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Interfacial Coarsening in Epitaxial Growth Models without Slope Selection
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We study the dynamics of an epitaxial growth in the presence of interfacial instabilities that induce a
pyramidal or mound-type interfacial growth. We develop a collective coordinates methodligically
discuss the coarsening of growing interfaces in the regime when the mounds’ slopes increase with time.
We calculate the coarsening exponents characterizing the scaling behavior of the mounds’ growth.
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There is significant recent interest in the large-scaldarameteB in (2) is the measure of the strength of the
morphology of growing interfaces relaxing dominantly by Schwoebel effect. The second term in (1) is the surface
surface diffusion, as in the molecular beam epitaxy (MBE)diffusion relaxation discussed by Mullins [11]. The unit
growth [1-9]. Recent studies of MBE grown films used in (2) forx is the mean distance between island
document the presence of a striking “tilting” instability nuclei, whereas the unit foh is the lattice constant.
forcing the interfaces to develop monzero average For the interface slope§’h| > 1 (i.e., terrace width«
slope rather than to stay parallel to the substrate, i.e.distance between island nuclei), the current of Johreton
perpendicular to the molecular beam [1-3]. This tiltingal. [1,2], Eq. (2), reduces to the form suggested by Villain
of the interface manifests itself through the formation of[6]
growing pyramidal objects or mounds whose sides have Vi
a nonzero slope. The growth of these objects apparently Jiesub = B .
dominates statistical properties of the growing interface— (Vh)?
its coarsening and roughness. L

Here we sfqudy the d%/namics of an MBE growth in thel.n thg opposite limit,[VA| <1, the model (.1) can be
presence of the interfacial instabilities inducing mound—“near'ze.d' Thgn one_easny reveals the '”St"?‘b"'ty of
type interfacial growth. We provide, for the first time, an the flat interfacial configuration towards formation of a

analytic framework for the physical understanding of al- modulated structure. As the amplitude of this modulation

ready numerous and challenging raw data obtained frorfrows, the interface eventually crosses over to the regime

numerical simulations and experiments. To address theé’éhere (3) applies and the dynamics becomes strongly

problems, we introduce here a novel collective Coordi_nonlinear. Our main concerns here are the statistical

nates method inspired by modern theories of phase orde
ing [10]. We use it to discuss the statistics and calculat
coarsening exponents of MBE growing interfaces in the oh SF
absenceof slope selection mechanism, when the mounds’ 9t sh’ 4)
slope indefinitely increases with time.
To illustrate our approach, we first consider the behavwhereF is an effective free energy of the form [forca
ior of MBE interfaces described by the continuous modeldimensional interface]
discussed by Johnsat al. [1,2]. (We focus first on this B
particular model for clarity and simplicity. We stress, F = f ddx<——|n[1 + (Vh)?] + L(VVh)2>_ (5)
however, that our approach is applicable to other con- 2 2
tinuous MBE grc_)wth models, as discussed later on.) I (5) is like a Ginzburg-Landau (GL) model with the
suitable units, it is of the form local slopeM = Vh as anorder parameter.In detail, our
oh , approach crucially depends on the possibility to express
Pl —Vdesub — KAh. (1) the dynamics in the typé-form (4). The logarithmic
term in (5), which generates the destabilizing current (2),
h(x,) is the interfacial height (in the frame comoving IS the analog of the “local potential” term of a GL model
with the interface):Juesws is the destabilizingsurface ~ favoring a phase with a nonzef®h). Inthe present case,

current produced by the so-called Schwoebel effect [G]however, this local potential is unbounded from below,

3)

roperties of interfaces in thistrongly nonlinear regime.
he model (1) can be put in the tygedynamics form

of the form [1,2] reflect.ing the; fact that .the order parameMr= _Vh will
grow indefinitely with time. Thus, the dynamical model
_3 Vh 5 in Egs. (1) and (2) is characterized by the absence of
Jdestab = 1+ (Vi (VA2 (2) a preferred slope, i.e., there is no slope selection. We
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remark that there is no noise term included in (1). Noise . f
is (generally) known to be irrelevant for the ordering €=
process [10]. _

A typical configuration of a growing interface governed are numerical constants.
by (1) is characterized by a growing interfacial widilr) Equation (11) is an ordinary differential equation for
(typical mound height) and a growing coarsening length? (). Let us now derive a similar equation fo(s). To
scale L(7) (typical mound lateral size). In the absencethis end, we consider the average density- (F)/A of
of a slope selection, the typical mound slopg(r) = the effective free energy (5) (witA the substrate area).
H(1)/L(¢) will also grow rather than approach a preferred This density satisfies, by (4), the exact equation
value. Here we discuss the laws governing growths of de 4%k
these quantities. Our approach is similar in spirit to recent — g
theories dealing with phase ordering processes such as dt (2)
the spinodal decomposition [10]. Problems of the typ&yhich can be combined with (8) to arrive at
considered here are similar to phase ordering processes
with the order parameteévl = Vh [7—9]. In general, we de _ (d_H>2 0o, Y H dL (ﬂ d_L>2
thus expect thatM(x + r, /)M(x, 1)) = M2(t)f(r/L(1)), dt dt *dt L dr  O\L ar)’
or, equivalently, (12)

