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Spatially coarse-grained (or effective) versions of nonlinear partial differential equations mus
closed with a model for the unresolved small scales. For systems that are known to display f
scaling, we propose a model based on synthetically generating a scale-invariant field at small
using fractal interpolation, and then analytically evaluating its effects on the large, resolved scales
procedure is illustrated for the forced Burgers equation, solved numerically on a coarse grid. De
comparisons with direct simulation of the full Burgers equation and with an effective viscosity mo
are presented. [S0031-9007(96)02215-6]

PACS numbers: 47.53.+n, 02.60.Lj, 05.20.–y, 47.27.Eq
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Many physical processes obey reliably known dynam
cal equations whose solutions involve a wide range of a
tive length and time scales. This often makes analytical
direct numerical solution procedures impossible or, at be
impractical. Solving more economical “coarse-graine
versions of the equations can yield results that conv
much of the important and practically relevant large-sca
features of the full solution. However, unless the dynam
cal equations are linear, the success of such a program
pends largely upon the realism with which the effects
unresolved phenomena are represented. For phenom
without “scale separation”—hydrodynamic turbulence [
and domain growth in random media [2] are familiar e
amples-such modeling is a challenge.

Within the general subject area of “nonlinear physic
dealing with complex phenomena lacking scale sep
ration, abundant empirical observations have be
made about scale invariance (or fractality) as som
parameter approaches a critical value [3]. Howev
the crucial task of translating such observations in
a workable mathematical framework that utilizes th
dynamical equations (employing fractals in apre-
dictive fashion) has proven to be quite difficult in
most instances. In this Letter, we describe an a
proach that uses fractals to close coarse-grained, n
linear partial differential equations (PDEs) that gove
processes which display scale invariance (fractality)
small length scales. We begin by describing the ba
idea in a general setting, but soon specialize it to
simple one-dimensional case, namely, the forced Burg
equation.

We begin with a field equation of the form

≠

≠t
asx, td ­ L fag 1 N fag , (1)

which, when endowed with appropriate initial and boun
ary conditions, governsasx, td, a time-dependent vector
field in some spatial domain of characteristic lengthOsLd.
N and L are nonlinear and linear operators, respe
tively. Let us assume that the solution of this equatio
has complex spatial structure down to some small c
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off scaleh ø L. Full numerical solution may be pro-
hibitive, requiringOsLyhd elements in each spatial direc-
tion. Convolution ofasx, td with GDsxd, a homogeneous
spatial filter with characteristic scaleD sh ø D ø Ld,
yields a coarse-grained variableã ; GDa. Once an effec-
tive equation forã is found, it is amenable to a now less
demanding numerical integration on a mesh with resolu
tion of orderD. The effective equation is derived by con-
volving the original one with the filterGD, which yields

≠

≠t
ãsx, td ­ L fãg 1 N fãg 1 S f?g , (2)

whereS f?g ; gN fag 2 N fãg. This situation is encoun-
tered, for example, when coarse graining hydrodynam
equations to eliminate part of the spatial complexity o
turbulence (large-eddy simulation) [4].

The basic difficulty resides in expressingS as a function
of ã. For this purpose, physical and/or statistical informa
tion about the small-scale fielda0 ; a 2 ã is required.
For instance, in kinetic theory one uses the assumptio
of scale separation between molecular and macrosco
variables to derive closures (e.g., derive Navier-Stoke
from Boltzmann equation [5]), witha posteriori verifi-
cation that the equations derived do not lead to violatio
of the assumed scale separation (e.g., do not develop s
gularities). Our approach is based on using an assum
tion of scale invariance for the (restricted) set of phe
nomena which display self-similar (fractal) behavior. We
will also verify the self-consistency of the resulting effec
tive equations. The essence of the proposed method
to construct the unknown small-scale portion of the fiel
asx, td by “extrapolating” features of the coarse-grained
field ãsx, td to smaller and smaller scales. A mathemat
ical tool which allows one to generate such a synthet
small-scale field is the so-called “fractal interpolation tech
nique” [6]. It is based on a mappingWf?g which trans-
forms the features of̃a at scales even coarser thanD

onto the complete signal̃a. More concretely, ifã rep-
resents the field̃a at some resolutionD0 . D, coarser
than the basic resolutionD, the mapping generates̃a ­
Wfãg. In order to generate a “synthetic” small-scale field
© 1997 The American Physical Society 867
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this mapping is simply iterated many more times; i.e
we generate a fractal fieldafsx, td ­ limn!`W sndfãg ;
WfWfWf· · · Wfãg · · ·ggg (other means of generating syn
thetic turbulence have been proposed [7], but fractal int
polation will be shown to be particularly well suited fo
our purposes). Once we have generated the full field,

unknown term gN fag 2 N fãg is evaluated according to
its definition. One important element in our proposed a
proach is that we shall be able to evaluate this term a
alytically from the parameters of the mappingW (which
depend oña and the fractal dimension), without the nee
to explicitly construct the small-scale field. (Notice tha
such an explicit or numerical construction would require
computational mesh at scales much smaller thanD, elimi-
nating the usefulness of coarse graining in the first plac

