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Lyapunov Exponents, Singularities, and a Riddling Bifurcation
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(Received 31 March 1997)

There are few examples in dynamical systems theory which lend themselves to exact computa
of macroscopic variables of interest. One such variable is the Lyapunov exponent which measure
average attraction of an invariant set. This article presents a family of noninvertible transforma
of the plane for which such computations are possible. This model sheds additional insight
the notion of what it can mean for an attracting invariant set to have a riddled basin of attrac
[S0031-9007(97)03805-2]
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Dynamical systems theory studies the evolution
a given system. While many studies concentrate
quantifying the long-term behavior of invertible maps
not all dynamical systems have this property; separa
points may map to a single phase point after one
many iterations, while other phase points may not ha
a forward image at all. In this latter case, these maps
defined as noninvertible.

The primary focus of this article is a riddling bifur-
cation found in families of noninvertible maps and th
role played by singularities in their global dynamics.
is likely that such dynamics are always present whenev
Newton’s method is used to find the stationary solutio
to an evolution equation.

Since complicated dynamical behavior can often com
from the simplest maps, we will present examples
this riddling bifurcation in systems derived from severa
families of polynomial factorization methods applied t
low-order polynomials. By studying the interactions o
fixed points, singular curves, and invariant lines, w
present a possible new bifurcation, or “eruption.” W
define an eruption in a noninvertible mapping as
bifurcation involving the merger of an attracting periodi
orbit or fixed point with a point on a singular curve. Thi
results in a transfer of stability from the attracting period
orbit to another invariant set. For a more comple
discussion of eruptions, see the recent publication
Billings and Curry [1].

Boyd noted in his 1977 study of Bairstow’s factoriza
tion method [2] that, for a “modification” of that method
an invariant line exhibited a “type of stability.” That is
an initial condition chosen in a neighborhood of the in
variant line appeared to remain in a neighborhood of th
line, but not in the normal way of shadowing. We believ
that Boyd may have discovered an early example of tran
verse stability. He also reported that points escaped fr
a neighborhood of the invariant line and, hence, may ha
also discovered an occurrence of what is now known
riddling of the basin of attraction of the invariant line.

While noninvertible dynamical systems in greater tha
one dimension have not been widely studied, seve
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recent articles that explored this area involved work
Lai, Grebogi, Yorke, and Venkataramani [3], Alexand
Hunt, Kan, and Yorke [4], and Bischi and Gardini [5].

The context of our problem is as follows: As
parametera increases through the critical valueac, two
attracting fixed points merge along the invariant line in
the point where the singular curve intersects it.

Definition 1 (singular curve)—A point su, yd is singu-
lar if, in a rational map, the denominator of any comp
nent is zero at the pointsu, yd. A setS is singular if every
su, yd [ S is singular. A singular curve is a singular s
defined by a functionhsu, yd ­ 0.

Definition 2 (invariant line)—A set S is invariant for a
function f if, for all x [ S, fsxd [ S. An invariant line
is a line with this invariance property.

For a . ac, the invariant line persists but with in
finitely many periodic orbits and no fixed points. Th
dynamics along the invariant line are expanding, a
the Lyapunov exponent corresponding to the eigenv
tor parallel to the line is greater than 0. The Lyapun
exponent for the transverse eigenvector is negative
ac , a , a0, where we define the parametera0 to be
that parameter value for which the transverse Lyapu
exponent is exactly zero.

When the transverse Lyapunov exponent is negat
the invariant line is an attractor in the sense of Miln
[6]. But, due to a new dynamical phenomenon cal
a “focal point” [5] and an associated “bow tie,” poin
arbitrarily close to the invariant line are allowed to esca
to the basin of another attractor. The dynamics can a
admit riddled basins. In the presence of singularities,
conjecture that basins must always be riddled.

