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In this Letter we discuss a bistable model driven by two white noise sources, when the correlatio
time of the correlations between two sourcest is nonzero. We find that there is a critical value
of the correlation timetc. For t . tc, the system undergoes a succession of two phase transitions
(namely, the reentrance phenomenon) as the strength of the correlations between two noise sou
l is varied. However, fort , tc, the system undergoes a (single) phase transition asl is varied.
[S0031-9007(96)01943-6]
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The study of dynamical systems disturbed by no
is recurrent in many contexts of physics and oth
sciences. Particularly for nonequilibrium systems, wh
noise plays a crucial role[1,2], the noise-induced transit
has been intensively investigated. The effects of colo
noise (i.e., fluctuations of intensityD with a correlation
time t) have attracted a great deal of interest in rec
years. Different theories have been used to deal w
the colored-noise problem, for instance, the conventio
small-t theory [3,4], the functional-calculus theory of Fo
[5], the decoupling theory (often called Hanggi ansa
[6], the unified colored-noise theory [7], and the rece
interpolation procedure [8].

Recently, Castroet al. [9] presented an analysis of
chemical reaction system, when it is forced by one color
noise source, by using the interpolation procedure wh
is an extension of the unified colored-noise theory a
allows us to study botht ! 0 and t ! ` cases. They
showed that the system undergoes a purely noise-indu
transition from a monostable regime to a bistable o
then to the monostable regime ast increases, namely,
succession of two phase transitions when the correla
time is monotonically varied. This type of nonequilibriu
transitions phenomenon has been called the reentr
phenomenon [9].

The largest amount of work about fluctuations has b
referred to the consideration of systems with just one no
source. However, more realistic models of physical s
tems require considering various noise sources, for
ample, the laser models [10], the lattice model [11], t
structure-formation process in liquid crystals [12], the im
perfect pitchfork bifurcation in superfluid turbulence in liq
uid helium [13], etc. Though various sources are presen
simultaneously in some stochastic processes, they are
sumed to have different origins and are treated as inde
dent random variables in most of the previous investi
tions [10–15]. However, in certain situations they m
have a common origin and thus may be correlated w
each other as well [16–21]. The study of dynamical s
tems with correlation noise terms has attracted attentio
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the field of stochastic processes. Some of these invest
tions were concerned with the steady-state statistical pr
erties of systems [16–20]; others were concerned with
transient problems [21]. Now a question to be raised
if similar peculiarities studied by Castroet al. [9] can be
found in other models driven by correlated noise.

In this Letter we analyze a general bistable syste
driven by two white noise sources, when the corre
tion time of the correlations between the two sources
nonzero, by using the conventional small-t theory [4].
Our results show that a novel feature corresponding to
reentrancelike phenomenon is indicated by the phase
gram of the system.

A typical case with correlation noise terms is describ
by the following general stochastic differential equation

Ùxstd  fsxd 1 g1sxdjstd 1 g2sxdhstd , (1)

where jstd and hstd are Gaussian white noise source
with zero mean, and

kjstdjst 0dl  2Ddst 2 t0d , (2)

khstdhst0dl  2Qdst 2 t0d , (3)

whereD andQ are the intensities of the noise. Here w
assume

kjstdhst0dl  khstdjst0dl 
l

p
QD
t

expf2jt 2 t0jytg

! 2l
p

QD dst 2 t0d , ast ! 0 , (4)

in which t is the correlation time andl is the strength of
the correlations betweenjstd andhstd.

A general equation satisfied by the probability of th
process (1) with (2)–(4) is given by [4]

≠

≠t
Psx, td  2

≠

≠x
fsxdPsx, td 2

≠

≠x
g1sxd

3 kjstddfxstd 2 xgl

2
≠

≠x
g2sxd khstddfxstd 2 xgl , (5)
© 1997 The American Physical Society
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where Psx, td  kdfxstd 2 xgl; the average (5) can be
calculated for Gaussian noisehstd and jstd by the
Novikov theorem [22]. The Fokker-Planck equation
the small-t approximation for (1) is obtained following
Ref. [4]:

≠

≠t
Psx, td  2

≠

≠x
fsxdPsx, td

1 D
≠

≠x
g1sxd

≠

≠x
g1sxdPsx, td

1 l
p

QD
≠

≠x
g1sxd

≠

≠x
h2sxdPsx, td

1 Q
≠

≠x
g2sxd

≠

≠x
g2sxdPsx, td

1 l
p

QD
≠

≠x
g2sxd

≠

≠x
h1sxdPsx, td , (6)

with
h1sxd  g1sxd h1 1 tg1sxd f fsxdyg1sxdg0j , (7)

h2sxd  g2sxd h1 1 tg2sxd f fsxdyg2sxdg0j . (8)
Consider now the single bistable kinetic model [14,1