Once the unknown termgN fag 2 N fãg is expressed in
terms ofã, it is replaced into the dynamical coarse-graine
equation, which may then be solved.

While the method is, in principle, quite general, w
now focus on a simple one-dimensional hydrodynam
problem, the randomly forced, viscous Burgers equati
with periodic boundary conditions in the interval [0, 1]

≠u
≠t

1
≠

≠x

√
1
2

uu

!
­ n0

≠2u
≠x2

1 fsx, td . (3)

This equation is also the prototype of a class of equatio
that governs a range of phenomena, from stochas
growth of interfaces to directed polymers [2]. Rece
work [8] shows that if the forcing has zero mean and
spectrum of the formkf̂sk, vdf̂sk0, v0dl ­ Ak21dsk 1

k0ddsv 1 v0d (i.e., is white in time but has spatial
correlations), Kolmogorov-like scaling of the resultin
velocity is obtainedskjûskdj2l , k25y3d for k ø h21,
where h is a viscous cutoff scale. One also finds tha
the second-order structure function follows a scalin
kfusx 1 rd 2 usxdg2l , r2y3, which suggests that the
fractal dimension of the signalusxd is D ­ 5y3 (not
unlike the case of 3D turbulence [9]). Therefore, this is a
application where we know that asymptoticallysn0 ! 0d
the solution at small scales is scale invariant. Our meth
explicitly uses this information to model the small-sca
features of the system.

The effective equation for the coarse-grained 1D velo
ity ũsx, td is found by convolving Eq. (3) with a top-hat
filter of size D [GDsxd ­ D21 if jxj , Dy2, zero other-
wise],

≠ũ
≠t

1
≠

≠x

√
1
2

ũũ

!
­ f̃sx, td 2

1
2

≠t

≠x
1 n0

≠2ũ
≠2x

, (4)

where t ­ eu2 2 ũ2. While one can certainly obtain
numerical solutions to this equation by using an effectiv
viscosity model, e.g.,t ­ 2neffũx , such a model can
only be justified for cases with significant scale separati
and has little basis in the present application.

Instead, let us employ the basic idea underlying frac
interpolation [6], which is to replicate on smaller an
smaller scales features of̃u present at a coarse scale
868
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Let us discretize the unit interval inD21 segments, each
centered at positionxi. For simplicity, let us define a local
coordinatej ­ sx 2 xi21dy2D which goes fromj ­ 0
to j ­ 1 between pointsxi21 to xi11. The piecewise
linear mapping to generate the locally fractal field in the
interval fxi21, xi11g is given by

Wifug ­

(
di,1us2jd 1 ai,1j 1 bi,1, if j [ s0, 1

2 d ,

di,2us2j 2 1d 1 ai,2j 1 bi,2, if j [ s 1
2 , 1d .

(5)

The parametersai,j and bi,j are related to the known
velocities according toai,1 ­ 2fũi21 2 ũi 2 di,1sũi11 2

ũi21dg, ai,2 ­ 2fũi11 2 ũi 2 di,2sũi11 2 ũi21dg, bi,1 ­
ũi21s1 2 di,1d, and bi,2 ­ ũi 2 di,2ũi21. The parame-
ters di,1 and di,2 determine the vertical stretching of the
left and right segments at each iteration, and they mus
obeyjdij , 1 for the mapping to be contracting (i.e., for a
fixed point to exist). Repeated application of this mapping
generates a fractal function as the fixed point of the map
uf sjd ­ Wifufsjdg, which passes through all the points
sxi , ũid, but has fluctuations down to much smaller scales
The di ’s are related toD, the fractal dimension ofufsxd,
by jd1j 1 jd2j ­ 2D21. Figure 1 illustrates the first two
steps of the construction process, as well as the 10th iter
tion of the map.

