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The Mixmaster Universe is Chaotic
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For the past decade there has been a considerable debate about the existence of chaos in the mixmaster
cosmological model. The debate has been hampered by the coordinate, or observer, dependence of
standard chaotic indicators such as Lyapunov exponents. Here we use coordinate-independent, fractal
methods to show the mixmaster universe is indeed chaotic.  [S0031-9007(97)02322-3]

PACS numbers: 98.80.Hw, 05.45.+b

The origin of the Universe and the fate of collapsingA detailed review of the mixmaster debate can be found in
stars are two of the great mysteries in nature. In generdef. [12].
relativity without exotic matter, the singularity theorems In this Letter we show that the mixmaster universe is
of Hawking and Penrose [1] argue that the gravitationaindeed chaotic by usingoordinate independenfractal
collapse of very massive stars ends singular and that thmethods. A fractal set of self-similar universes is uncov-
Universe was born singular. These singular settings forcered by numerically solving Einstein’'s equations. These
gravity to face quantum mechanics. As well as exposinginiverses form fractal boundaries in the space of initial
the fundamental laws of physics, the singular cores of blackonditions. Such fractal partitions are the result of chaotic
holes and the origin of the cosmos draw deep connectiordynamics. We emphasize that our approach can be used
to the laws of thermodynamics and, as we will discuss herdp study any system described by general relativity. The
to chaos. mixmaster is studied here as a topical example.

Earlier, Khalatnikov and Lifshitz [2] argued that singular  The mixmaster universe [4] has closed spatial sections
solutions were the exception rather than the rule, puttingvith the topology of a three sphere. The vacuum field
them at odds with the singularity theorems. Their argu-equations of general relativity lead to the equations
ment was that deformations in spacetime would be am- ) ) .~ .
plified during collapse and, consequently, would fight the (Ina®)" = (b" — ¢)” = a", et cyc. (a,b,c). (1)
formation of a singularity. This implied that the known Here(a, b, c) are the scale factors for the three spatial axes,

symmetric singular solutions were atypical. The confllcta prime denotes!/dr anddi = abc dr. In a numeri-

was resolved when they realized the singularity in a COI'caI study it is advantageous to use= Ina, 8 = Inb,

lapsed star could be chaotic [3]. They conjectured that a _ Inc, anddT = dt/[abe In(abe)] as integration vari-

gener_ic singularity drives spac_:etime to churn and Oscnlat.éa{bles. These variables cautiously approach the curvature
chaotically. Independently, Misner [4] suggested aChaOt'%ingularity att = 0. Asymptotically the new time vari-

approach to an early universe singularity. In his mixmaste_([jlble is related to the comoving timédy T = In[In(1/7)].

universe, the different directions in three-space alternate (=N equations of motion (1) can be integrated to yield the
cycles of anisotropic collapse and expansion. A pOpmaf—lamiltonian constraing = 0. where

account of these developments may be found in Thorne’s
recent book [5]. H = (Ina)(Inb) + (Ina)(In¢)’ + (Inb)(nc)

While the emergence of chaos helped our understanding
of singularities in general relativity, building a resilient the- — —[a* + b* + ¢* = 2(a®b? + b%c* + a*c?)].
ory of relativistic chaos has become a task of its own. A 4
debate has raged over whether or not the mixmaster uni- (2)
verse is chaotic. Studies of the mixmaster dynamics usin
both approximate maps [6,7] and numerical integration
[8,9] have each yielded conflicting results as to the exis
tence of positive Lyapunov exponents—a standard chaoti
indicator. Finally, it was realized [9,10] that Lyapunov 52 — _ g2 4 202 4 20 gy2 4+ (2Peqz2. (3)
exponents are coordinate dependent and the conflicting
results were a consequence of the different coordinate sy$he indices can be written as = (1 + u)/(1 + u + u?),
tems. In short, Lyapunov exponents are not reliable inp, = —u/(1 + u + u?), and p3 = (u + u?)/(1 + u +
dicators of chaos in general relativity. Using a differentu?), where(a, b, c) can take any ordering df, 2, 3) and
approach, it was shown that the mixmaster equations fait € [1, ).
the Painlevé test [11]. This suggests that the mixmaster Initial conditions can be set on the surface= 0,
may be chaotic, but the Painlevé test is also inconclusivela /dT = & < 0, with the four variables(u,v,s,2)

