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Wave Dynamical Chaos in a Superconducting Three-Dimensional Sinai Billiard
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Based on very accurate measurements performed on a superconducting microwave resonator shaped
like a desymmetrized three-dimensional Sinai billiard, we investigate for the first time spectral properties
of the vectorial Helmholtz, i.e., nonquantum wave equation for a classically totally chaotic and theoreti-
cally precisely studied system. We are thereby able to generalize some aspects of quantum chaos and
present some results which are consequences of the polarization features of the electromagnetic waves.
[S0031-9007(97)03807-6]
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For nearly 20 years, billiard systems have provided
very effective tool for the investigation of semiclassic
quantization of conservative chaotic systems [1,2]. T
is due to the fact that even two-dimensional (2D) billiar
(as opposed to billiards of higher dimensionality) a
able to model a wide range of fully ergodic systems
Gutzwiller’s sense of “hard chaos” [3]. As a matter
fact, properties of the wave dynamical spectra of su
low-dimensional but classically nonintegrable systems
fully described by the Gaussian orthogonal ensem
(GOE) of random matrix theory (RMT) [4,5] if the
underlying motion is invariant under time reversal. O
the other hand, classically regular, i.e., integrable syste
lead to totally uncorrelated spectra.

Up to now investigations on chaotic 3D billiards we
performed in experiments with electromagnetic [6,7] a
acoustic [8,9] waves, whereas the hardly feasible num
cal modeling was restricted to very special geometries
high symmetry for the pure Schrödinger problem [10].

The goal of the present Letter is to provide for th
first time a detailed analysis of a fully chaotic thre
dimensional (3D) electromagnetic billiard with a cla
sically well known and theoretically precisely studie
geometry: the 3D-Sinai billiard, specifically its desym
metrized version given by 1y48 of a cube with a sphere
in its center; see Fig. 1. The system has to be descri
by the time-independent, fully vectorial Helmholtz equ
tion with electromagnetic boundary conditions. The sa
geometry was recently investigated numerically in t
quantum regime [10] described by the time-independ
Schrödinger equation and experimentally with acous
waves [9]. Our analysis therefore allows a very distin
comparison of totally different wave dynamical phenom
ena in a system with exactly the same classical analog
Our results should agree with those of [10] and [9] if th
conjecture holds that RMT is adequate to describe spe
of arbitrary wave phenomena.

As several 2D and 3D billiards before [7,11–13], th
electromagnetic resonator was made of niobium which
comes superconducting below 9.2 K. This feature trem
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dously increases the resolution of the measured spectr
due to quality factors of up to107 compared to103 in
normal conducting resonators and signal-to-noise ratios
of up to 70 dB. The resonator was cooled down to a
temperature of 4.2 K and finally evacuated to a pres-
sure of 0.2 mbar inside a bath cryostat. We were able
to excite the cavity via four different antennas up to a
frequency limit of 20 GHz given by our HP8510B vec-
tor network analyzer which was used for the generation
and detection of the microwave signal. Either the re-
flected signal from one antenna or the transmitted signal
between two different antennas was measured. Figure 2
shows a typical transmission spectrum between 6.50 and
6.75 GHz. Identifying accurately per hand the positions
of significant peaks of every single spectrum and per-
forming in the next step a detailed comparison of all the
possible spectra, a total set of 1881 experimental eigen-
modes was obtained which form the base of the following
investigations.

To check for the mechanical accuracy of the cavity
and to estimate the effects due to the coupling of the
isolated resonator to the external world (coupling holes
and slightly penetrating coupling wires of the rf cables),

FIG. 1. Geometry of the desymmetrized 3D-Sinai billiard
(boldface line) which constitutes one-sixth of the dashed cube.
Eight of those cubes form the full system. As indicated in
the figure, one antenna was located in the center of each plane
surface of the cavity.
© 1997 The American Physical Society
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FIG. 2. Excerpt of a typical transmission spectrum. Th
signal displays the ratio of output power to input power on
logarithmic scale. The numerically simulated eigenfrequenc
are given by dashed lines. The shift between experiment a
simulation is mainly due to the contraction of the resonat
during the cooldown.

we also simulated the spectrum using the electromagn
CAD program MAFIA (solution of Maxwell’s equation
by the finite integration algorithm [14]). The resonato
was modeled using a mesh consisting of106 points,
and a full 3D broadband time domain calculation wit
a total number of 150 000 time steps was performed
task which is feasible on a standard workstation wi
one week of CPU time. The eigenfrequencies we
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finally determined by a fast Fourier transform, yieldin
a resolution of about 1.2 MHz over a wide frequenc
range. Limited by this resolution, a comparison wi
the experimental spectrum (with a resolution of 10 kH
allows a one-to-one correspondence between simula
and experiment within a region up to 7.5 GHz, includin
94 resonances.