(h(x + £, 0h(x, D) = H2<z>¢(ﬁ), 6)  with

dd
(2771)70, p*e(p),

(0:hi ()0, h—1 (1)),

dp 1_d<8G(p1,p2)

Cy = > = 0;
api P1=p2=p

wheref and ¢ are some structure functions characterizing (2m)d
the phase ordering process. In terms of the Fourier
transform ofh(x, ¢), Eq. (6) reads see Ref. [12], and
d 2
(Oh-(0) = FOLWGL),  (7) o= [ AL EELRD)
(277) ap19p2 P1=p2=p

with g, the Fourier transform ofp in (6), andk = [Kk|.
Equation (7) is the equal-time version of Furthermore, by (5), (7), and (9), we get =
—BIn(H/L) + cokH?*/2L* + const for M > 1.

(e (Oh— (1)) = HOH (K GKL(1), kL(t)), (8) This, combined with (12) and (11), yields

with g(p) = p~9G(p, p). We assume that(s) andH (z) . H?dL _ —B + 2¢ok H_2 (13)
are the only long length scales characterizing the interface. L dt L
Thus, in particular, the probability distribution of the local
slope,Vk, must have the form Equations (11) and (13) are first order in time ordinary
1 VA differential equations for the evolution of the interface
P(Vh) = M—(ﬁlp(W) (90 width H(r) and the coarsening lengtl(z). In the

following we use these equations to extract the scaling
with [dy ¢(y) = 1 andM(t) = H(t)/L(2). behavior of the collective coordinated(r) and L(r)

In the following, we discuss the model (1) in the characterizing the interface. To this end, we introduce
strongly nonlinear regime withVia| ~ H/L > 1, when  the dimensionless quantity
the destabilizing current assumes the form in Eq. (3) and

the local potential term in (5) reduces taB In(|VA|). By X= g i (14)
Eq. (1), one can easily verify that
d{h?) Then, by (11) and (13)
= 2((Vh)Jdestab) — 2K<(Ah)2>, (10)
dt dH?
, , ) cg— =2B(1 — x), (15)
holds exactly. Thus, in the strongly nonlinear regime dt
(M = H/L > 1), by (3), (7), (9), and (10) H dx a1 — dox 16)
dH’ H’ X dH  1-x
Cl 7 = 2B — 2cok F , (11)
h Wherea1 =2+401/C3 anda0=2+ 801/63. As the
where dp energy loss in Eq. (12) must be positivg, > 0, c3 > 0.
1 = Q2m) g(p), Thus, 0 < a; < ag. This inequality restricts possible
types of dynamical behaviors implied by (14) to (16)
and to a unique type in which, for larges, x approaches
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x* = ay/ap(0 < x* < 1), by (16) [13]. So, foralarge  discussion we find
by (14) and (15)H? = (Bx*/cox)L* = 2B(1 — x*)t/c.

Thus,H ~ tP, L ~ 1", H ~ L®, with B=x n=1/2m, o=pB/n=m, (20)

B=3 n=3 o=pB/n=2. (17) and A=B-—n=(m— 1)/2m, for any m > 1. A
) ) ) _notable feature of this result is thgt = % regardlessof
Thus, the ultimate _scallng ber_lawor of the continu-ipe actual value ah[21]. Thus, the “square-root of time”
ous model (1)—(3) is characterized by the exponentgrowth of the interface width is insensitive to important
in Eq.(17). The interface growth is superlinear, qyajitativedetails of the surface diffusion relaxation, such
with © = B/n > 1, reflecting the presence of a a5 the value ofm. Such a growth is common to systems
growing interface  slope M(1) = H(t)/L(t) ~ t*  in which slope selection mechanism effects are weak on

with A =n(w —1)=B -n=73 By (6) and the experimental time scale adg.w., has the Villain's
(7), the height-height differenceC(r,t) = {{(A(x +  form, Eq. (3). We remark that Amar and Family [16]
r, 1) — h(x,1))}!/?, behaves, for <« L, as find n = 1/6, in the “no-slope-selection” regime. By

our Eq. (20), this indicates the presence afteong A3k

C(r,1) = (ca/d)'PM()r ~ t*r, (18)  type surface relaxation in their modek = 3. Recent