hen the potential terms on the right-hand side of (1)
are small, the mixmaster coasts in an approximate Kasner
ehase described by
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[13]: 2
_ B 3, (v + uv)
« =0, B_l-i-v-i-uv’ y_l-i-v-i-uv’ 1.8
@ =s3p1, B=s3p, ¥ =s3ps. (4)
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The anisotropy in the sizes and velocities of the axesie{ | i
is quantified byv and u. The variablesY and s are I
overall scale factors. We will primarily be interested i ‘
in the evolution of(u,v) as the mixmaster singularity 147 (o |
is approached. That is, we are mostly interested in the (T T l
relative rates of expansion of the three spatial directions. |
Before turning to the full mixmaster dynamics, we 127 i “ ‘ § '\
consider the properties of a two dimensional map that | ' |
approximately describes the evolution 6f,v) as the ; \ il l \ il
singularity is approached. We use the map to guide ou 1 1.2 14 1.6 1.8 2
Study of the full dyna}mics. A qF"taHEd comparison of OUei 1. The map’s future invariant set in the interviak<
treatment and the original studies of the related Gauss mgp_ ',
[3,6] will be delineated elsewhere [14]. We mention that
unlike previous treatments, we focus on chaotic scatterin
A complete description of chaotic scattering is encode
in the unstable periodic orbits [15,16]. These orbits form
what is know as astrange repello—a close cousin of
the more familiar strange attractor. We expose the fract
nature of the repellor. The same fractal set is then foun
in the full dynamics.
The map evolveéu, v) forward in discrete jumps [3,13],

3alloff can also be understood from the combinatorics of
oscillations O and bouncesB. A root in this interval
corresponds to the wor@"~YB. The number ofi-letter
a\1vords that can be formed from a two-letter alphabeét'is
§° the fraction of roots in each intervalds”. The map
and the continuum dynamics will be seen to describe the
same future invariant set.
The universes which comprise the strange repellor for-
u—1, v+1, u=2 (oscillations ever repeat some prescribed cycle(inv). In contrast,
Flu,v) = {(u — D, v ' +1, u<2 (bounces. a typical mixmaster universe will launch into an infi-
’ ' nite pattern of oscillations and bounces that never repeats.
(5) Moreover, typical universes have an invariant probability
During an oscillation, one pair of axes oscillates out of~u/ Inu that grows withu [17]. As a result, typical uni-
phase while the third decreases monotonically. At averses scatter to — o while universes on the repellor are
bounce, the roles of the three axes are interchanged amdncentrated at smaill values.

a different axis decreases monotonically. We can quantify the multifractal nature of the repellor
The strange repellor is the fractal set of points alondoy measuring its fractal dimensiod,, where [16]

periodic orbits F*(zz, ) = (@, v). Physically these orbits 1 In z{V(e)( e

are self-similar universes. Periodic orbits with perjpds D, = lim i=1 P @)

k can be divided inton oscillations andc — m bounces. q =1 e0 Ine

Since bounces and oscillations do not commute, the nuniHere N(e) is the number of hypercubes of side length
ber of u fixed points on an orbit witt: oscillations isC,,.  needed to cover the fractal apd is the fraction of points
The total number of fixed points at ordeéris given by in theith hypercube. The standard capacity dimension is
the sum over all possibilities squared(k) = (2 — 1)>2.  recovered wher = 0, the information dimension when
Thus the topological entropy [16] of the strange repelloris; = 1, etc. For homogeneous fractals all the various

given by dimensions yield the same result. The dimensibpsare
.1 invariant under diffeomorphisms for ajl
Hr = lim — InN(k) = 2In2. 6 . e X .
T sk ) ©) Since the periodic orbits of (5) are everywhere dense, it
SinceHy > 0 the F map is chaotic. follows that the future invariant set in Fig. 1 hBg = 2.

To make contact with the continuum dynamics, weHowever, points on a small period orbit are visited with
display a portion of the repellor’s future invariant set in greater frequency and so have a largethan high period
Fig. 1. The future invariant set is the collection of linesorbits. This generates an uneven distribution which
F¥(@) = @ (v arbitrary). The sequence of gaps aroundensures thab, < 2 for ¢ > 0. Numerically solving for
the rationals form what is known as a Farey tree. In all roots up tok = 16 we find D; = 1.87 £ 0.01, thus
complementary fashion, the repellor lies on the periodiconfirming the multifractal nature of the repellor.
irrationals of the irrational Farey tree [14]. A similar If the F map had been obtained from the full Einstein
collection of lines occurs in each integer interval=  equations without approximation, we could conclude that
[n,n + 1], butwith exponentially decreasing density. Thethe mixmaster universe is chaotic. Since approximations
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were made [3,13], the possibility remains that the fullexpansion wittp; = p, = 0andp; = 1. Thus the space
equations are integrable. The approximations may havef initial conditions can be color coded depending on
failed to preserve some integrals of the motion, thus leadwhich axis is collapsing most quickly. We color these
ing to a false chaotic signal. We show this is not the caseblack fora, grey forb, and white forc.

