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Lyapunov Exponents, Singularities, and a Riddling Bifurcation
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There are few examples in dynamical systems theory which lend themselves to exact computations
of macroscopic variables of interest. One such variable is the Lyapunov exponent which measures the
average attraction of an invariant set. This article presents a family of noninvertible transformations
of the plane for which such computations are possible. This model sheds additional insight into
the notion of what it can mean for an attracting invariant set to have a riddled basin of attraction.
[S0031-9007(97)03805-2]

PACS numbers: 05.45.+b

Dynamical systems theory studies the evolution ofrecent articles that explored this area involved work by
a given system. While many studies concentrate oibai, Grebogi, Yorke, and Venkataramani [3], Alexander,
guantifying the long-term behavior of invertible maps, Hunt, Kan, and Yorke [4], and Bischi and Gardini [5].
not all dynamical systems have this property; separate The context of our problem is as follows: As a
points may map to a single phase point after one oparameters increases through the critical valug, two
many iterations, while other phase points may not havattracting fixed points merge along the invariant line into
a forward image at all. In this latter case, these maps aréhe point where the singular curve intersects it.
defined as noninvertible. Definition 1 (singular curve}-A point (u, v) is singu-
The primary focus of this article is a riddling bifur- lar if, in a rational map, the denominator of any compo-
cation found in families of noninvertible maps and thenent is zero at the poirtt;, v). A setS is singular if every
role played by singularities in their global dynamics. It (u,v) € S is singular. A singular curve is a singular set
is likely that such dynamics are always present whenevetefined by a functiork(u, v) = 0.
Newton’s method is used to find the stationary solutions Definition 2 (invariant line}—A setS is invariant for a
to an evolution equation. functionf if, for all x € §, f(x) € S. Aninvariant line
Since complicated dynamical behavior can often comés a line with this invariance property.
from the simplest maps, we will present examples of For a > a., the invariant line persists but with in-
this riddling bifurcation in systems derived from severalfinitely many periodic orbits and no fixed points. The
families of polynomial factorization methods applied to dynamics along the invariant line are expanding, and
low-order polynomials. By studying the interactions of the Lyapunov exponent corresponding to the eigenvec-
fixed points, singular curves, and invariant lines, wetor parallel to the line is greater than 0. The Lyapunov
present a possible new bifurcation, or “eruption.” Weexponent for the transverse eigenvector is negative for
define an eruption in a noninvertible mapping as az. < a < ay, where we define the parametes to be
bifurcation involving the merger of an attracting periodic that parameter value for which the transverse Lyapunov
orbit or fixed point with a point on a singular curve. This exponent is exactly zero.
results in a transfer of stability from the attracting periodic When the transverse Lyapunov exponent is negative,
orbit to another invariant set. For a more completethe invariant line is an attractor in the sense of Milnor
discussion of eruptions, see the recent publication by6]. But, due to a new dynamical phenomenon called
Billings and Curry [1]. a “focal point” [5] and an associated “bow tie,” points
Boyd noted in his 1977 study of Bairstow’s factoriza- arbitrarily close to the invariant line are allowed to escape
tion method [2] that, for a “modification” of that method, to the basin of another attractor. The dynamics can also
an invariant line exhibited a “type of stability.” That is, admit riddled basins. In the presence of singularities, we
an initial condition chosen in a neighborhood of the in-conjecture that basins must always be riddled.
variant line appeared to remain in a neighborhood of that Definition 3 (focal point}—A focal point for a maprl’
line, but not in the normal way of shadowing. We believeis a point (us, vs) such that at least one component of
that Boyd may have discovered an early example of transf (us, v) maps to the forng_
verse stability. He also reported that points escaped from Definition 4 (bow tie}—A bow tie in two dimensions is
a neighborhood of the invariant line and, hence, may haveoughly an hourglass shaped region symmetrically divided
also discovered an occurrence of what is now known aby the focal point.
riddling of the basin of attraction of the invariant line. Due to noninvertibility, the preimages of the focal point
While noninvertible dynamical systems in greater thanare dense in the invariant line, making the preimages of
one dimension have not been widely studied, severahe vertex of the bow tie also dense. Therefore, points
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belonging to preimages of the bow tie, no matter how clos& he conjugating transformation is
to the attracting invariant line, will escape to the other

1 1 2x + 1
attractor. h(x) = — + — arctan ———=|, @
For example, the following family of noninvertible 2 77 Vda — 1
transformations arise from factoring a cubic polynomial: {5, the conjugacy:h o L; o h(x)"! = g(x), with g(x)
Brulv—a+t1)+a defined forx € I : [0, 1] by
B <M> _ 2u’+v 5 [O 1)
a v(u+a—1)+2au . X X € E)
v oy a— = ’ 20 2
2u*+ g(x) [2}( _ 1’ = [%,1] ( )