For comparison, the numerically simulated eigenfr
quencies are given as dashed vertical lines in Fig. 2. A
matter of fact, the experimental eigenfrequencies are s
tematically up-shifted due to the contraction of the re
onator during the cooldown. From this shift (linearl
increasing with frequency) we extracted the relative co
traction coefficient sDxyxdexp ø 2.0 3 1023, which is
close to the value for niobium as given in the literatu
[15], sDxyxdlit ø 1.4 3 1023. Beside this effect, every
experimental resonance is individually shifted due to t
coupling holes and antennas and the mechanical fabr
tion tolerances. However, these individual shifts are
the order of some5 3 1024 and thus much smaller than
the effect of the cooldown.

To prepare the experimental spectrum of extrac
eigenfrequencies for the statistical analysis, we first u
folded it, i.e., rescaled the frequency axis to a mean le
spacing of unity. According to this, in applying the gen
eralized electromagnetic Weyl formula [16,17]
Nsmoothsfd ø
8p

3c3
0

Vf3 2

µ
4

3pc0

Z ds
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6pc0

Z
da
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∂
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to describe the smooth part of the integrated level de
sity (spectral staircase), the spectrum is again checked
completeness. Here,N counts the total number of reso
nances up to a certain frequencyf, V denotes the volume
of the geometry, andc0 is the speed of light. In the linear
term, R labels the mean radius of curvature over the su
face s and V is the dihedral angle along the edgesa.
Note that the leading cubic term of this expression is twi
the corresponding term in the scalar, i.e., quantum pro
lem, and that there is no quadratic term. Both features
due to the vectorial character of the electromagnetic fie
inside the cavity and thus a consequence of two tran
verse polarizations of the electromagnetic wave. A com
parision between Eq. (1) and the integrated experimen
level density yields an estimate for the number of unce
tain resonancesDN ø sVexpyVtheo 2 1dNtotal ø 4. Here,
Ntotal denotes the complete set of 1881 resonances. A
the extraction of this smooth part, the expected nons
tematic fluctuations around zero could be observed; th
are the carrier of all accessible information about the cla
sical dynamics inside the billiard.

Statistical measures developed to display the cor
lations embedded in these fluctuations were origina
introduced in the 1950s to describe spectra of nuclear s
tems with many degrees of freedom [4]. An adequate a
widely tested statistical measure to examine short-ran
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correlations up to a length ofone mean level spacing is
given by the nearest neighbor spacing distribution (NND
displaying the probabilityPssd for a certain spacings of
two adjacent resonances in the spectrum. Figure 3 [l
hand side (l.h.s.)] displaysPssd of the experimental spec
trum as well as the two limiting curves, “Poisson” fo
a totally uncorrelated spectrum corresponding to regu
motion on the classical side, and “GOE” for the total
chaotic case. Obviously, the experimental histogram
very close to the GOE distribution. In the next step w
analyzed the spectrum on a larger scale in order to inv
tigate long-range correlations. For this purpose we cal
latedS2sLd, which expresses the variance of a number
resonances inside an interval of lengthL on the unfolded
scale, as well as the related Dyson-Mehta statistics,D3sLd,
also sensitive up toL, i.e., severalmean level spacings
The result for both properties is given as well in Fig.
(l.h.s.). Here, two observations can be made. First,
experimental curves rapidly deviate from the GOE pred
tion and lie in between the regular and the chaotic ca
and second, above a certain valueLmax, which is differ-
ent for both statistics (LS2

max ø 40, LD3
max ø 150), the ex-

perimental curves run into saturation. This last featu
is exactly what is expected from theory [18], displayin
the fact that for increasingL the given statistics are mor
and more sensitive to specific, i.e., nonuniversal featu
1027
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FIG. 3. Short-range and long-range statistical measures be
and after the extraction of 3D bbos; see text.

of the system. In this senseLmax separates the universa
scale which is dominated by the general dynamical beh
ior of the classical analogue —described by the collect
behavior of alllong periodic orbits of the system—from
the non-universal scale which is generated by individ
system-specific attributes—in the present case given
the shortestperiodic orbits of the billiard. Note that the
difference betweenLmax of S2 and the value obtained fo
D3 is LD3

max ø 4LS2

max [19], which is well reproduced by the
given spectrum. Theoretically, the length of the short
periodic orbitslmin depends onLD3

max according to [7]

LD3
max ­

3c0

lminfmax

Ntotal

2
, (2)

wherefmax denotes the upper frequency limit of 20 GH
Using the length of the first observable periodic orb
lmin ­ 0.34 m (see below), one estimatesLD3

max ø 125,
which is close to the value of Fig. 3.