Interestingly, it is now possible to evaluate, by recur-
rence, a variety of integrals of the fractal function. For
instance, solving for

R1
0 ufsjd dj yieldsZ 1

0
uf dj ­

ũi21 1 2ũi 1 ũi11

2s2 2 di,1 2 di,2d

2
sdi,1 1 di,2d sũi11 1 ũi21d

2s2 2 di,1 2 di,2d
. (6)

We set di,1 ­ 2di,2, because then Eq. (6) shows that
the integral (i.e., the synthetic velocity box filtered at
scale 2D) reduces to the integral of the piecewise linear

FIG. 1. Different states during the construction of the fracta
function ufsjd, which interpolates betweeñui21, ũi , and ũi11.
If u0sjd ­ sũi11 2 ũi21dj 1 ũi21, then the dash-dotted line
is Wifu0sjdg, with Wi defined as in Eq. (5). The dotted
line is WifWi fu0sjdgg and the continuous curve isuf sjd .
W 10

i fu0sjdg. The dots mark the points to be interpolated. In
this exampleD ­

5
3 (di,1 ­ 2221y3, di,2 ­ 221y3).
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interpolation (i.e., the velocitỹu filtered at scale 2D).
Moreover, this recursive technique can be used to evalu
any (local) moment of fractally interpolated function
over diadic subintervals [6], such as

R1y2
0 sjdpfufsjdgq dj

and
R1

1y2sjdpfufsjdgq dj. This is quite useful because
the unknown subgrid stresst produced by the synthetic
field aroundxi can be written asti ­

R3y4
1y4fufsjdg2 dj 2

f
R3y4

1y4 ufsjd djg2. After some algebra, one obtains

tifũ, dig ­
1

12
sdiũd2 1

dis8 2 3d2
i d

48
d2

i ũdiũ

1
1 1 15d2

i 2 24d4
i 1 12d6

i

192s1 2 d2
i d

sd2
i ũd2. (7)

Above, diũ ­ sũi11 2 ũi21dy2, d
2
i ũ ­ ũi11 2 2ũi 1

ũi21, and di ­ 62D22, where the sign will be chosen
at random with equal probabilities. Still, the fracta
dimensionD is needed in order to evaluateti . Instead of
prescribingD (or di) a priori, a dynamical equation for
t can be combined with Eq. (7) to self-consistently solv
for t andd. From Burgers equation, we find

≠t

≠t
1 ũ

≠t

≠x
­ 2´ 2 2

≠ũ
≠x

t 2 2
≠A
≠x

1 2s ffu 2 ũf̃ d .

(8)

The flux A ­ s eu3 2 ũ3dy3 2 ũt and small-scale forcingffu 2 f̃ũ are computed in a straightforward fashion wit

the technique outlined above [10].́ ­ 2n0fs g≠uy≠xd2 2

s≠ũy≠xd2g is the dissipation due to molecular viscosit
and requires a more careful analysis since the frac
signal is not differentiable ifd . 1y2 (or 1 , D , 2,
which is, of course, the interesting case). However,
we stop the iteration of the map at thenth step, i.e., we
introduce a cutoff scale ath , 22nD, we can evaluate
integrals ofsdufydxd2 and obtain

´i ­ 2n0

"
1
4

1 4d4
i

s4d2
i dn11 2 1

4d2
i 2 1

#
sd2

i ũd2. (9)

For forced Burgers equation with Kolmogorov scaling
the usual dimensional argument yieldsh ­ Csn3

0y´d1y4,
with C ­ Os1d. Besides the geometric rules of ou
fractal interpolation scheme, this step is the only physic
modeling required. Combining this (withC ­ 1) and
Eq. (9) we obtain an equation for the dissipation solely
terms ofd and n0. As an aside, it can be easily show
that limn0!0´sd, n0d ­ Osnb

0 d with b ­ 1 if d , 1y2
or b ­ 2

3
2 log2s21y3dd if d . 1y2 which implies that

d ­ 221y3 (or D ­
5
3 ) is the cross-over scaling at which

a fractal signal dissipates energy even in the invisc
limit [11]. Different dissipation mechanisms (such a
hyperviscosity) would lead to different expressions for´

in Eq. (9) and to a different estimate forh. This, in turn,
may affect the value ofd.