Definition 3 ( focal point)—A focal point for a mapT
is a point suf , yfd such that at least one component
T suf , yfd maps to the form0

0 .
Definition 4 (bow tie)—A bow tie in two dimensions is

roughly an hourglass shaped region symmetrically divid
by the focal point.

Due to noninvertibility, the preimages of the focal poi
are dense in the invariant line, making the preimages
the vertex of the bow tie also dense. Therefore, po
© 1997 The American Physical Society
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belonging to preimages of the bow tie, no matter how clo
to the attracting invariant line, will escape to the oth
attractor.

For example, the following family of noninvertible
transformations arise from factoring a cubic polynomia

Ba

µ
u
y

∂
­

0B@ u31usy2a11d1a
2u21y

ysu21a21d12au
2u21y

1CA .

This is Bairstow’s method applied to a cubic polynomia
(See Ref. [1] for the derivation.) One fixed point has t
formular1 ­ s 1

a d. Note that the other roots,r2 andr3, are
real for valuesa #

1
4 . The stability of the fixed points are

determined by examining the eigenvalues of the Jacob
matrix of Ba. An immediate conclusion is that the fixe
points of Ba are contractive when they exist since a
entries of the Jacobian matrix are identically zero wh
evaluated at such points, except whena ­ 1

4 .
The singular set forBa is defined byhsu, yd : 2u2 1

y ­ 0j. The focal points ofBa must belong to this
set, and arehs1, 22d, s0, 0dj. Only s1, 22d lies along the
invariant line,L1 : y ­ 2u 2 1, and plays a part in the
bifurcation.

The presence of an invariant line in this examp
is traceable to the existence of a linear factor in t
underlying polynomial. (See Ref. [1] or [2] for mor
details.) For values ofa , 1y4, the three fixed points
are connected by three invariant lines. Ata ­ ac ­ 1y4,
two fixed points,r2 and r3, and the two invariant lines
connecting them tor1 merge into one. Fora . 1y4, only
r1 andL1 exist.

The bow tie can be roughly estimated by two triangl
with a common vertex at the focal point. The base of t
triangles are parallel and equidistant from the invaria
line, while the sides are defined by the tangent to
singular curve at the focal point and the tangent to
preimage of the singular curve at the focal point.

Linearizing the map in a neighborhood of the invaria
line and making the substitutiony ! 2u 2 1, we find
that the eigenvalues and eigenvectors of the lineariza
at any pointu along the invariant line are

lksud ­
2sa 1 u 1 u2d

s2u 1 1d2
, ek ­

µ
1

21

∂
,

l'sud ­
a 1 u 1 u2

s2u 1 1d su 2 1d
, e' ­

µ
1
2

∂
.

As a exceeds1
4 , there is an eruption, which produces a

infinite number of periodic and aperiodic orbits. This c
be proven by establishing the existence of a topologi
conjugacy betweenBa restricted to the invariant line and
a degree two rational mapping.

Denote theu component ofBa restricted to the invari-
ant line, byL1 : R ! R,

L1sud ­
u2 2 a
2u 1 1

,

µ
a .

1
4

∂
.

se
er

l:

l.
he

ian
d
ll
en

le
he
e

es
he
nt

the
the

nt

tion

n
an
cal

The conjugating transformation is

hsxd ­
1
2

1
1
p

arctan

µ
2x 1 1

p
4a 2 1

∂
, (1)

for the conjugacy:h ± L1 ± hsxd21 ­ gsxd, with gsxd
defined forx [ I : f0, 1g by

gsxd ­

(
2x, x [ f0, 1

2 d
2x 2 1, x [ f 1

2 , 1g
. (2)

