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We study the dynamics of an epitaxial growth in the presence of interfacial instabilities that ind
pyramidal or mound-type interfacial growth. We develop a collective coordinates method toanalytically
discuss the coarsening of growing interfaces in the regime when the mounds’ slopes increase wit
We calculate the coarsening exponents characterizing the scaling behavior of the mounds’ g
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There is significant recent interest in the large-sca
morphology of growing interfaces relaxing dominantly b
surface diffusion, as in the molecular beam epitaxy (MBE
growth [1–9]. Recent studies of MBE grown films
document the presence of a striking “tilting” instability
forcing the interfaces to develop anonzero average
slope rather than to stay parallel to the substrate, i.e
perpendicular to the molecular beam [1–3]. This tiltin
of the interface manifests itself through the formation o
growing pyramidal objects or mounds whose sides ha
a nonzero slope. The growth of these objects apparen
dominates statistical properties of the growing interface—
its coarsening and roughness.

Here we study the dynamics of an MBE growth in th
presence of the interfacial instabilities inducing mound
type interfacial growth. We provide, for the first time, an
analytic framework for the physical understanding of al
ready numerous and challenging raw data obtained fro
numerical simulations and experiments. To address the
problems, we introduce here a novel collective coord
nates method inspired by modern theories of phase ord
ing [10]. We use it to discuss the statistics and calcula
coarsening exponents of MBE growing interfaces in th
absenceof slope selection mechanism, when the mound
slope indefinitely increases with time.

To illustrate our approach, we first consider the beha
ior of MBE interfaces described by the continuous mod
discussed by Johnsonet al. [1,2]. (We focus first on this
particular model for clarity and simplicity. We stress
however, that our approach is applicable to other co
tinuous MBE growth models, as discussed later on.)
suitable units, it is of the form

≠h
≠t

­ 2=Jdestab 2 kD2h . (1)

hsx, td is the interfacial height (in the frame comoving
with the interface);Jdestab is the destabilizing surface
current produced by the so-called Schwoebel effect [6
of the form [1,2]

Jdestab ­ B
=h

1 1 s=hd2 . (2)
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ParameterB in (2) is the measure of the strength of th
Schwoebel effect. The second term in (1) is the surfa
diffusion relaxation discussed by Mullins [11]. The un
used in (2) forx is the mean distance between islan
nuclei, whereas the unit forh is the lattice constant.
For the interface slopesj=hj ¿ 1 (i.e., terrace widthø
distance between island nuclei), the current of Johnsonet
al. [1,2], Eq. (2), reduces to the form suggested by Villa
[6]

Jdestab ­ B
=h

s=hd2
. (3)

In the opposite limit,j=hj ø 1, the model (1) can be
linearized. Then one easily reveals the instability
the flat interfacial configuration towards formation of
modulated structure. As the amplitude of this modulatio
grows, the interface eventually crosses over to the regi
where (3) applies and the dynamics becomes stron
nonlinear. Our main concerns here are the statisti
properties of interfaces in thisstrongly nonlinear regime.
The model (1) can be put in the type-A dynamics form

≠h
≠t

­ 2
dF
dh

, (4)

whereF is an effective free energy of the form [for ad-
dimensional interface]

F ­
Z

ddx

µ
2

B
2

lnf1 1 s=hd2g 1
k

2
s==hd2

∂
. (5)

F in (5) is like a Ginzburg-Landau (GL) model with the
local slopeM ­ =h as anorder parameter.In detail, our
approach crucially depends on the possibility to expre
the dynamics in the type-A form (4). The logarithmic
term in (5), which generates the destabilizing current (2
is the analog of the “local potential” term of a GL mode
favoring a phase with a nonzerok=hl. In the present case,
however, this local potential is unbounded from below
reflecting the fact that the order parameterM ­ =h will
grow indefinitely with time. Thus, the dynamical mode
in Eqs. (1) and (2) is characterized by the absence
a preferred slope, i.e., there is no slope selection. W
© 1996 The American Physical Society
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remark that there is no noise term included in (1). No
is (generally) known to be irrelevant for the orderin
process [10].

