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Low Temperature Spin Diffusion in the One-Dimensional QuantumO(3) Nonlinear o Model
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An effective, low temperature, classical model for spin transport in the one-dimensional, gapped,
guantum @3) nonlinearc model is developed. Its correlators are obtained by a mapping to a model
solved earlier by Jepsen. We obtain universal functions for the ballistic-to-diffusive crossover and the
value of the spin diffusion constant, and these are claimed to be exact at low temperatures. Implications
for experiments on one-dimensional insulators with a spin gap are noted. [S0031-9007(97)02306-5]

PACS numbers: 75.40.Gb, 05.30.—d, 75.10.Jm

Over the past decade a large number of onein which i = kg = 1 and have absorbed a factor of the
dimensional, insulating, Heisenberg antiferromagnetglectronic magnetic momer, up into the definition of
with a zero temperaturel'] spin gap have been studied: the field H. The dimensionless coupling constantis
These include integer spin chains [1,2] and half-integedetermined by the underlying lattice antiferromagnet at
spin-ladder systems [3]. In the large sgiimit, the low  the momentum scalé\ ~ inverse lattice spacing to be
energy properties of these compounds are described [4] ~ 1/S. We shall be interested only in the physics
by the one-dimensional quantum(3p nonlinearc model  at length scaless>A~! and time scales>(cA)™!; this
(without any topological term), and there is evidence [5]physics isuniversally characterized by the dimensionful
that the mapping to this continuum model is quantitativelyparameters, H, T, andA, the energy gap & = H = 0.
accurate even for thd = 1 spin chain. Theoretically, The magnitude of is determined by nonuniversal lattice
much is known about the quantum field theory of the scale physicsX ~ cAe27/¢ for smallg). However, the
model [6—8], and this information has been valuable inlong distance physics depends on these lattice scale effects
understanding the properties of the spin chains. The lownly through the value oA, and has no direct dependence
energy spectrum of thee model consists of a triplet of ong or A.
massive particles, and their ballistic propagation describes We shall study correlators of the magnetization density
many exactly known dynamic correlationsfat= 0. For M,(x,7) = 8§ A/8H(x,7). In the Hamiltonian form-
T > 0, however, exact results have so far been limited talism, this magnetization is measured by the operator
static, thermodynamic observables [9]. M,(x), and we shall focus on theeal time, finite T

In this paper we obtain dynamic, nonzeéfccorrelators  correlation function
using a semiclassical method [11]: We claim that all _ i —iHe 7, T, o
of our results are asymptotically exact at lofy but Cap (x’f) = (€7 Ma(x)e Mp©0)) = (Ma)Mp).
this has not been rigorously established. We presewhereJ{ is the Hamiltonian corresponding to the action
universal functions which describe the crossover fromA, and the expectation values are with respect to the den-
ballistic spin transport at short scalesditfusivebehavior ity matriXe‘ﬂ/T/Tr o~H/T  The dimensions ol are

at the longest scales; as a biproduct, these functiongyerse length, and because the spatial integrad & con-
yield the exact value of the spin diffusion constant.seped, it does not acquire any anomalous dimension (i.e.,
The nature of spin transport for any smdll> 0 is  no prefactors of powers ok or InA are required to ob-
therefore qualitatively different from that @ = 0. Our  (ain a finite A — < limit), and its correlators are simply
results have important implications for NMR and neutronyniversal functions of combinations of ¢, ¢, T, H, and

scattering measurements of spin chains and appear to clegr which are consistent with naive dimensional analysis in

up an existing experimental puzzle. . lengths and times [12]. Fall < A (which we assume
The imaginary time £) action of thec model is throughout), these correlators describe the crossover be-
c /T tween two distinct limiting physical regimesi) " < A,
2 . .
A = i [0 dr dx|:(axna) where strong quantum fluctuations create a singlet para-

| magnetic ground state, and we have a few thermally ex-
+ = (9rnq — iEaByHBn7)2i|» cited elementary excitations—these argiplet of spin 1