Note thatgsxd is conjugate toL1sud and is independent
of a. The dynamics ofgsxd are well understood from
both a topological and measure theoretical point of vie
Further, as long as the derivative ofg exceeds one in
absolute value, a result due to Bowen [7] allows u
to conclude that there is an invariant ergodic measu
associated with the transformed family of mapping
Using the conjugacyhsxd from (1), the conjugate measure
must bersdxd ­

dh
dx dx. Further, preimages of the foca

point are dense in the unit interval.
There are few examples where dynamical system

depending continuously on a bifurcation parameter sho
continuity properties in their characteristic exponents
functions of that parameter (see Ruelle [8]). Since w
have explicit formulas for both the transversal and paral
growth rates associated with the linearization along t
invariant line L1, we proceed in our investigation by
determining the behavior of those two eigenvalues asa
is varied. Using the space average formula, we compu
the Lyapunov exponents exactly:

Lsld ­
Z x1

x0

ln

Ç
df
dx

Ç
rsdxd .

Then the Lyapunov exponent forBa along the invariant
line can be determined by

Lslkd ­

p
4a 2 1

2p

Z `

2`

ln j
2sa1x1x2d

s2x11d2 j

x2 1 x 1 a
dx

­ ln 2 , (3)

Lsl'd ­

p
4a 2 1

2p

Z `

2`

ln j
a1x1x2

s2x11d sx21d j

x2 1 x 1 a
dx

­
1
2

ln

µ
4a 2 1
2 1 a

∂
. (4)

The characteristic exponent associated with the ra
of expansion along the invariant line agrees with o
proposition that, in one dimension, the map behav
like gsxd in (2). That value is constant and equal t
ln 2. The transversal growth rate along a typical orb
is monotonically increasing. This equation indicates
decrease in the stability of the invariant line to transver
perturbations asa increases (noted by Boyd). There
is a critical parameter value ata ­ 1 for which the
invariant line is, on average, neutrally stable to transver
perturbations. Our conclusion is that basin riddling fo
1019
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this example is initially associated with singularities, foca
points, bow ties, and transverse Lyapunov exponents.

In Fig. 1, we show the basin map for the bow ti
whena ­ 0.75. Notice how the white points, which are
essentially preimages of the bow tie, match with the wh
points that converge to the fixed point in Fig. 2. Thes
points riddle the invariant line’s basin. We know tha
the lineu ­ 1, which passes through the bow tie and th
focal point, collapses to the fixed point in one step. Th
is more evidence why the bow tie is a region where poin
should escape from the attractor.

Further, the loss of stability to transverse perturbatio
does not imply that saddles no longer exist along t
invariant line. For example, we check that the period tw
orbit, defined by the formula

Per2sad ­ 2
1
2

6

p
4a 2 1

2
p

3
,

has eigenvalueslk ­ 4 andl' ­ 2114a
a27 . This periodic

point does not become a source untila ­ 1.40, well
above the threshold value indicated for neutral stabili
of the invariant line. However, asa exceeds 1,Lsl'd is
positive, and funnels appear as described in [3].

After this discussion forBa, the basin map in Fig. 2
makes more sense fora ­ 0.75. The basin of attraction
of the invariant line is “riddled” [9] because any neighbor
hood containing points which converge to the invariant lin
also contain points that converge to the fixed point. W
also note that, as the bifurcation parameter increases,
density of the points converging to the invariant line ap
pears to decrease, as predicted by the Lyapunov expone

FIG. 1. This is a basin map for the bow tie phenomena in t
B0.75 map. The white points have been mapped to the bow
within 200 iterations.
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We conjecture that a consequence of having a nega
Lyapunov exponent is that, for all parameter values1

4 ,

a , 1, the invariant line must attract a set of pos
tive measure in the plane. Such a result would be sim
to the ergodic attractors theorem forC2 functions [4].
Numerical evidence for this appears in the attracto
dimension. The box-counting dimension is very clo
to 2 for the range ofa when the Lyapunov exponent is
negative (see Table I).