A typical configuration of a growing interface governe
by (1) is characterized by a growing interfacial widthHstd
(typical mound height) and a growing coarsening leng
scale Lstd (typical mound lateral size). In the absen
of a slope selection, the typical mound slopeMstd ­
HstdyLstd will also grow rather than approach a preferre
value. Here we discuss the laws governing growths
these quantities. Our approach is similar in spirit to rec
theories dealing with phase ordering processes such
the spinodal decomposition [10]. Problems of the ty
considered here are similar to phase ordering proce
with the order parameterM ­ =h [7–9]. In general, we
thus expect thatkMsx 1 r, tdMsx, tdl ­ M2stdfsssryLstdddd,
or, equivalently,

khsx 1 r, tdhsx, tdl ­ H2stdf
µ

r
Lstd

∂
, (6)

wheref andf are some structure functions characterizi
the phase ordering process. In terms of the Fou
transform ofhsx, td, Eq. (6) reads

khkstdh2kstdl ­ H2stdLdstdgssskLstdddd , (7)

with g, the Fourier transform off in (6), andk ­ jkj.
Equation (7) is the equal-time version of

khkstdh2kst0dl ­ HstdHst0dk2dGssskLstd, kLst0dddd , (8)

with gspd ­ p2dGsp, pd. We assume thatLstd andHstd
are the only long length scales characterizing the interfa
Thus, in particular, the probability distribution of the loc
slope,=h, must have the form

Ps=hd ­
1

Mstd
c

µ
j=hj

Mstd

∂
, (9)

with
R

dy cs yd ­ 1 andMstd ­ HstdyLstd.
In the following, we discuss the model (1) in th

strongly nonlinear regime withj=hj , HyL ¿ 1, when
the destabilizing current assumes the form in Eq. (3) a
the local potential term in (5) reduces to2B lnsj=hjd. By
Eq. (1), one can easily verify that

dkh2l
dt

­ 2ks=hdJdestabl 2 2kksDhd2l , (10)

holds exactly. Thus, in the strongly nonlinear regim
sM ­ HyL ¿ 1d, by (3), (7), (9), and (10)

c1
dH2

dt
­ 2B 2 2c0k

H2

L4
, (11)

where

c1 ­
Z ddp

s2pdd gspd ,

and
e
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c0 ­
Z ddp

s2pdd
p4gspd ,

are numerical constants.
Equation (11) is an ordinary differential equation fo

Hstd. Let us now derive a similar equation forLstd. To
this end, we consider the average densitye ­ kFlyA of
the effective free energy (5) (withA the substrate area).
This density satisfies, by (4), the exact equation

de

dt
­ 2

Z ddk
s2pdd

k≠thkstd≠th2kstdl,

which can be combined with (8) to arrive at

2
de

dt
­ c1

µ
dH
dt

∂2

1 2c2
dH
dt

H
L

dL
dt

1 c3

µ
H
L

dL
dt

∂2

,

(12)

with

c2 ­
Z ddp

s2pdd
p12d

µ
≠Gsp1, p2d

≠p1

∂
p1­p2­p

­ 0 ;

see Ref. [12], and

c3 ­
Z ddp

s2pdd p22d

µ
≠2Gsp1, p2d

≠p1≠p2

∂
p1­p2­p

.

Furthermore, by (5), (7), and (9), we gete ­
2B lnsHyLd 1 c0kH2y2L4 1 const, for M ¿ 1.
This, combined with (12) and (11), yields

c3
H2

L
dL
dt

­ 2B 1 2c0k
H2

L4 . (13)

Equations (11) and (13) are first order in time ordina
differential equations for the evolution of the interfac
width Hstd and the coarsening lengthLstd. In the
following we use these equations to extract the scali
behavior of the collective coordinatesHstd and Lstd
characterizing the interface. To this end, we introdu
the dimensionless quantity

x ­
c0k

B
H2

L4 . (14)

Then, by (11) and (13)

c1
dH2

dt
­ 2Bs1 2 xd , (15)

