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The Mixmaster Universe is Chaotic
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For the past decade there has been a considerable debate about the existence of chaos in the m
cosmological model. The debate has been hampered by the coordinate, or observer, depend
standard chaotic indicators such as Lyapunov exponents. Here we use coordinate-independen
methods to show the mixmaster universe is indeed chaotic. [S0031-9007(97)02322-3]
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The origin of the Universe and the fate of collapsin
stars are two of the great mysteries in nature. In gen
relativity without exotic matter, the singularity theorem
of Hawking and Penrose [1] argue that the gravitation
collapse of very massive stars ends singular and that
Universe was born singular. These singular settings fo
gravity to face quantum mechanics. As well as expos
the fundamental laws of physics, the singular cores of bl
holes and the origin of the cosmos draw deep connecti
to the laws of thermodynamics and, as we will discuss he
to chaos.

Earlier, Khalatnikov and Lifshitz [2] argued that singula
solutions were the exception rather than the rule, putt
them at odds with the singularity theorems. Their arg
ment was that deformations in spacetime would be a
plified during collapse and, consequently, would fight t
formation of a singularity. This implied that the know
symmetric singular solutions were atypical. The confl
was resolved when they realized the singularity in a c
lapsed star could be chaotic [3]. They conjectured tha
generic singularity drives spacetime to churn and oscill
chaotically. Independently, Misner [4] suggested a chao
approach to an early universe singularity. In his mixmas
universe, the different directions in three-space alternat
cycles of anisotropic collapse and expansion. A popu
account of these developments may be found in Thorn
recent book [5].

While the emergence of chaos helped our understand
of singularities in general relativity, building a resilient th
ory of relativistic chaos has become a task of its own.
debate has raged over whether or not the mixmaster
verse is chaotic. Studies of the mixmaster dynamics us
both approximate maps [6,7] and numerical integratio
[8,9] have each yielded conflicting results as to the ex
tence of positive Lyapunov exponents—a standard cha
indicator. Finally, it was realized [9,10] that Lyapuno
exponents are coordinate dependent and the conflic
results were a consequence of the different coordinate
tems. In short, Lyapunov exponents are not reliable
dicators of chaos in general relativity. Using a differe
approach, it was shown that the mixmaster equations
the Painlevé test [11]. This suggests that the mixma
may be chaotic, but the Painlevé test is also inconclus
0031-9007y97y78(6)y998(4)$10.00
g
ral
s
al
the
ce
g

ck
ns

re,

r
ng
u-

-
e

t
l-

t a
te
tic
er
in

ar
’s

ing
-
A
ni-
ng
ns
s-
tic

ing
ys-
n-
t
ail
ter
e.

A detailed review of the mixmaster debate can be found
Ref. [12].

In this Letter we show that the mixmaster universe
indeed chaotic by usingcoordinate independent,fractal
methods. A fractal set of self-similar universes is unco
ered by numerically solving Einstein’s equations. The
universes form fractal boundaries in the space of init
conditions. Such fractal partitions are the result of chao
dynamics. We emphasize that our approach can be u
to study any system described by general relativity. T
mixmaster is studied here as a topical example.

The mixmaster universe [4] has closed spatial secti
with the topology of a three sphere. The vacuum fie
equations of general relativity lead to the equations

sln a2d00 ­ sb2 2 c2d2 2 a4, et cyc. sa, b, cd . (1)

Heresa, b, cd are the scale factors for the three spatial ax
a prime denotesdydt and dt ­ abc dt. In a numeri-
cal study it is advantageous to usea ­ ln a, b ­ ln b,
g ­ ln c, anddT ­ dtyfabc lnsabcdg as integration vari-
ables. These variables cautiously approach the curva
singularity att ­ 0. Asymptotically the new time vari-
able is related to the comoving timet by T ­ lnflns1ytdg.
The equations of motion (1) can be integrated to yield
Hamiltonian constraintH ­ 0, where

H ­ sln ad0sln bd0 1 sln ad0sln cd0 1 sln bd0sln cd0

2
1
4

fa4 1 b4 1 c4 2 2sa2b2 1 b2c2 1 a2c2dg .