Riddling in the above example is associated with t
existence of a singular curve and a focal point of t
map, and apparently not due to a symmetry break
bifurcation. Eruptions are present in other factorizati
methods that have even more complicated dynam
behavior thanBa. Consider the map,

Ma

µ
u
y

∂
­

0BB@ s12ad su22y2d1u4y22
p

6 ay22u2y21y4y6
su323uy2d

3
p

6 a16sa21dy13u2y25y3

3su223y2d

1CCA .

This map has three invariant lines, forming an equilate
triangle. The three singular lines crossing ats0, 0d are the
perpendicular bisectors of the triangles. Fora ,

1
4 , there

are six fixed points. Ata ­ 1
4 , the fixed points coalesce

by pairs along their respective invariant lines into poin
where the singular lines cross the invariant lines, and th
eruptions happen simultaneously. The focal points are
the vertices of the triangle formed by invariant lines.

There is a threefold symmetry inMa, and the map
is repeated every2py3 radians (see Fig. 3). In each
subregion, there is also a reflection symmetry splitti
the region in half along the singular line contained
that region. The rest of the discussion will perta

FIG. 2. This graph is the basin map associated withB0.75.
The black points have not converged to the fixed points1, 0.75d
(in black) in 200 iterations.
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TABLE I. Table of box-counting dimensions for the attracto
in Ba asa is varied from 0.255 to 1.0.

Box-counting
a dimension

0.255 1.98846
0.3 1.98462
0.4 1.96284
0.5 1.96028
0.6 1.95588
0.7 1.93677
0.8 1.91873
0.9 1.92132
1.0 1.91078

only to l1sud : y ­ 2
p

3y2, since the dynamics in a
neighborhood of other lines is similar.

We can simplifyMa to the following one-dimensional
map onl1:

t1sud ­ u 2
2u2 1 4a 2 1

4u
.

We can determine a similar conjugacy togsxd defined in
(2) using the function

jsxd ­
1
2

1
1
p

arctan

√s
2

4a 2 1
x

!
. (5)

The behavior alongl1 must be qualitatively similar to the
behavior of the dynamics on the invariant line inBa, and
we expect the same Lyapunov exponent for the paral
eigenvector. But what about the transverse expansion ra

The eigenvalues of the linearization forl1 are

l' ­
2u2 1 4a 2 1

2u2 2 9
,

FIG. 3. This is the basin map associated withM0.5. The
three invariant lines form a triangle and the singular lines cro
through the origin.
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lk ­
2u2 1 4a 2 1

4u2 .

As expected from the conjugacy,Lslkd ­ ln 2. The
transverse Lyapunov exponent is different from (4) by
constant,

Lsl'd ­

p
2s4a 2 1d

p

Z `

2`

ln j
2u214a21

2u229 j

2u2 1 4a 2 1
du

­ ln

µ
4a 2 1
2 1 a

∂
.

ThereforeLsl'd is negative fora , 1. This is another
example of where the invariant line is an attractor, bu
because the singular curve passes through the focal po
on the invariant line, there is a region where points esca
to another attractor, and basins for the three invaria
lines become riddled in the presence of symmetry. Aga
riddling is not due to loss of symmetry but because of th
presence of singular lines.

Here, it is easier to believe that each line attracts a s
of positive measure for14 , a , 1. As a exceeds one
and the three lines lose their stability, almost all iterate
appear to execute ergodic behavior on the entire pha
space of the system. Further, since there are no oth
attractors present and there are saddles on each of
invariant lines, again riddling seems to be associated w
sets of initial conditions having zero measure that esca
to other basins.

This article presented two examples of a riddling bifur
cation caused by singularities. While few problems len
themselves to the exact determination of their Lyapuno
exponents, here we employ this property to accentuate
unexpected riddling of a basin of attraction in the pres
ence of negative transverse Lyapunov exponents after
bifurcation. For noninvertible maps, other important ele
ments contributing to the riddling include focal points an
bow ties. We also conjecture that the new basin has po
tive measure in the plane. Riddling is a complicated ph
nomenon and by no means fully understood and clea
deserving of additional study.
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