H
x

dx
dH

­
a1 2 a0x

1 2 x
, (16)

where a1 ­ 2 1 4c1yc3 and a0 ­ 2 1 8c1yc3. As the
energy loss in Eq. (12) must be positive,c1 . 0, c3 . 0.
Thus, 0 , a1 , a0. This inequality restricts possible
types of dynamical behaviors implied by (14) to (16
to a unique type in which, for larget, x approaches
91



VOLUME 78, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 6 JANUARY 1997

n
r

t

e

n
u

k

]

e
d

nt
h
s
on

]

liz-

s

7),
t

ior

t
],

h

y

xp ­ a1ya0s0 , xp , 1d, by (16) [13]. So, for a larget,
by (14) and (15),H2 ­ sBxpyc0kdL4 ­ 2Bs1 2 xpdtyc1.
Thus,H , tb , L , tn, H , Lv, with

b ­
1
2 , n ­

1
4 , v ­ byn ­ 2 . (17)

Thus, the ultimate scaling behavior of the continu
ous model (1)–(3) is characterized by the expone
in Eq. (17). The interface growth is superlinea
with v ­ byn . 1, reflecting the presence of a
growing interface slope Mstd ­ HstdyLstd , tl

with l ­ nsv 2 1d ­ b 2 n ­
1
4 : By (6) and

(7), the height-height differenceCsr, td ­ hkfhsx 1

r, td 2 hsx, tdg2lj1y2, behaves, forr ø L, as

Csr , td ­ sc4ydd1y2Mstdr , tlr , (18)

with

c4 ­
Z ddp

s2pdd
p2gspd .

Thus, whereas, by (18), the “roughness” exponenta is
one, the growing slope reflects itself in the presence of
growingprefactor

Mstd ­ const3 B1y2stykd1y4. (19)

Scaling behavior in Eq. (17) issuperuniversal,i.e., inde-
pendent of the interface dimensiond, in agreement with
numerical data of Huntet al. sd ­ 1d [2], and of Somfai
and Sandersd ­ 2d [14]. These numerical works on the
continuousmodel (1)–(3) yield exponents which agre
with our analytic theory results in Eq. (17). In particu
lar, we find that the interfacial widthH grows as a
square root of the deposition time. Such a growth ofH
with b ­

1
2 has been observed in numerical simulatio

of discretegrowth models by Zhang, Detch, and Meti
[15], and, more recently, by Amar and Family [16], an
Smilauer and Vvedensky [17]. Smilauer and Vvedens
find b ø 0.52, n ø 0.24, and, thus,l ­ b 2 n ø 0.28
[17], whereas Amar and Family findb ø 0.45, n ø
0.16, and, thus,l ­ b 2 n ø 0.29 [16], in the no-slope-
selection regime (see below). We remark that a grow
with b ø 1

2 has been observed in the experiments
Ernst et al. in the homoepitaxy on Cu(100) surface [3
and, more recently, in the experiments of Elliottet al. in
the homoepitaxy on Ag(111) surface [18].

Our phase ordering type theory of growing interfac
can be easily generalized to discuss surface relaxation
ferent from the Mullins term2kD2h in Eq. (1) [19,20].
For example, ifk ­ 0 (or, in practice, small), the sur-
face relaxation is dominated by a higher order ter
,Dmh, with m . 2, as documented by the recent stud
of Stroscioet al. of an MBE growthwith slope selection
[20]. For such a surface relaxation, in theabsenceof
slope selection, by a direct generalization of our previo
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discussion we find

b ­
1
2 , n ­ 1y2m, v ­ byn ­ m , (20)

and l ­ b 2 n ­ sm 2 1dy2m, for any m . 1. A
notable feature of this result is thatb ­

1
2 regardlessof

the actual value ofm [21]. Thus, the “square-root of time”
growth of the interface width is insensitive to importa
qualitativedetails of the surface diffusion relaxation, suc
as the value ofm. Such a growth is common to system
in which slope selection mechanism effects are weak
the experimental time scale andJdestab has the Villain’s
form, Eq. (3). We remark that Amar and Family [16
find n ø 1y6, in the “no-slope-selection” regime. By
our Eq. (20), this indicates the presence of astrongD3h
type surface relaxation in their model,m ­ 3. Recent
experiments of Stroscioet a. [20] indicate that this might
be a frequent feature in MBE growth.