(2)

When the potential terms on the right-hand side of
are small, the mixmaster coasts in an approximate Kas
phase described by

ds2 ­ 2dt2 1 t2pa dx2 1 t2pb dy2 1 t2pc dz2. (3)

The indices can be written asp1 ­ s1 1 udys1 1 u 1 u2d,
p2 ­ 2uys1 1 u 1 u2d, and p3 ­ su 1 u2dys1 1 u 1

u2d, wheresa, b, cd can take any ordering ofs1, 2, 3d and
u [ f1, `d.

Initial conditions can be set on the surfacea ­ 0,
daydT ­ Ùa , 0, with the four variablessu, y, s, Sd
© 1997 The American Physical Society



VOLUME 78, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 10 FEBRUARY 1997

x

y
t

h

o
u
m
a
in

r

c

,

t

n

u

r

i
e
n

d

h

of

the

or-

-
ats.
ity

e

or

is

us

, it

th

ch

in
at
ns
[13]:

a ­ 0, b ­
S

1 1 y 1 uy
, g ­

Ssy 1 uyd
1 1 y 1 uy

,

Ùa ­ sSp1 , Ùb ­ sSp2 , Ùg ­ sSp3 . (4)

The anisotropy in the sizes and velocities of the a
is quantified byy and u. The variablesS and s are
overall scale factors. We will primarily be intereste
in the evolution of su, yd as the mixmaster singularit
is approached. That is, we are mostly interested in
relative rates of expansion of the three spatial direction

Before turning to the full mixmaster dynamics, w
consider the properties of a two dimensional map t
approximately describes the evolution ofsu, yd as the
singularity is approached. We use the map to guide
study of the full dynamics. A detailed comparison of o
treatment and the original studies of the related Gauss
[3,6] will be delineated elsewhere [14]. We mention th
unlike previous treatments, we focus on chaotic scatter
A complete description of chaotic scattering is encod
in the unstable periodic orbits [15,16]. These orbits fo
what is know as astrange repellor—a close cousin of
the more familiar strange attractor. We expose the fra
nature of the repellor. The same fractal set is then fou
in the full dynamics.

The map evolvessu, yd forward in discrete jumps [3,13]

Fsu, yd ­

Ω
u 2 1, y 1 1, u $ 2 soscillationsd

su 2 1d21, y21 1 1, u , 2 sbouncesd .

(5)

During an oscillation, one pair of axes oscillates out
phase while the third decreases monotonically. A
bounce, the roles of the three axes are interchanged
a different axis decreases monotonically.

The strange repellor is the fractal set of points alo
periodic orbits,Fksū, ȳd ­ sū, ȳd. Physically these orbits
are self-similar universes. Periodic orbits with periodp #

k can be divided intom oscillations andk 2 m bounces.
Since bounces and oscillations do not commute, the n
ber ofu fixed points on an orbit withm oscillations iskCm.
The total number of fixed points at orderk is given by
the sum over all possibilities squared,Nskd ­ s2k 2 1d2.
Thus the topological entropy [16] of the strange repello
given by

HT ­ lim
k!`

1
k

ln Nskd ­ 2 ln 2 . (6)

SinceHT . 0 theF map is chaotic.
To make contact with the continuum dynamics, w

display a portion of the repellor’s future invariant set
Fig. 1. The future invariant set is the collection of lin
Fksūd ­ ū (y arbitrary). The sequence of gaps arou
the rationals form what is known as a Farey tree. In
complementary fashion, the repellor lies on the perio
irrationals of the irrational Farey tree [14]. A simila
collection of lines occurs in each integer intervalu ­
fn, n 1 1g, but with exponentially decreasing density. T
es
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FIG. 1. The map’s future invariant set in the interval1 ,
u , 2.

falloff can also be understood from the combinatorics
oscillations O and bouncesB. A root in this interval
corresponds to the wordOsn21dB. The number ofn-letter
words that can be formed from a two-letter alphabet is2n,
so the fraction of roots in each interval is22n. The map
and the continuum dynamics will be seen to describe
same future invariant set.