Since the mixmaster phase space is not compact, any Our prescription is very easy to implement numerically.
chaotic behavior is likely to be transient [18]. There is aln order to facilitate comparison with Fig. 1, we chose
standard procedure to investigate such chaotic scatterinthe initial condition in accordance with (4) by selecting
First we identify the different asymptotic outcomes the(u,, v,) from a300? grid, settings, = 1 and then using (2)
system might have. Once outcomes are identified, sever#d fix %,. The initial conditions are then evolved according
methods can be used to search for a strange repellaw the equations of motion (1), and the ratiosagf3, and
The simplest method looks for a fractal pattern in plotsy are monitored to see if the universe is in an approximate
of an appropriately defined scattering angle and impadkasner phase described by (3). If it is, the valueudé
parameter. Alternatively, the strange repellor can beextracted and an outcome is assignea it uy,x. We
hunted directly with a numerical shooting procedurechooseum. = 7 since there is only a 1 i® chance
called PIM triples [19]. that a trajectory withu > 7 lies on the strange repellor.

Our preferred method is to look for fractal basin Moreover, typical aperiodic trajectories will scattento>
boundaries [20]. Each outcome has a basin of attraction,,,, after a few bounces, so the numerical integration is
in the space of initial conditions. We may plot thesekept short and numerical errors do not become large. To
basins by assigning a different color to each outcomeonfirm this, the unenforced Hamiltonian constraint (2)
and then coloring all initial conditions according to their was monitored at all times and found to be satisfied within
outcome. If the boundaries between these outcomes argimerical tolerances.
smooth, then the dynamics is regular. Conversely, if the In Fig. 2 we display the basin boundaries in a portion
boundaries are fractal, the dynamics is chaotic. The set aff the (u,v) plane. We see a complicated mixture of
points belonging to the fractal boundary form the strangéoth regular and fractal basin boundaries. The numerically
repellor’s future invariant set. generated basin boundaries are built of universes which

The power of these methods as a tool for studying chaosdde the repellor for many orbits before being thrown off.
in general relativity is twofold. First, a fractal is a non- Similar fractal basins can be found by viewing alternative
differentiable structure and so cannot be removed by anylices through phase space, such as (BeB) plane.
differentiable coordinate transformation. Thus a fractalThe overall morphology of the basins is altered little by
basin boundary provides an observer independent signdemanding more strongly anisotropic outcomes. From
of chaos. Second, most systems in general relativity haveig. 3 we see that the fractal nature of the boundary persists
noncompact phase spaces, so most chaos will be transiegh finer and finer scales.

Other coordinate independent methods of studying chaos Aside from some mild warpage, the future invariant
in general relativity, such as curvature based methods [21%et (basin boundaries) seen in Figs. 2 and 3 for the full
work only for compact systems. Previously fractal tech-
niques were used to show there is chaos in multi-black-hole
spacetimes [22], and in various inflationary cosmological
models [23].

As it stands, the mixmaster dynamics rarely leads to |
definite outcomes. For typical trajectories the sequence'®| &
of oscillations and bounces continuad infinitumas the
singularity is approached. A trajectory that visits any finite
value ofu, no matter how large, will eventually returnto 1%
bounce again. The way around this asymptotic backwash
problem is to assign outcomes at some large, but finite
distance from the scattering region. This procedure cannot
lead to a false chaotic signature. At worst, it will return 1af
smooth boundaries for a chaotic system. This occurs
when trajectories near the strange repellor are prematurel
assigned to a particular outcome. |

For the mixmaster universe, typical trajectories scatter to
largeu values, while orbits on the repellor are concentrated
at smallu values. Accordingly, we assign outcomes when
u becomes larger than some fixed numbegy,x, during a i
Kasner phase. Because of the system’'$33@ymmetry,

a largeu value leads to three equally likely outcomes.F|G. 2. Basin boundaries in thé, v) plane for the full,
Physically, these are the three states of highly anisotropignapproximated mixmaster dynamics.
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chaotic. This in turn suggests that quantum gravity may
have to confront quantum chaos.
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