In the presence of slope selection, the destabi
ing (“uphill”) surface currentJdestab , Eqs. (2) and (3),
is replaced by a net local surface currentJlocs=hd ­
Jdestabs=hd 1 Jdownhills=hd. For j=hj ­ M0 ­ the pre-
ferred slope,Jloc ­ 0, i.e., the downhill current balance
the uphill current. Forj=hj ø M0, the uphill current
dominates the net current, i.e.,Jlocs=hd ø Jdestabs=hd.
Thus, our no-slope-selection scaling behavior, Eq. (1
holds for t ø tc, where tc is a crossover time scale a
which Mstd ø M0. So, by (19).

tc ­ const3
kM4

0

B2 . (21)

For t ø tc, H ­ constsBtd1y2 and L ­ constsktd1y4,
i.e., one has our no-slope-selection behav
(b ­

1
2 , n ­

1
4 , a ­ 1, and l ­

1
4 , for the Mullins-

type surface relaxation). Fort ¿ tc, the slope se-
lection dominates (M ø M0) and one has a differen
scaling behavior studied before numerically [9,16
with bs ­ ns ø 0.25, vs ­ bsyns ­ as ­ 1, and
ls ­ bs 2 ns ­ 0, reflecting the asymptotic approac
to the preferred slopeM0. The crossover time scale
tc, Eq. (21), should, generally,increasewith increasing
temperature.

In our previous discussions, we assumedJdestabs=hd to
be of the Villain’s form, Eq. (3). However, our theor
can be applied toJdestabs=hd of a general form [22].
From this generalization, we find thatb ­ 0.5 only if
Jdestabs=hd has the Villain’s form; i.e., Eq. (3) is the
uniqueform that can yieldb ­ 0.5. Moreover, we find
that b not equal to 1

2 can occur only ifJdestabs=hd has
a form qualitatively different from the Villain’s form.
For the model with aDmh-type surface relaxation, and
Jdestab , =hyj=hjh , asymptotically for large j=hj, we
find that bsh, md ­ s2m 2 2 1 hdy2mh for 0 , h ,

3, and b ­ s2m 1 1dy6m for h . 3, whereas n ­
1y2m. Note that, interestingly,only for the Villain’s
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type current (h ­ 2), the exponentbsh ­ 2, md doesnot
depend onm and equals12 .

Cohenet al. [23] note thatb ­
1
2 growth occurs for

the case ofinfinite Schwoebel barrier (SB). Our analy
sis recovers this result, because for afinite SB, the step-
flow model of Elkinani and Villain [24] yieldsJdestab ­
B=hyj=hj sMp 1 j=hjd, with Mp ! 0, in the limit of in-
finite SB (hereB ­

1
2 flux density). In this limit, this

current reduces to the original Villain’s form (3). More
over, even for afinite SB, the Villain’s form is ap-
proached asymptotically,Jdestab ­ B=hyj=hj2 (i.e., h ­
2) for slopesj=hj ¿ Mp. According to the above dis-
cussion, one thus has, at the longest time, the regi
with b ­

1
2 even for a system withfinite SB. Dur-

ing the growth without slope selection, a system wi
a finite SB will eventually enter the regime withb ­

1
2

when Mstd ­ HstdyLstd gets bigger thanMp [25]. In
this regime, the deposition of atoms on a terraceasymp-
totically outnumbers the transitions across the Schwoe
barriers. Thus, interface width scales with time in th
same way as in a system with infinite SB.

I acknowledge discussions with Andy Zangwill an
support by the NSFyWV EPSCoR program and by Mylan
Laboratories.

[1] M. D. Johnson, C. Orme, A. W. Hunt, D. Graff,
J. Sudijono, and L. M. Sander, Phys. Rev. Lett.72, 116
(1994).

[2] A. W. Hunt, C. Orme, D. R. M. Williams, B. G. Orr, and
L. M. Sander, Europhys. Lett.27, 611 (1994).

[3] H. J. Ernst, F. Fabre, R. Folkerts, and J. Lapujoulad
Phys. Rev. Lett.72, 112 (1994).
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