¢ particles with energyA? + ¢2p?)!/2 at momentunyp, and
where x is the spatial coordinatey, 8,y = 1,2,3 are  correspond (crudely) to breaking a singlet valence bond
O(3) vector indices over which there is an implied between two neighboring spins in the underlying antifer-
summation,e, g, is the totally antisymmetric tensor, romagnet; if) A < T < cA, the highT regime of the
is a velocity, H, is an external magnetic field, and the continuum theory, where quantum fluctuations are margin-
partition function is obtained by integrating over the unitally subdominant to thermal fluctuations [13] [by a factor
vector field n, (x, 7), with n2(x,7) = 1. We use units of 1/In(T/A)], and we can locally describe the system in
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terms of adoubletof left/right circularly polarized spin

t
waves about an ordered state—however, interactions of 7 m
thermally excited spin waves lead again to a paramagnetic Mo
state. The crossover between these regimes has been de- m
X

scribed for the static, uniform, spin susceptibiljzyof the
O(N = «) model [14].

In this paper we shall obtain the space-time dependedl:I
C(x, 1) of the O3) model in the lowr regionT << A. The
ratio H/T is, however, allowed to be arbitrary. A recent
paper [10] computed”(0,7) by arguing that the triplet
of particles could be considered free at low enough
Actually, such an approach is valid only flat shorter than
the mean collision time~ ¢/ /T (see below), and it is
essential to include particle collisions at long¢to obtain
the crossover to diffusive behavior. Our semiclassicaﬁ
approach does this and is valid for &ll > 1/T.

There are two key observations that allow our exac
computation fof" < A. Thefirst[11]is that as thereis an
excitation gap, the density of particlese /7, and their
mean spacing is much larger than their thermal de Brogli
wavelength~c/(TA)'/?; as a result the particles can be
treated semiclassically. In particular, taking the fiéld
pointing along the 3 direction, the density of a particle with

IG. 1. Two particle collision described by ttfematrix (1).
he momenta before and after the collision are the same, so the
figure also represents the spacetime trajectories of the particles.

the trajectories are time-reversed pairs of classical paths
(Fig. 2). Eachtrajectory has a spin label which obeys (1) at
each collision; however, as each collision contributes both
to the forward and backward trajectories, the net numeri-
al factor is simply+1. All of this implies [11] that the
nes in Fig. 2 are independently distributed uniformly in
pace, and with an inverse slope determined by the veloc-
ty v which is distributed according to the classical Boltz-
mann probability densityP(v) « e~4v*/2¢'T  The spin
m is assigned randomly at some initial time with proba-
%ility fm = pm/p = e™/T/[1 + 2cosHH /T)], butthen
evolves in time as discussed above (Fig. 2).

We label the particles consecutively from left to right by
an integerk (see the caption of Fig. 2); then their sping

longitudinal spinv (m = —1,0,1) is are independent af and we denote their trajectorieg(r).
Om = f dp o~ (A=mH+c2p/28)/T The longitudinal correlatiod’s; is given by the correlators
" 2 of the classical observable
_ TA —(A—mH)/T M3(x’t) = kaé(x - Xk(t)) (2)
" V2me2 € ’ k

in the classical ensemble defined above. Now because the
spin and spatial coordinates are independently distributed,
rthe correlators ofn;, andx; factorize. The correlators of
the my are easily evaluated by

and therefore the total density= p—1 + po + p1, and
the magnetizatiodM,) = (p; — p-1)8.3. The second
observation is that collisions between these particles a
described by their known two-particle matrix [7], and
only a simple limit of thisS matrix is needed in the low (mgme) = Ay + Axdke, 3)
T limit. The rms velocity of a thermally excited particle - _ 2 — _ _
vy = ¢(T/A)"2, and hence its “rapidity’~ vr/c < 1. where A; = (fi = f-1)" and Ay = fi + fo1 — (/)

