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Low Temperature Spin Diffusion in the One-Dimensional QuantumOs3d Nonlinear s Model
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An effective, low temperature, classical model for spin transport in the one-dimensional, gapped,
quantum Os3d nonlinears model is developed. Its correlators are obtained by a mapping to a model
solved earlier by Jepsen. We obtain universal functions for the ballistic-to-diffusive crossover and the
value of the spin diffusion constant, and these are claimed to be exact at low temperatures. Implications
for experiments on one-dimensional insulators with a spin gap are noted. [S0031-9007(97)02306-5]

PACS numbers: 75.40.Gb, 05.30.–d, 75.10.Jm
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Over the past decade a large number of on
dimensional, insulating, Heisenberg antiferromagne
with a zero temperature (T) spin gap have been studied
These include integer spin chains [1,2] and half-integ
spin-ladder systems [3]. In the large spinS limit, the low
energy properties of these compounds are described
by the one-dimensional quantum Os3d nonlinears model
(without any topological term), and there is evidence [
that the mapping to this continuum model is quantitative
accurate even for theS ­ 1 spin chain. Theoretically,
much is known about the quantum field theory of thes

model [6–8], and this information has been valuable
understanding the properties of the spin chains. The l
energy spectrum of thes model consists of a triplet of
massive particles, and their ballistic propagation describ
many exactly known dynamic correlations atT ­ 0. For
T . 0, however, exact results have so far been limited
static, thermodynamic observables [9].

In this paper we obtain dynamic, nonzeroT correlators
using a semiclassical method [11]: We claim that a
of our results are asymptotically exact at lowT , but
this has not been rigorously established. We pres
universal functions which describe the crossover fro
ballistic spin transport at short scales, todiffusivebehavior
at the longest scales; as a biproduct, these functio
yield the exact value of the spin diffusion constan
The nature of spin transport for any smallT . 0 is
therefore qualitatively different from that atT ­ 0. Our
results have important implications for NMR and neutro
scattering measurements of spin chains and appear to c
up an existing experimental puzzle.

The imaginary time (t) action of thes model is

A ­
c

2g

Z 1yT

0
dt dx

∑
s≠xnad2

1
1
c2

s≠tna 2 ieabgHbngd2

∏
,

where x is the spatial coordinate,a, b, g ­ 1, 2, 3 are
Os3d vector indices over which there is an implied
summation,eabg is the totally antisymmetric tensor,c
is a velocity, Ha is an external magnetic field, and the
partition function is obtained by integrating over the un
vector field nasx, td, with n2

asx, td ­ 1. We use units
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in which h̄ ­ kB ­ 1 and have absorbed a factor of th
electronic magnetic momentgemB into the definition of
the field H. The dimensionless coupling constantg is
determined by the underlying lattice antiferromagnet
the momentum scaleL , inverse lattice spacing to be
g , 1yS. We shall be interested only in the physic
at length scales¿L21 and time scales¿scLd21; this
physics isuniversally characterized by the dimensionfu
parametersc, H, T , andD, the energy gap atT ­ H ­ 0.
The magnitude ofD is determined by nonuniversal lattice
scale physics (D , cLe22pyg for smallg). However, the
long distance physics depends on these lattice scale eff
only through the value ofD, and has no direct dependenc
on g or L.

We shall study correlators of the magnetization dens
Masx, td ­ dAydHasx, td. In the Hamiltonian form-
alism, this magnetization is measured by the opera
M̂asxd, and we shall focus on thereal time, finite T
correlation function

Cabsx, td ­ keiĤ tM̂asxde2iĤ tM̂bs0dl 2 kM̂al kM̂bl ,

whereĤ is the Hamiltonian corresponding to the actio
A, and the expectation values are with respect to the d
sity matrixe2Ĥ yT yTr e2Ĥ yT . The dimensions ofM are
inverse length, and because the spatial integral ofM is con-
served, it does not acquire any anomalous dimension (i
no prefactors of powers ofL or lnL are required to ob-
tain a finiteL ! ` limit), and its correlators are simply
universal functions of combinations ofx, t, c, T , H, and
D, which are consistent with naive dimensional analysis
lengths and times [12]. ForH ø D (which we assume
throughout), these correlators describe the crossover
tween two distinct limiting physical regimes: (i) T ø D,
where strong quantum fluctuations create a singlet pa
magnetic ground state, and we have a few thermally e
cited elementary excitations—these are atriplet of spin 1
particles with energysD2 1 c2p2d1y2 at momentump, and
correspond (crudely) to breaking a singlet valence bo
between two neighboring spins in the underlying antife
romagnet; (ii ) D ø T ø cL, the highT regime of the
continuum theory, where quantum fluctuations are marg
ally subdominant to thermal fluctuations [13] [by a facto
of 1y lnsTyDd], and we can locally describe the system i
© 1997 The American Physical Society 943
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terms of adoubletof leftyright circularly polarized spin
waves about an ordered state—however, interactions
thermally excited spin waves lead again to a paramagn
state. The crossover between these regimes has bee
scribed for the static, uniform, spin susceptibilityx of the
OsN ­ `d model [14].