To characterize all statistical measures more quant
tively and in order to checkhow wellthe GOE prediction
describes the results, we also analyzed the experime
curves according to a model of Berry and Robnik [2
within the universal region. The basic intention of th
model is to provide a continuous interpolation betwe
the pure Poissonian and GOE using a mixing-parame
q which corresponds to the relative phase space volu
that is covered by chaotic trajectories. In the present c
we obtained, for the three statistical measures on the l.
of Fig. 3, qNND ­ 0.95 6 0.01, qS2 ­ 0.89 6 0.02, and
qD3 ­ 0.91 6 0.02, indicating a small but systematic de
viation from unity, the limit for pure chaotic systems
Thus, although the system is fully ergodic on the classi
side without any stable islands in phase space, the w
dynamical side pretends their existence. To underst
this phenomenon, we analyzed the classical analogu
more detail. Therefore, we continued our investigati
1028
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on a more specific scale which provides a bridge be
tween the classical chaotic features and their impact o
the electromagnetic spectrum. This scale is given by th
length spectrum of the billiard, which is practically ob-
tained through the Fourier transform of the spectral leve
density or its fluctuating part, respectively,

r̃flucsld ­
Z fmax

fmin
rflucsfd exp

µ
i

2p

c0
lf

∂
df . (3)

Here l denotes the physical length scale. Since th
propertyr̃flucsld maps the long periods in frequency space
onto short scales in length space, the resulting spectru
shows peaks near the classical periodic orbits of th
billiard. Figure 4 exhibits the lower part of this length
spectrum up tol ­ 1.5 m. Here a rich structure of peaks
can be observed above a minimum lengthlmin ­ 0.34 m.
This first peak belongs to the shortest 3D bouncing ba
orbit (3D bbo) of the billiard, propagating along one edge
of the desymmetrized cube without striking the sphere
see sketch in the inset.

Exactly this shortest length was used to estimate th
saturation parameterLmax of D3 (see above). In fact, this
first 3D bbo is the shortest nonisolated, neutrally stab
periodic orbit of the system. It is highly remarkable tha
this is not the first periodic orbit of the billiard. The
shortest unstable periodic orbit runs along the shorte
edge of the desymmetrized billiard which is intersecte
by the sphere, and it possesses a lengthl

upo
min ­ 0.17 m;

see sketch in the inset. The corresponding peak in th
Fourier spectrum is drastically suppressed due to th
desymmetrization of the system itself [10,21]. As a
matter of fact, the obtained length spectrum is totall
dominated by bbos of all possible dimensions, not onl
in the quantum case [10], but also in the electromagnet
counterpart. To demonstrate this, we considered th
contribution of the leading 3D bbos to the given length
spectrum. Therefore, we used a lattice vector descriptio
of Berry [22] to label and generate all 3D bbos up to

FIG. 4. Experimental length spectrum of the billiard (full
line) and the semiclassical reconstruction using only 3D bbo
(dashed line). The pictures in the inset show the first unstab
and the first 3D bouncing ball orbit, respectively.
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a certain length and determined their contribution o
r

fluc
bbo sfd ­ dNfluc

bbo ydf through [7]

Nfluc
bbo sXd ­

2pSbbo

l2
bbo

3

√ X
0,n,X

sX2 2 n2d 2
2
3

X3 1
1
2

X2

!
,

(4)

with X ­ lbbofyc0. Here, the length of a given 3D
bbo, lbbo, was deduced directly from the lattice vecto
and Sbbo, the perpendicular area on which this orb
exists, was fixed in a Monte-Carlo simulation. In th
given range up tol ­ 1.5 m, we obtained 55 3D bbos
of different degeneracies and with positiveSbbo; their
superimposed semiclassical reconstruction due to Eq.
is given by the dashed line in Fig. 4. It is highly
remarkable that nearly the full structure of the give
length spectrum can be reproduced using only 3D bb
whereas the influence of the enormous number of unsta
periodic orbits (approximately 36 000 up tol ­ 1.5 m
[23]) is hidden in the background. Discrepancies betwe
the experimental length spectrum and the reconstruct
can be predominantly found at the locations of the 3
bbos themselves and arise because of the existence
subdimensional and tangential bbo manifolds [10].

Finally, to demonstrate the influence of the consider
3D bbos on the statistical measures NND,S2 and D3,
we repeated our statistical analysis using a modifi
unfolding procedure in which the standard Weylian
Eq. (1), is extracted together with the contribution o
the 3D bbos, Eq. (4). For this we used all 3D bbo
up to a length l ­ 3.0 m. The result is given in
Fig. 3 [right-hand side (r.h.s.)] displaying, now also fo
S2 and D3, nearly perfect agreement with the GOE
prediction in the universal regime up toLmax. The
corresponding, i.e., corrected mixing parameters, we
fixed to beqNND ­ 0.96 6 0.01, qS2 ­ 0.99 6 0.01, and
qD3 ­ 0.99 6 0.01.

In summary, a set of 1881 highly resolved eigenmod
of an electromagnetic 3D-Sinai billiard was analyze
according to standard methods of random matrix a
periodic orbit theory. Spectral correlations are show
to be totally consistent with the predictions of the GO
after the systematic extraction of the family of 3D bbo
which dominate not only the length spectrum of th
billiard but also lead to dramatic deviations from Gaussia
characteristics in the measures for long-range correlatio
S2 andD3.
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