_ experiments of Strosciet a.[20] indicate that this might

with 4 be a frequent feature in MBE growth.
4 :f dp p2e(p). In the presence of slope selection, the destabiliz-
(2m)! ing (“uphill”) surface currentJgeswsn, Egs. (2) and (3),

is replaced by a net local surface curreht.(Vh) =
destab(V) + Jaownnin(Vh). For |Vh| = My = the pre-
erred slopeJi,. = 0, i.e., the downhill current balances
the uphill current. ForlVh| < My, the uphill current
dominates the net current, i.€Jioc(VA) = Jaestan(VH).
Thus, our no-slope-selection scaling behavior, Eq. (17),

Scaling behavior in Eq. (17) isuperuniversalj.e., inde- h%'.dsh for ¢ <~< fe, wgerebtc Iiga crossover time scale at
pendent of the interface dimensial in agreement with which M(r) ~ M. So, by (19).
numerical data of Hunet al. (d = 1) [2], and of Somfai kMg
and Sandefd = 2) [14]. These numerical works on the fe = CONSLX —55™. (21)
continuousmodel (1)—(3) yield exponents which agree
with our analytic theory results in Eq. (17). In particu- For ¢ < t,, H = constBt)/? and L = constkr)'/4,
lar, we find that the interfacial widtiH grows as a ie., one has our no-slope-selection behavior
square root of the deposition time. Such a growttHof (g = % n = % a=1, and A = % for the Mullins-
with B8 = % has been observed in numerical simulationstype surface relaxation). For > r., the slope se-
of discretegrowth models by Zhang, Detch, and Metiu lection dominates ¥/ =~ M,) and one has a different
[15], and, more recently, by Amar and Family [16], andscaling behavior studied before numerically [9,16],
Smilauer and Vvedensky [17]. Smilauer and Vvedenskywith 3, = n, = 0.25, w, = B;/n; = ay, = 1, and
find 8 =~ 0.52, n = 0.24, and, thusA = 8 —n = 0.28 ), = B, — n, = 0, reflecting the asymptotic approach
[17], whereas Amar and Family fingg =~ 045, n = to the preferred slopeM,. The crossover time scale
0.16, and, thusA = B — n = 0.29 [16], in the no-slope- ¢, Eq. (21), should, generallyncreasewith increasing
selection regime (see below). We remark that a growthemperature.
with B8 = 1 has been observed in the experiments of In our previous discussions, we assurdggs(Vh) to
Ernstet al.in the homoepitaxy on Cu(100) surface [3], be of the Villain's form, Eq. (3). However, our theory
and, more recently, in the experiments of Elliettal.in ~ can be applied tdJswv(Vi) of a general form [22].
the homoepitaxy on Ag(111) surface [18]. From this generalization, we find thg@ = 0.5 only if
Our phase ordering type theory of growing interfaceslaeswb(VA) has the Villain's form; i.e., Eq. (3) is the
can be easily generalized to discuss surface relaxation diéniqueform that can yield3 = 0.5. Moreover, we find
ferent from the Mullins term—«AZ%h in Eq. (1) [19,20]. that 8 not equal to% can occur only ifJgestan (V) has
For example, ifk = 0 (or, in practice, small), the sur- a form qualitatively different from the Villain’s form.
face relaxation is dominated by a higher order termFor the model with aA™h-type surface relaxation, and
~A™p, with m > 2, as documented by the recent study Jeesar ~ VA/IVA|?, asymptoticallyfor large |Vi|, we
of Stroscioet al. of an MBE growthwith slope selection find that 8(n,m) = 2m — 2 + n)/2mn for 0 < n <
[20]. For such a surface relaxation, in tkdsenceof 3, and 8 = 2m + 1)/6m for n > 3, whereasn =
slope selection, by a direct generalization of our previoud /2m. Note that, interestinglypnly for the Villain's

Thus, whereas, by (18), the “roughness” exponenis
one, the growing slope reflects itself in the presence of th
growing prefactor

M(r) = constx BY2(t/x)"/*. (19)
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type current § = 2), the exponenB(n = 2, m) doesnot
depend om and equal%.

Cohenet al.[23] note thatB = % growth occurs for
the case ofinfinite Schwoebel barrier (SB). Our analy-
sis recovers this result, because fofirate SB, the step-
flow model of Elkinani and Villain [24] yieldYgestab =
BVh/|Vh| (M* + |Vh]), with M* — 0, in the limit of in-
finite SB (hereB = % flux density). In this limit, this
current reduces to the original Villain'’s form (3). More-
over, even for afinite SB, the Villain’s form is ap-
proached asymptoticallgesiay = BVE/|VA|? (i.e.,n =
2) for slopes|Vh| > M*. According to the above dis-
cussion, one thus has, at the longest time, the regime
with 8 = % even for a system witHinite SB. Dur- [18]
ing the growth without slope selection, a system with[lg]
a finite SB will eventually enter the regime with = 5 [20]
when M(¢r) = H(r)/L(tr) gets bigger thanv™ [25]. In
this regime, the deposition of atoms on a terrasgmp-
totically outnumbers the transitions across the Schwoebel
barriers. Thus, interface width scales with time in the
same way as in a system with infinite SB.
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