oM ; T ) f-1)? are simple, dimensionless, known functionsbfT
In this limit the S matrix for the process in Fig. 1 is [7]

only. Using (3) we have

ot = (D8t S - 1) Cx(x — x';t =) = All{p(x, )p(x', 1)) = p°]
In other words, the excitations behave like impenetrable
particles which preserve their spin in a collision. Energy + A; Z<5(x — xx ()8 (x" — xx(2)), 4
and momentum conservation éih= 1 require that these k

particles simply exchange momenta across a collision
(Fig. 1). The(—1) factor in (1) can be interpreted as the
phase-shift of repulsive scattering between slowly moving
bosons ind = 1. Indeed, it appears that the simple form
of (1) is due to the slow motion of the particles, and is
not a special feature of relativistic continuum theory: We
conjecture that (1) also holds for lattice Heisenberg spin
chains in the limit of vanishing velocities.

We now evaluat€ (x, r) along the lines of a recent com-

putation for the Ising model [11]. We represefitx,?)  FiG. 2. A typical set of particle trajectories contributing to
as a “double time” path integral, with the 19" factor  C(x,7). Each trajectory represents paths moving both forward

; ; ; I nd backward in time. The particle coordinates gre), with
gg[}cteratlng trajectories that move forward in time, and th he labelsk chosen so that (1) = x,(1) for all 7 and & < ¢.
e

producing trajectories that move backward in time.shown on the trajectories are the values of the particle spins
In the classical limit, stationary phase is achieved whemwhich are independent ofin the low T limit.
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wherep(x,1) = > 8(x — xx(¢)) is the spacetime depen- the total magnetization with time. Fdr| < |x| < 1,
dent total density, all averages are now with respect to ththe functionF, has the ballistic forn¥F,(x,7) = F,(x, 1),
classical ensemble, afd(x, 1)) = p. The two-pointcor- while for [7]| > 1,|x| it crosses over to thdiffusive
relators ofpp(x,t) are also easy to evaluate: If the spinform

labels are neglected, the trajectories in Fig. 2 are straight o~ VT2
lines, and the density correlators are simply those of a clas- F(x,7) = i for large?. 9
sical ideal gas of point particles. The second correlator in (4717

(4), multiplying A,, is more difficult: It involves the self In the original dimensionful units, (5) and (9) imply a spin
two-point correlation of a given particle which follows a  diffusion constanDy, given exactly by

complicated trajectory in the way we have labeled the par- C2A/T
ticles (e.g., the trajectory of thel in Fig. 2). Fortunately, D, = . (10)
precisely this correlator was considered three decades ago A[l + 2 cosiH/T)]

by Jepsen [15] and a little later by others [16]; they Let us now C(_)nsider cprrelations of the transverse
showed that, at sufficiently long times, this correlator has dn@gnetization. Itis convenient to work with the circularly
Brownian motion form. Inserting their results into (4), we Polarized components of the magnetizatidn. = M, *
obtained the final results presented below after soméM2: The analog of (2) is nowM. = > S+ d(x —
straightforward simplifications. xi(1)), where S, (S-) are the spin raising (lowering)

An important property of the results is that they canOPerators of particlé. In the double time path integral
be written in a “reduced” scaling form [12] determined for C-+ (x, ) the spin on some particleis raised at time
by the classical dynamics. From the many independerit = 0 in the forward trajectory; at time the lowering

parameterse, A, T, and H, only a single lengthI,)  OPerator must act on theame particle or otherwise
and a single time I{,) scale controls their spacetime the trace over the classical trajectories vanishes. Notice

dependence. These scales can be chosen to be also that there is no raising or lowering of spins in
12 the backward trajectory. As a result, the path integral

L, = 1 L, = l( A ) _ (5) picks up a factor okf" from the additional Berry phase
p’ p \2c2T accumulated during the time the spin is raised during

the forward trajectory, which is not compensated by the
backward trajectory. This phase is multiplied by the
self-correlation of the particle whose spin was raised, a
gquantity we have obtained above. Similar considerations