This is Bairstow’s method applied to a cubic polynomial. ) ) o
(See Ref. [1] for the derivation.) One fixed point has theNote thatg(x) is conjugate tol;(u) and is independent
formular; = (). Note that the other roots; andr;, are ~ Of a. The dynamics ofg(x) are well understood from

real for values: < % The stability of the fixed points are both a topological and measure theoretical point of view.

determined by examining the eigenvalues of the JacobiahtIther. as long as the derivative gfexceeds one in

matrix of B,. An immediate conclusion is that the fixed apsolute value, a result due to Bowen [7] allows us

points of B, are contractive when they exist since all to conclude that there is an mvarlant_ergodlc measure

entries of the Jacobian matrix are identically zero wherfSSociated with the transformed family of mappings.

evaluated at such points, except wher %_ Using the conjug%ﬁ(x) from (1), the.conjugate measure
The singular set foB, is defined by{(u,v) : 2u®> +  Must bep(dx) = I dx. Eu.rther, preimages of the focal

v = 0} The focal points ofB, must belong to this Pointare dense in the unit interval.

set, and ard(1, —2),(0,0)}. Only (1, —2) lies along the Therg are few examples V\_/here 'dynamical systems
invariant line,L, : v = —u — 1, and plays a part in the depending continuously on a bifurcation parameter show

bifurcation. continuity properties in their characteristic exponents as

The presence of an invariant line in this examplefunctions of that parameter (see Ruelle [8]). Since we
is traceable to the existence of a linear factor in thehave explicit formulas for both the transversal and parallel
underlying polynomial. (See Ref. [1] or [2] for more growth rates associated with the linearization along the
details.) For values of: < 1/4, the three fixed points invariant line L,, we proceed in our investigation by
are connected by three invariant lines. At a, = 1/4, determining the behavior of those two eigenvaluesias
two fixed points,r and r3, and the two invariant lines IS varied. Using the space average formula, we computed
connecting them te; merge into one. Foz > 1/4, only ~ the Lyapunov exponents exactly:

r1 andL; exist. xi df

The bow tie can be roughly estimated by two triangles AQA) = f In I ’ p(dx).
with a common vertex at the focal point. The base of the w0
triangles are parallel and equidistant from the invarianiThen the Lyapunov exponent fd@, along the invariant

line, while the sides are defined by the tangent to thdine can be determined by

singular curve at the focal point and the tangent to the T o | |Eetxtx)
. : . Vda — 1 n| =G|
preimage of the singular curve at the focal point. Ay = o f T dx
Linearizing the map in a neighborhood of the invariant 77 e Xm T X T ad
line and making the substitution — —u — 1, we find =In2, 3
that the eigenvalues and eigenvectors of the linearization .
at any pointx along the invariant line are AL, = Vda — 1 [“’ In Iml I
A()_Z(a—i-u—i-uz) _<1> * 21 —w X2+ x+a
IR Qu+12 T ) 1 (4a — 1
= —In . (€]
L) = a+ u+ u? _<1> 2 \2+a
L Qu+ 1) —1) “L=\) The characteristic exponent associated with the rate

. . . of expansion along the invariant line agrees with our
. Asaexceed%,ther_e IS an eruptlo_n,v_vhlch_produc_es anproposition that, in one dimension, the map behaves
infinite number of periodic and aperiodic orbits. This can o 2(x) in (2)’ That value is con’stant and equal to
be proven by establlshmg_ the existence Of a tc_)pologlcq 2. The transversal growth rate along a typical orbit
conjugacy betweprBa restrlc_ted to the invariant line and is monotonically increasing. This equation indicates a
a degree two rational mapping. . . . decrease in the stability of the invariant line to transverse
Dgnote theu component ofB,, restricted to the invari- perturbations as: increases (noted by Boyd). There
antline, byL; : R — R, is a critical parameter value at = 1 for which the
Li(u) — u — a > 1 invariant line is, on average, neutrally stable to transverse
1 u—+1 a 4/ perturbations. Our conclusion is that basin riddling for
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this example is initially associated with singularities, focal We conjecture that a consequence of having a negative
points, bow ties, and transverse Lyapunov exponents. Lyapunov exponent is that, for all parameter vall;}eg

In Fig. 1, we show the basin map for the bow tiea < 1, the invariant line must attract a set of posi-
whena = 0.75. Notice how the white points, which are tive measure in the plane. Such a result would be similar
essentially preimages of the bow tie, match with the whiteto the ergodic attractors theorem f6r functions [4].
points that converge to the fixed point in Fig. 2. TheseNumerical evidence for this appears in the attractor's
points riddle the invariant line’s basin. We know that dimension. The box-counting dimension is very close
the lineu = 1, which passes through the bow tie and theto 2 for the range ot when the Lyapunov exponent is
focal point, collapses to the fixed point in one step. Thisnegative (see Table I).
is more evidence why the bow tie is a region where points Riddling in the above example is associated with the
should escape from the attractor. existence of a singular curve and a focal point of the