In summary, we have a system of four equations (
(7), (8), and (9) in the four unknowns (ũ, t, d, ´), and
are now in a position to explore numerical solution
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of these equations. We use a pseudospectral code
the unit interval to solve for̃usx, td and tsx, td, using
27 modes (i.e.,D ­

1
256 ). This scale should be smal

enough for a scaling range to develop in the resolv
field. The time advancement is based on the Ada
Bashfort 2 scheme. The forcing usesA ­

p
2 3 1023,

the time step isDt ­ 5.0 3 1025 [resulting in a Courant-
Friedricks-Lewey (CFL) number much less than unity
and the viscosity isn0 ­ 1.0 3 1025. This value implies
an expected cutoff scale for the real Burgers equation
abouth , 1

4096 , much smaller than our coarse resolutio
The random forcing is generated in Fourier space
superposing Fourier modes with prescribed amplitud
equal to Ay

p
Dt and phasesu, chosen randomly at

each time step with a uniform weight in [0, 2p]. The
model expressions are evaluated in physical space,
transformed to Fourier space for differentiation. Th
nonlinear terms are dealiased by the 2 rule (zero paddin
and the minimum attainable value oft (realizability) is
enforced numerically [12]. We found that Eq. (7) alway
had a unique solution fordi as a function ofti with di [
f0, 1g. Several simulations with different initial conditions
have been performed. For example, if we setũsx, t ­ 0d
to be a random signal with a Kolmogorov spectrum, aft
an initial decay the global kinetic energyeg ­

1
2

R1
0 ũ2 dx

reaches a plateau where forcing and dissipation are
approximate equilibrium. The squares in Fig. 2 sho
the time evolution ofeg, averaged over three differen
realizations of the forcing.

In order to illustrate the impact of the fractal subgri
model, we also perform a simulation witht ­ 0. As
expected, the energy injected cannot be dissipated,
the simulation blows up (dash-dotted line). For purpos
of comparison, we also perform a direct simulation [o
Eq. (3)] with no coarse graining or modeling, using 213

FIG. 2. Kinetic energyeg versus time for fully resolved equa-
tion (solid curve), fractal model (squares), effective viscosi
model (triangles), and coarse-grained solution without model
(dash-dotted line). The inset shows the energy spectrum (sa
symbols) averaged in time between60 , t , 200 and over
different realizations of the coarse-grained simulation, achie
ing improved convergence at lowk.
869
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modes and the same random forcing for the commo
large-scale, modes. For the present value ofn0 the
full simulation requires roughly 10 times the memory a
compared with the model and takes 4 times longer p
time step. As shown in Fig. 2, solid line, the evolution
of the global energy of the direct simulation and that o
the coarse-grained simulations are quite close. Finall
we have performed a simulation wheret is replaced by
an effective viscosity term (which runs about 5 time
faster than the full fractal model), with the eddy viscosity
neff ­ 5.0 3 1023 adjusted so as to dissipate energ
at the rate predicted by the direct numerical simulatio
(DNS) (Fig. 2, triangles). We have also compared energ
spectra (inset, Fig. 2). The fractal model displays goo
agreement with the DNS up to a wave numberk ,
py2D, about half of the cutoff wave number. At the
smallest octave of resolved scales, the spectrum of t
coarse-grained simulation tends to fall somewhat abo
that of the direct simulation, an indication that the fracta
model does not reproduce all the features of the sma
scales perfectly. However, this has to be contraste
with the much stronger departure of the eddy viscosit
simulation which excessively damps the solution. Whil
the spectrum can be made to approach the DNS usi
smaller values for the eddy viscosity, the energy deca
rate becomes significantly smaller and no longer match
that of the DNS.

The fractal dimension calculated shows that the portio
of the signal whered . 221y3, that is to say, where
most of the dissipation takes place, covers in averag
only 25% of the space, with the computedh reaching
down to 1.25 3 1024. This is consistent with the fact
that for the present level of forcing we have found tha
DDNS , 1.25 3 1024 is the largest mesh size that can
be used to solve Eq. (3) without modeling. Finally, in
Fig. 3 we show a segment of the coarse-grained solutio
ũsx, td, represented by the symbols (values at grid points
The solid line is an explicit construction of the synthetic

FIG. 3. Sample of large-scale field (squares) as comput
from coarse-grained Burgers equation using the fractal mod
and explicitly constructed small-scale field (solid curve) usin
d andn as obtained from the simulation.
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small-scale signal using the fractal interpolation techniqu
(iterating the mappingWi for n times, with n and d set
to the locally computed values). As can be seen, value
of n and´ fluctuate greatly from one location to another
indicative of a high level of intermittency.

We stress again that during the simulation, we di
not have to explicitly construct such a small-scale signa
because the fractal interpolation technique allows us
analytically evaluate their effect on the coarse scale
directly. As ũ evolves in time, the synthetic small scales
are “slaved” to the resolved ones, and evolve accordingl
The simulation proceeds at the coarse resolution, but t
simulated dynamics of̃u are as if the signal contained all
the small-scale fluctuations shown in the figure.
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