In this paper we shall obtain the space-time depend
Csx, td of the Os3d model in the lowT regionT ø D. The
ratio HyT is, however, allowed to be arbitrary. A rece
paper [10] computedCs0, td by arguing that the triplet
of particles could be considered free at low enoughT .
Actually, such an approach is valid only forjtj shorter than
the mean collision time, eDyT yT (see below), and it is
essential to include particle collisions at longerjtj to obtain
the crossover to diffusive behavior. Our semiclassi
approach does this and is valid for alljtj ¿ 1yT .

There are two key observations that allow our exa
computation forT ø D. The first [11] is that as there is a
excitation gap, the density of particles,e2DyT , and their
mean spacing is much larger than their thermal de Brog
wavelength,cysTDd1y2; as a result the particles can b
treated semiclassically. In particular, taking the fieldH
pointing along the 3 direction, the density of a particle w
longitudinal spinm (m ­ 21, 0, 1) is

rm ­
Z dp

2p
e2sD2mH1c2p2y2DdyT

­

s
TD

2pc2 e2sD2mHdyT ,

and therefore the total densityr ­ r21 1 r0 1 r1, and
the magnetizationkMal ­ sr1 2 r21dda3. The second
observation is that collisions between these particles
described by their known two-particleS matrix [7], and
only a simple limit of thisS matrix is needed in the low
T limit. The rms velocity of a thermally excited particl
yT ­ csTyDd1y2, and hence its “rapidity”, yT yc ø 1.
In this limit theS matrix for the process in Fig. 1 is [7]

S
m1m2

m0
1,m0

2
­ s21ddm1m0

2
dm2m0

1
. (1)

In other words, the excitations behave like impenetra
particles which preserve their spin in a collision. Ener
and momentum conservation ind ­ 1 require that these
particles simply exchange momenta across a collis
(Fig. 1). Thes21d factor in (1) can be interpreted as th
phase-shift of repulsive scattering between slowly mov
bosons ind ­ 1. Indeed, it appears that the simple for
of (1) is due to the slow motion of the particles, and
not a special feature of relativistic continuum theory: W
conjecture that (1) also holds for lattice Heisenberg s
chains in the limit of vanishing velocities.

We now evaluateCsx, td along the lines of a recent com
putation for the Ising model [11]. We representCsx, td
as a “double time” path integral, with thee2iĤ t factor
generating trajectories that move forward in time, and
eiĤ t producing trajectories that move backward in tim
In the classical limit, stationary phase is achieved wh
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FIG. 1. Two particle collision described by theS matrix (1).
The momenta before and after the collision are the same, so t
figure also represents the spacetime trajectories of the particl

the trajectories are time-reversed pairs of classical pat
(Fig. 2). Each trajectory has a spin label which obeys (1) a
each collision; however, as each collision contributes bo
to the forward and backward trajectories, the net numer
cal factor is simply11. All of this implies [11] that the
lines in Fig. 2 are independently distributed uniformly in
space, and with an inverse slope determined by the velo
ity y which is distributed according to the classical Boltz-
mann probability densityP syd ~ e2Dy2y2c2T . The spin
m is assigned randomly at some initial time with proba
bility fm ; rmyr ­ emHyT yf1 1 2 coshsHyTdg, but then
evolves in time as discussed above (Fig. 2).

We label the particles consecutively from left to right by
an integerk (see the caption of Fig. 2); then their spinsmk

are independent oft, and we denote their trajectoriesxkstd.
The longitudinal correlationC33 is given by the correlators
of the classical observable

M3sx, td ­
X

k

mkdsssx 2 xkstdddd (2)

in the classical ensemble defined above. Now because
spin and spatial coordinates are independently distribute
the correlators ofmk andxk factorize. The correlators of
themk are easily evaluated by

kmkm,l ­ A1 1 A2dk, , (3)

where A1 ; sf1 2 f21d2 and A2 ; f1 1 f21 2 sf1 2

f21d2 are simple, dimensionless, known functions ofHyT
only. Using (3) we have

C33sx 2 x0, t 2 t0d ­ A1fkrsx, tdrsx0, t0dl 2 r2g

1 A2

X
k

kdsssx 2 xkstdddddsssx0 2 xkst0dddd , (4)