The universes which comprise the strange repellor f
ever repeat some prescribed cycle insu, yd. In contrast,
a typical mixmaster universe will launch into an infi
nite pattern of oscillations and bounces that never repe
Moreover, typical universes have an invariant probabil
,uy ln u that grows withu [17]. As a result, typical uni-
verses scatter tou ! ` while universes on the repellor ar
concentrated at smallu values.

We can quantify the multifractal nature of the repell
by measuring its fractal dimensionsDq, where [16]

Dq ­
1

q 2 1
lim
e!0

ln
PNsed

i­1 spidq

ln e
. (7)

Here Nsed is the number of hypercubes of side lengthe

needed to cover the fractal andpi is the fraction of points
in the ith hypercube. The standard capacity dimension
recovered whenq ­ 0, the information dimension when
q ­ 1, etc. For homogeneous fractals all the vario
dimensions yield the same result. The dimensionsDq are
invariant under diffeomorphisms for allq.

Since the periodic orbits of (5) are everywhere dense
follows that the future invariant set in Fig. 1 hasD0 ­ 2.
However, points on a small period orbit are visited wi
greater frequency and so have a largerpi than high period
orbits. This generates an uneven distribution whi
ensures thatDq , 2 for q . 0. Numerically solving for
all roots up tok ­ 16 we find D1 ­ 1.87 6 0.01, thus
confirming the multifractal nature of the repellor.

If the F map had been obtained from the full Einste
equations without approximation, we could conclude th
the mixmaster universe is chaotic. Since approximatio
999
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were made [3,13], the possibility remains that the f
equations are integrable. The approximations may h
failed to preserve some integrals of the motion, thus le
ing to a false chaotic signal. We show this is not the ca

Since the mixmaster phase space is not compact,
chaotic behavior is likely to be transient [18]. There is
standard procedure to investigate such chaotic scatte
First we identify the different asymptotic outcomes t
system might have. Once outcomes are identified, sev
methods can be used to search for a strange repe
The simplest method looks for a fractal pattern in pl
of an appropriately defined scattering angle and imp
parameter. Alternatively, the strange repellor can
hunted directly with a numerical shooting procedu
called PIM triples [19].

Our preferred method is to look for fractal bas
boundaries [20]. Each outcome has a basin of attrac
in the space of initial conditions. We may plot the
basins by assigning a different color to each outco
and then coloring all initial conditions according to the
outcome. If the boundaries between these outcomes
smooth, then the dynamics is regular. Conversely, if
boundaries are fractal, the dynamics is chaotic. The se
points belonging to the fractal boundary form the stran
repellor’s future invariant set.

The power of these methods as a tool for studying ch
in general relativity is twofold. First, a fractal is a no
differentiable structure and so cannot be removed by
differentiable coordinate transformation. Thus a frac
basin boundary provides an observer independent si
of chaos. Second, most systems in general relativity h
noncompact phase spaces, so most chaos will be tran
Other coordinate independent methods of studying ch
in general relativity, such as curvature based methods [
work only for compact systems. Previously fractal tec
niques were used to show there is chaos in multi-black-h
spacetimes [22], and in various inflationary cosmologi
models [23].

As it stands, the mixmaster dynamics rarely leads
definite outcomes. For typical trajectories the seque
of oscillations and bounces continuesad infinitumas the
singularity is approached. A trajectory that visits any fin
value ofu, no matter how large, will eventually return
bounce again. The way around this asymptotic backw
problem is to assign outcomes at some large, but fi
distance from the scattering region. This procedure can
lead to a false chaotic signature. At worst, it will retu
smooth boundaries for a chaotic system. This occ
when trajectories near the strange repellor are prematu
assigned to a particular outcome.

