remarkable that nearly the full structure of the given [3] M.C. Gutzwiller, Chaos in Classical and Quantum
length spectrum can be reproduced using only 3D bbos, Mechanics(Springer, New York, 1990).

whereas the influence of the enormous number of unstablé¢4] M. L. Mehta, Random Matrices2nd ed. (Academic Press,
periodic orbits (approximately 36000 up fo= 1.5 m San Diego, CA, 1991).

[23]) is hidden in the background. Discrepancies between[®] O- Bohigas, inChaos and Quantum Physicedited by
the experimental length spectrum and the reconstruction Xl:r;iie(r;dl:nmnofgl,gf‘). ;/osr;gs, and J. Zinn-Justin (Elsevier,
can be predominantly found at the locations of the 3D ' P O :

bbos themselves and arise because of the existence c#s] S. Deus, P. M. Koch, and L. Sirko, Phys. Rev5E, 1146

. ) . . 1995).
subdimensional and tangential bbo manifolds [10]. [7] ,(_| Alt) H.-D. Graf, R. Hofferbert, C. Rangacharyulu
Finally, to demonstrate the influence of the considered” " | Rehfeld, A. Richter, P. Schardt, and A. Wirzba, Phys.
3D bbos on the statistical measures NNEY. and A3, Rev. E54, 2303 (1996).

we repeated our statistical analysis using a modified[8] R.L. Weaver, J. Acoust. Soc. Ar85, 1005 (1989).
unfolding procedure in which the standard Weylian, [9] C. Ellegaard, T. Guhr, K. Lindemann, H.Q. Lorensen,
Eqg. (1), is extracted together with the contribution of  J. Nygérd, and M. Oxborrow, Phys. Rev. Lel6, 1546
the 3D bbos, Eq. (4). For this we used all 3D bbos  (1995).

up to a length/ =3.0 m. The result is given in [10] H. Primack and U. Smilansky, Phys. Rev Letd, 4831
Fig. 3 [right-hand side (r.h.s.)] displaying, now also for (1995). )

32 and As;, nearly perfect agreement with the GOE [11] H.-D. Graf, H. L. Harney, H. Lengeler, C.H. Lewenkopf,

rediction in the universal redime up th The C. Rangacharyulu, A. Richter, P. Schardt, and H.A.
P 9 P Omax. Weidenmdiller, Phys. Rev. Let69, 1296 (1992).

c_orresponding, i.e., corrected mixing parameters, Werfio1 H. Al, H.-D. Graf, H.L. Harney, R. Hofferbert,
fixed to begyyp = 0.96 £ 0.01, gs: = 0.99 = 0.01, and H. Lengeler, C. Rangacharyulu, A. Richter, and P.
ga, = 0.99 = 0.01. Schardt, Phys. Rev. B0, 1 (1994).

In summary, a set of 1881 highly resolved eigenmode$13] H. Alt, H.-D. Graf, H.L. Harney, R. Hofferbert,
of an electromagnetic 3D-Sinai billiard was analyzed H. Lengeler, A. Richter, P. Schardt, and H.A. Weiden-
according to standard methods of random matrix and  mdller, Phys. Rev. Let74, 62 (1995).
periodic orbit theory. Spectral correlations are showr14] T. Weiland, Numerical Modelling, 295 (1996).
to be totally consistent with the predictions of the GOE[15] H.D. Erfling, Ann. Phys41, 467 (1942).
after the systematic extraction of the family of 3D bbos,H% \év' Ll:;llli(gri{n% ghézzp?jngs: (/%\%3)#%04 200 (1677)
which dominate not only the length spectrum of the ‘ : ' ’ ' :
billiard but also lead to dramatic deviations from Gaussiaiw] M.V. Berry, Proc. R. Soc. London A0Q 229 (1985).

. > [19] A. Delon, R. Jost, and M. Lombardi, J. Chem. Ph9s,
characteristics in the measures for long-range correlations, ~ g7, (1991).

3% andA;. ) [20] M.V. Berry and M. Robnik, J. Phys. A7, 2413 (1984).
We would like to thank H. Lengeler and the CERN [21] O. Frank and B. Eckhardt, Phys. Rev5E, 4166 (1996).
workshops for the excellent fabrication of the cavity.[22] M. V. Berry, Ann. Phys131, 163 (1981).

We are very grateful to B. Eckhardt and H. Primack[23] H. Primack, private communication (1996).

1029