Further, the loss of stability to transverse perturbationsnap, and apparently not due to a symmetry breaking
does not imply that saddles no longer exist along théifurcation. Eruptions are present in other factorization
invariant line. For example, we check that the period twomethods that have even more complicated dynamical

orbit, defined by the formula behavior tharB,. Consider the map,
1 4a — 1 (1—a) (W —v)+u/2—6 av—2u*v>+v*/6
PeQ(a) =—-—=x — uy (13 =3uv?)
2 2\/§ M, v - 3/6a+6(a—1)v+3u2v—>5v3
l+4a 3w=3v?)

has eigenvalueg; = 4 andA, = ———. This periodic

point does not become a source uniil= 1.40, well ~ This map has three invariant lines, forming an equilateral

above the threshold value indicated for neutral stabilitytriangle. The three singular lines crossind@) are the

of the invariant line. However, as exceeds 1A(A,)is  perpendicular bisectors of the triangles. koK %, there

positive, and funnels appear as described in [3]. are six fixed points. Au = ;11 the fixed points coalesce
After this discussion foiB,, the basin map in Fig. 2 by pairs along their respective invariant lines into points

makes more sense far= 0.75. The basin of attraction where the singular lines cross the invariant lines, and three

of the invariant line is “riddled” [9] because any neighbor- eruptions happen simultaneously. The focal points are at

hood containing points which converge to the invariant linethe vertices of the triangle formed by invariant lines.

also contain points that converge to the fixed point. We There is a threefold symmetry in,, and the map

also note that, as the bifurcation parameter increases, th& repeated ever2s/3 radians (see Fig. 3). In each

density of the points converging to the invariant line ap-subregion, there is also a reflection symmetry splitting

pears to decrease, as predicted by the Lyapunov exponentie region in half along the singular line contained in

that region. The rest of the discussion will pertain

FIG. 1. This is a basin map for the bow tie phenomena in the=IG. 2. This graph is the basin map associated WBif3s.
By7s map. The white points have been mapped to the bow ti€he black points have not converged to the fixed p6in®.75)
within 200 iterations. (in black) in 200 iterations.

1020



VOLUME 79, NUMBER 6

PHYSICAL REVIEW LETTERS 11 AcusT 1997

TABLE I. Table of box-counting dimensions for the attractor
in B, asa is varied from 0.255 to 1.0.

Box-counting

a dimension
0.255 1.98846
0.3 1.98462
0.4 1.96284
0.5 1.96028
0.6 1.95588
0.7 1.93677
0.8 1.91873
0.9 1.92132
1.0 1.91078

only to I;(u) : v = —/3/2, since the dynamics in a

neighborhood of other lines is similar.

We can simplifyM,, to the following one-dimensional

map onl;:

ti(u) =u — »

We can determine a similar conjugacy g6x) defined in

)

The behavior along; must be qualitatively similar to the
behavior of the dynamics on the invariant lineBp, and
we expect the same Lyapunov exponent for the paralleé
eigenvector. Butwhat about the transverse expansion rate;
The eigenvalues of the linearization frare

(2) using the function

jx) = — + — arctar(

/\J_Z

FIG. 3. This is the basin map associated wits.

2u? + 4a — 1

2u> + 4a — 1
2u? — 9

>

_ 2+ 4a — 1
I 4u?
As expected from the conjugacy\(A)) = In2. The

transverse Lyapunov exponent is different from (4) by a
constant,

2
L2@a —1) [~ In|2Aet
A(M)ZLJ’ Mdu
T

700214 461 1
.

ThereforeA(A ) is negative fora < 1. This is another
example of where the invariant line is an attractor, but
because the singular curve passes through the focal point
on the invariant line, there is a region where points escape
to another attractor, and basins for the three invariant
lines become riddled in the presence of symmetry. Again
riddling is not due to loss of symmetry but because of the
presence of singular lines.

Here, it is easier to believe that each line attracts a set
of positive measure fok < a < 1. As a exceeds one
and the three lines lose their stability, almost all iterates
appear to execute ergodic behavior on the entire phase
space of the system. Further, since there are no other
attractors present and there are saddles on each of the
invariant lines, again riddling seems to be associated with
sets of initial conditions having zero measure that escape
to other basins.

This article presented two examples of a riddling bifur-
tion caused by singularities. While few problems lend
emselves to the exact determination of their Lyapunov
exponents, here we employ this property to accentuate the
unexpected riddling of a basin of attraction in the pres-
ence of negative transverse Lyapunov exponents after the
bifurcation. For noninvertible maps, other important ele-
ments contributing to the riddling include focal points and
bow ties. We also conjecture that the new basin has posi-
tive measure in the plane. Riddling is a complicated phe-
nomenon and by no means fully understood and clearly
deserving of additional study.
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