For the mixmaster universe, typical trajectories scatte
largeu values, while orbits on the repellor are concentra
at smallu values. Accordingly, we assign outcomes wh
u becomes larger than some fixed number,umax, during a
Kasner phase. Because of the system’s SOs3d symmetry,
a largeu value leads to three equally likely outcome
Physically, these are the three states of highly anisotr
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expansion withp1 ø p2 ø 0 andp3 ø 1. Thus the space
of initial conditions can be color coded depending
which axis is collapsing most quickly. We color the
black fora, grey forb, and white forc.

Our prescription is very easy to implement numerica
In order to facilitate comparison with Fig. 1, we cho
the initial condition in accordance with (4) by selecti
suo , yod from a3002 grid, settingso ­ 1 and then using (2
to fix So. The initial conditions are then evolved accordi
to the equations of motion (1), and the ratios ofÙa, Ùb, and
Ùg are monitored to see if the universe is in an approxim
Kasner phase described by (3). If it is, the value ofu is
extracted and an outcome is assigned ifu . umax. We
chooseumax ­ 7 since there is only a 1 in26 chance
that a trajectory withu . 7 lies on the strange repello
Moreover, typical aperiodic trajectories will scatter tou .

umax after a few bounces, so the numerical integration
kept short and numerical errors do not become large.
confirm this, the unenforced Hamiltonian constraint
was monitored at all times and found to be satisfied wit
numerical tolerances.

In Fig. 2 we display the basin boundaries in a port
of the su, yd plane. We see a complicated mixture
both regular and fractal basin boundaries. The numeric
generated basin boundaries are built of universes w
ride the repellor for many orbits before being thrown o
Similar fractal basins can be found by viewing alternat
slices through phase space, such as thesb, Ùbd plane.
The overall morphology of the basins is altered little
demanding more strongly anisotropic outcomes. Fr
Fig. 3 we see that the fractal nature of the boundary per
on finer and finer scales.

Aside from some mild warpage, the future invaria
set (basin boundaries) seen in Figs. 2 and 3 for the

FIG. 2. Basin boundaries in thesu, yd plane for the full,
unapproximated mixmaster dynamics.
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FIG. 3. A portion of Fig. 2 magnified 25 times.

dynamics is strikingly similar to that shown in Fig. 1 fo
the discrete map. The warpage can be accounted fo
our choice of initial conditions near the maximum of e
pansion, where the approximations used to derive the
break down. However, the important fine scale struct
is laid down much nearer the singularity, where the m
works well, and this accounts for the agreement in the
tailed structure seen in Figs. 1 and 3. Indeed, a calc
tion [14] of the information dimension of Fig. 3 using th
uncertainty exponent method yieldsD1 ­ 1.86 6 0.01, in
agreement with the map.

By exploiting techniques originally developed to stu
chaotic scattering, we gain a new perspective on the e
lution of the mixmaster cosmology. We found a frac
structure, the strange repellor, describes the chaos w
The strange repellor is the collection of all universes
riodic in su, yd. A typical, aperiodic universe will expe
rience a transient age of chaos if it brushes against
repellor. The fractal was exposed in both the exact E
stein equations and the discrete map used to approxim
the evolution. Most importantly, our fractal approach
independent of the time coordinate used. An outcom
an outcome no matter how quickly you get there. Th
the chaos reflected in the fractal weave of mixmaster u
verses is unambiguous.

It would be interesting to extend our study to inclu
inhomogeneous collapse and verify the connection
tween temporal chaos and spatial turbulence [24]. A
final comment, we note that the chaos seen in the mixm
ter system occurs at large curvatures. As is well know
most of the oscillations and bounces happen after Pla
scale curvatures have been reached, so quantum ef
cannot be ignored. Nonetheless, our results are consi
with the contention that generic classical singularities
by
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chaotic. This in turn suggests that quantum gravity m
have to confront quantum chaos.
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