Notice L, ~ ce/T/J/AT is the mean spacing between
the particles, and., ~ ¢2/7/T is a typical time between
particle collisions as'; = L,/L;+/2. Our final result is

Calo. 1) — p2|:A1F1<M, m> apply toC - and the final results are
Ly Ly 2 +iHi x| ]
|x| |t| C;i(x, t) = Zp e A:F2<L—, L—>, (11)
+ Aze(—,—ﬂ, (6) X
Ly L whereAsz = fy + f=1.
where p2F, is the connected density correlator of a Next we compute the local dynamic structure factor
classical ideal gas id = 1, Sap(w) = [~ dte™"®'C,pg(0,1). A subtlety arises in
. computing this Fourier transform. Notice that at short
Fi(77) =e 7 INC (7) |l < L;, we have the ballistic behaviar(0,7) ~ 1/|¢],

N . ~and so ther integral is logarithmically divergent. Our

[15,16], so we should cut off the integral at smajlleading to a
s s contribution ~ In(bT /@) where b is a numerical factor
Fy(x,1) = [(ZGI(”)GI(_M) + Fl(XJ)) of order unity. In fact, it is possible to determirie
precisely: At these short times the earlier free quantum
% 10<2; ,GQ(M)Gz(—M)> particle approach [10] is valid, and we determiheby
matching the logarithm to their results. In physical terms,
2 _ 2, the short time cutoff is provided by the wavelike nature
+ GrwGa(zu) + Gi(Zu)Gaw) of the individual particles, at a scale where collisions are
G2()Ga(—u) unimportant. Our final results fdf(w) are
X 11(2?\/02@)02(—)]1?)}[GZ‘““G”W Sxa(w) = B,V—AT{AI[In(TL,) + &y (JlolL)]
C aw
8

+ A[IN(TL,) + Oo(mlwlL)]}

Selo) = L2222 (In(rL) + da(V7lo F HIL).

with u=Xx/f, Gi(u) = erfdu)/2, and Gy(u) =
e " /(2Jm) — uGi(u). These expressions satisfy
f? dxF,(x,1) = % which ensures the conservation of
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viously puzzling trends which appear to receive a natural

5 explanation from our theory. Values for the activation
@, gapsA;,r, and A, have been quoted for a number of
experimental systems [1-3], and it has consistently been
8r found thatA;,7, is larger thanA,. In the spin§ = 1

chain compound AgVFSs Takigawaet al. [1] estimated
Ay, /A, = 1.3; for the spinS =1 chain compound
Y,BaNiOs, Shimizu et al. [2] measuredA, 7, /A, =
1.53 = 0.08; finally, in the two-legS = % ladder com-
-10 . " : pound SrCuOj3, Azumaet al. [3] foundAy/7, /A, = 1.6.
Q Takigawaet al. [1] also observed the diffusive/~/H
FIG. 3. The crossover functio®,()) appearing in the local dependence of/T;, from which the value oD, was esti-
dynamic structure factor. mated:D,/a*> = 5.5 X 10" sec’! at T = 220 K, where
a is the lattice spacing. From measurements [17} afe
The INTL,) terms logarithmically violate the purely may obtainA = 320 K, and ¢/a = 3.32A, which when
classical, reduced scaling forms [12], and were fixed bynserted into (10) giv®d,/a> = 6.6 X 10'* sec'. How-
matching to the short-time quantum calculation [10]. Theever, it should be noted that numerical analysis [18] on

scaling functiongb,; ,(Q)) were determined to be the nearest-neighbdt = 1 antiferromagnet gives/a =
4fme 6.06A, but using this value of would also lead to a dis-
D,(Q) = In<T> crepancy in the theoretical prediction fer

Finally, we note that similar methods [11] can be used
7[(V4 + Q2 +2)1/2 — JQT to obtain dynami@ > 0 correlators of thex, field: This

D>(Q) = ®1(Q) +

4JOGNE + Q2 + 2)1/2 will be described elsewhere.
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