FIG. 2. A typical set of particle trajectories contributing to
Csx, td. Each trajectory represents paths moving both forwar
and backward in time. The particle coordinates arexkstd, with
the labelsk chosen so thatxkstd # xlstd for all t and k , ,.
Shown on the trajectories are the values of the particle spinsmk
which are independent oft in the low T limit.
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wherersx, td ­
P

k dsssx 2 xkstdddd is the spacetime depen-
dent total density, all averages are now with respect to t
classical ensemble, andkrsx, tdl ­ r. The two-point cor-
relators ofrsx, td are also easy to evaluate: If the spin
labels are neglected, the trajectories in Fig. 2 are straig
lines, and the density correlators are simply those of a cla
sical ideal gas of point particles. The second correlator
(4), multiplying A2, is more difficult: It involves the self
two-point correlation of a given particlek, which follows a
complicated trajectory in the way we have labeled the pa
ticles (e.g., the trajectory of the21 in Fig. 2). Fortunately,
precisely this correlator was considered three decades a
by Jepsen [15] and a little later by others [16]; the
showed that, at sufficiently long times, this correlator has
Brownian motion form. Inserting their results into (4), we
obtained the final results presented below after som
straightforward simplifications.

An important property of the results is that they ca
be written in a “reduced” scaling form [12] determined
by the classical dynamics. From the many independe
parametersc, D, T , and H, only a single length (Lx)
and a single time (Lt) scale controls their spacetime
dependence. These scales can be chosen to be

Lx ­
1
r

, Lt ­
1
r

µ
D

2c2T

∂1y2

. (5)

Notice Lx , ceDyT y
p

DT is the mean spacing between
the particles, andLt , eDyT yT is a typical time between
particle collisions asyT ­ LxyLt

p
2. Our final result is

C33sx, td ­ r2

∑
A1F1

µ
jxj

Lx
,
jtj
Lt

∂
1 A2F2

µ
jxj

Lx
,
jtj
Lt

∂∏
, (6)

where r2F1 is the connected density correlator of a
classical ideal gas ind ­ 1,

F1sx, td ­ e2x2yt2

yt
p

p , (7)

and r2F2 is the correlator of a given labeled particle
[15,16],

F2sx, td ­

∑≥
2G1sudG1s2ud 1 F1sx, td

¥
3 I0

≥
2t

q
G2sudG2s2ud

¥
1

G2
1 sudG2s2ud 1 G2

1s2udG2sudqp
G2sudG2s2ud

3 I1

≥
2t

q
G2sudG2s2dgR

¥∏
e2fG2sud1G2s2udgt

(8)

with u ; xyt, G1sud ­ erfcsudy2, and G2sud ­
e2u2 ys2

p
pd 2 uG1sud. These expressions satisfyR`

0 dxF1,2sx, td ­
1
2 , which ensures the conservation o
he
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the total magnetization with time. Forjtj ø jxj ø 1,
the functionF2 has the ballistic formF2sx, td ø F1sx, td,
while for jtjj ¿ 1, jxj it crosses over to thediffusive
form

F2sx, td ø
e2

p
px2y2t

s4pt2d1y4
for large t . (9)

In the original dimensionful units, (5) and (9) imply a spin
diffusion constantDs, given exactly by

Ds ­
c2eDyT

Df1 1 2 coshsHyTdg
. (10)

Let us now consider correlations of the transverse
magnetization. It is convenient to work with the circularly
polarized components of the magnetizationM6 ­ M1 6

iM2. The analog of (2) is nowM6 ­
P

k S6kdsssx 2

xkstdddd, whereS1k (S2k) are the spin raising (lowering)
operators of particlek. In the double time path integral
for C21sx, td the spin on some particlek is raised at time
t ­ 0 in the forward trajectory; at timet the lowering
operator must act on thesame particle or otherwise
the trace over the classical trajectories vanishes. Notic
also that there is no raising or lowering of spins in
the backward trajectory. As a result, the path integral
picks up a factor ofeiHt from the additional Berry phase
accumulated during the time the spin is raised during
the forward trajectory, which is not compensated by the
backward trajectory. This phase is multiplied by the
self-correlation of the particle whose spin was raised, a
quantity we have obtained above. Similar considerations
apply toC12 and the final results are