19]
Ùxstd  2ax 2 bx3 2 xjstd 1 hstd

sa , 0, b . 0d . (9)
Equation (9) is a special case of Eq. (1) withfsxd 
2ax 2 bx3, g1sxd  2x, and g2sxd  1. The Fokker-
Planck equation can be obtained from (6)

≠Psx, td
≠t


≠

≠x

∑
Fsxd 1

≠

≠x
Gsxd

∏
Psx, td , (10)

where
Fsxd  bx3 2 3btl

p
QD x2

1 sa 2 Ddx 1 l
p

QD s1 1 atd , (11)

Gsxd  5btl
p

QD x3 1 Dx2

1 l
p

QD sat 2 2dx 1 Q . (12)
The steady-state distribution of Eq. (10) is

Pstsxd  NfGsxdg21 exp

∑
2

Z x dxFsxd
Gsxd

∏
. (13)

Although we cannot give the explicit expression ofPstsxd
here, yet we can give two important results.

(i) The extrema of the steady-state distribution (13) a
determined by the following equation of third order:

fx 1 4tl
p

QDg3 1 fsa 1 Ddyb 2 48bt2l2QDg

3 fx 1 4tl
p

QDg 1 128t3l3sQDd3y2

2 l
p

QD s1 1 2at 1 4Dtdyb  0 .

(14)
(ii) The equation of the critical parameterac at which

the transition between the monostablesa . acd and the
f

–

re

bistablesa , acd distribution occurs:

1
4

∑
128t3l3sQDd3y2 2

l
p

QD s1 1 2act 1 4Dtd
b

∏2

1
1

27

∑
ac 1 D

b
2 48bt2l2QD

∏3

 0 . (15)

The calculations presented in this Letter are rather sta
dard. However, the conclusions that can be drawn fro
the above results are interesting.

When the correlation timet is fixed, we have plotted
the curve of the critical valueac of the steering parameter
a as a function of the strength of correlations betwee
two sourcesl in Fig. 1(a). Remember that the critical
valueac is negative for the bistable system Eq. (9). Th
presence of the correlation between two sources cau
the critical curve separating the bistable region (above t
curve) and monostable region (below the curve) in th
phase diagram of the system. The phase diagram ma
it apparent that, for some regions of values ofac and for
small values of the strengthl, the system is found in
a bistable phasesP1d. After increasingl beyond some
threshold value, the system undergoes a transition to
monostable phasesP2d. However, if we further increase
l, the system goes back to a bistable phasesP1d; that is,
the system undergoes a succession of two phase transiti
sP1 ! P2 ! P1d when the strength of correlation between
two sourcesl is monotonically varied. The horizontal thin
line in Fig. 1(a) corresponds to a path of a succession
two phase transitions.

A natural question is whether this reentrancelike ph
nomenon can also occur in the whole regions of values
correlation time. In Fig. 1(b) we have plotted the curve
of ac as a function ofl for several values of correlation
time. We find that there is a critical value of correlation
time tc [which is determined by Eq. (15)], the reentranc
phenomenon exists only fort . tc as the strengthl is
varied [e.g., the case oft  0.2 or 0.3 in Fig. 1(b)]. Oth-
erwise there is only a (single) phase transition asl is varied
[e.g., the case oft  0.0 or 0.1 in Fig. 1(b)]. Moreover, if
the system is situated under thet  0.0 curve (e.g., point
M), fixing the strengthl, an increasing correlation timet
will only lead to a (single) transition from the monostable
phase to a bistable one.

Although the reentrance phenomenon is studied b
Castroet al. [9] and by us, respectively, yet there is an
essential difference. The phenomenon studied by Cas
et al. originates from the color effects of the colored noise
but the phenomenon studied by us originates from th
correlative effects and the color effects of the correlation
between two white noise sources. In addition, Castroet
al. [9] show that the reentrance phenomenon occurs as
correlation time of colored noise varies, while we find
that this phenomenon can also occur as the strength
the correlations between two white noise sources varie
Therefore the reentrance phenomenon studied by us is
exactly the same as the one studied by Castroet al. [9],
but is nevertheless interesting.
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FIG. 1. Phase diagram of the system. The parameter va
areb  1, Q  0.5, andD  0.5. (a) P1 denotes the bistable
phase andP2 denotes the monostable one. The horizontal t
line corresponds to the path of a succession of two ph
transitions sP1 ! P2 ! P1d. (b) The phase diagram of th
system for several values of the correlation time:t  0.0,
t  0.1, t  0.2, and t  0.3. If the system is situated a
point M, the system is found in a monostable phasesP2d for
t  0.0 or t  0.1, but in a bistable phasesP1d for t  0.2 or
0.3.

Because the bistable model is of generic interest
physics and other science, and more realistic model
physical systems require considering various noise sou
simultaneously as mentioned in our introduction, so t
our results probably apply to a broader class. Furtherm
in our case, the dependence of the reentrance phenom
on the macrovariablea (the steering parameter of th
bistable model) and the strength of correlationsl would
make the control of the phenomenon easier in experime
search.
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