C76sx, td ­ 2r2e6iHtA7F2

µ
jxj

Lx
,
jtj
Lt

∂
, (11)

whereA7 ; f0 1 f71.
Next we compute the local dynamic structure factor

Sabsvd ­
R`

2` d te2ivtCabs0, td. A subtlety arises in
computing this Fourier transform. Notice that at short
jtj ø Lt, we have the ballistic behaviorCs0, td , 1yjtj,
and so thet integral is logarithmically divergent. Our
semiclassical results are valid only forjtj ¿ 1yT , and
so we should cut off the integral at smallt, leading to a
contribution, lnsbTyvd where b is a numerical factor
of order unity. In fact, it is possible to determineb
precisely: At these short times the earlier free quantum
particle approach [10] is valid, and we determineb by
matching the logarithm to their results. In physical terms,
the short time cutoff is provided by the wavelike nature
of the individual particles, at a scale where collisions are
unimportant. Our final results forSsvd are

S33svd ­
r

c

s
2D

pT
hA1flnsTLtd 1 F1s

p
pjvjLtdg

1 A2flnsTLtd 1 F2s
p

pjvjLtdgj

S76svd ­
2rA7

c

s
2D

pT
flnsTLtd 1 F2s

p
pjv 7 HjLtdg .
945
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FIG. 3. The crossover functionF2sVd appearing in the local
dynamic structure factor.

The lnsTLtd terms logarithmically violate the purely
classical, reduced scaling forms [12], and were fixed
matching to the short-time quantum calculation [10]. Th
scaling functionsF1,2sVd were determined to be

F1sVd ­ ln

µ
4
p

pe2g

V

∂
F2sVd ­ F1sVd 1

pfs
p

4 1 V2 1 2d1y2 2
p

Vg2

4
p

Vs
p

4 1 V2 1 2d1y2

2 ln
f1 1 V2yC2sVdg1y2f1 1 CsVdg

2V
,

(12)

whereg ­ 0.57721 . . . is Euler’s constant, andCsVd ­
sV

p
1 1 V2y4 2 V2y2d1y2. We show a plot of the

scaling functionF2sVd in Fig. 3: It clearly shows the
expected crossover from the large frequency ballis
behaviorF2sV ! `d ­ lns1yVd, to the small frequency
diffusive formF2sV ! 0d ­ py2

p
V.

The longitudinal relaxation rate of nuclei coupled t
the electronic spins is1yT1 ­ sGy2dS12svN d, whereG

is determined by the electron-nucleus hyperfine couplin
andvN is a nuclear frequency which can safely be set
zero. It is useful to explicitly note theH ø L21

t limit of
1yT1, where from (12) we have

1
T1

­
GTx

p
2DsH

­
GDe23Dy2T

c2

s
3T
pH

;

x ­
e2DyT

c

s
2D

pT
,

where x ­ limH!0sr1 2 r21dyH was known earlier
[9,10]. For experimental comparisons, an important pro
erty of the above, pointed out to us by M. Takigawa,
that the lowT activation gaps for1yT1 (D1yT1) and x

(Dx ) satisfyD1yT1 yDx ­
3
2 .

A quantitative comparison of our results with exper
ments requires a detailed study of theH andT dependen-
cies of 1yT1, along with consideration of effects due to
spin-anisotropies and interchain couplings which can b
come important at lowT and H. Such an analysis will
be presented elsewhere; here we simply note some p
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viously puzzling trends which appear to receive a natu
explanation from our theory. Values for the activatio
gapsD1yT1 and Dx have been quoted for a number o
experimental systems [1–3], and it has consistently be
found thatD1yT1 is larger thanDx . In the spinS ­ 1
chain compound AgVP2S6 Takigawaet al. [1] estimated
D1yT1 yDx ­ 1.3; for the spin S ­ 1 chain compound
Y2BaNiO5, Shimizu et al. [2] measuredD1yT1 yDx ­
1.53 6 0.08; finally, in the two-legS ­

1
2 ladder com-

pound SrCu2O3, Azumaet al. [3] foundD1yT1 yDx ­ 1.6.
Takigawaet al. [1] also observed the diffusive1y

p
H

dependence of1yT1, from which the value ofDs was esti-
mated:Dsya2 ø 5.5 3 1014 sec21 at T ­ 220 K, where
a is the lattice spacing. From measurements [17] ofx we
may obtainD ­ 320 K, and cya ­ 3.32D, which when
inserted into (10) giveDsya2 ­ 6.6 3 1014 sec21. How-
ever, it should be noted that numerical analysis [18] o
the nearest-neighborS ­ 1 antiferromagnet givescya ­
6.06D, but using this value ofc would also lead to a dis-
crepancy in the theoretical prediction forx.

Finally, we note that similar methods [11] can be use
to obtain dynamicT . 0 correlators of thena field: This
will be described elsewhere.

We are indebted to M. Takigawa for surveying and in
terpreting the experimental situation for us. We than
Satya N. Majumdar and T. Senthil for stimulating dis
cussions which provoked our interest in this problem, a
I. Affleck for helpful remarks. This research was sup
ported by NSF Grant No. DMR 96–23181.
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