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Fractal Model for Coarse-Grained Nonlinear Partial Differential Equations

Alberto Scotti and Charles Meneveau

Department of Mechanical Engineering, The John Hopkins University, Baltimore, Maryland 21218
(Received 17 May 1996

Spatially coarse-grained (or effective) versions of nonlinear partial differential equations must be
closed with a model for the unresolved small scales. For systems that are known to display fractal
scaling, we propose a model based on synthetically generating a scale-invariant field at small scales
using fractal interpolation, and then analytically evaluating its effects on the large, resolved scales. The
procedure is illustrated for the forced Burgers equation, solved numerically on a coarse grid. Detailed
comparisons with direct simulation of the full Burgers equation and with an effective viscosity model
are presented. [S0031-9007(96)02215-6]

PACS numbers: 47.53.+n, 02.60.Lj, 05.20.-y, 47.27.Eq

Many physical processes obey reliably known dynami-off scalen < L. Full numerical solution may be pro-
cal equations whose solutions involve a wide range of achibitive, requiringO(L/7) elements in each spatial direc-
tive length and time scales. This often makes analytical otion. Convolution ofa(x, ) with G (x), a homogeneous
direct numerical solution procedures impossible or, at besgpatial filter with characteristic scal® (np < A < L),
impractical. Solving more economical “coarse-grained”yields a coarse-grained variallle= Gaa. Once an effec-
versions of the equations can yield results that conveyive equation fora is found, it is amenable to a now less
much of the important and practically relevant large-scalelemanding numerical integration on a mesh with resolu-
features of the full solution. However, unless the dynamition of orderA. The effective equation is derived by con-
cal equations are linear, the success of such a program deslving the original one with the filteG A, which yields
pends largely upon the realism with which the effects of 9
unresolved phenomena are represented. For phenomena 5, A0 = Lla] + N{a] + S[]. (2)
without “scale separation”—hydrodynamic turbulence [1] —~
and domain growth in random media [2] are familiar ex-whereS[-] = N[a] — N[a]. This situation is encoun-
amples-such modeling is a challenge. tered, for example, when coarse graining hydrodynamic

Within the general subject area of “nonlinear physics”e€quations to eliminate part of the spatial complexity of
dealing with complex phenomena lacking scale sepaturbulence (large-eddy simulation) [4].
ration, abundant empirical observations have been The basic difficulty resides in expressifigas a function
made about scale invariance (or fracta”ty) as Somé)f a. For this purpose, phySical and/or statistical informa-
parameter approaches a critical value [3]. Howeverlion about the small-scale fiels = a — a is required.
the crucial task of translating such observations intd=Or instance, in kinetic theory one uses the assumption
a workable mathematical framework that utilizes theOf scale separation between molecular and macroscopic
dynamical equations (employing fractals in pre- Vvariables to derive closures (e.g., derive Navier-Stokes
dictive fashion) has proven to be quite difficult in from Boltzmann equation [5]), witta posteriori verifi-
most instances. In this Letter, we describe an apcation that the equations derived do not lead to violation
proach that uses fractals to close coarse-grained, noff the assumed scale separation (e.g., do not develop sin-
linear partial differential equations (PDEs) that governgularities). Our approach is based on using an assump-
processes which display scale invariance (fractality) ation of scale invariance for the (restricted) set of phe-
small length scales. We begin by describing the basi®iomena which display self-similar (fractal) behavior. We
idea in a general setting, but soon specialize it to avill also verify the self-consistency of the resulting effec-
simple one-dimensional case, namely, the forced Burgefdve equations. The essence of the proposed method is

equation. to construct the unknown small-scale portion of the field
We begin with a field equation of the form a(x,t) by “extrapolating” features of the coarse-grained
field a(x, #) to smaller and smaller scales. A mathemat-
aia(x’t) = L[a] + NTa], (1) ical tool which allows one to generate such a synthetic

t

small-scale field is the so-called “fractal interpolation tech-
which, when endowed with appropriate initial and bound-nique” [6]. It is based on a mappin@|-] which trans-
ary conditions, governa(x, ), a time-dependent vector forms the features ofi at scales even coarser than
field in some spatial domain of characteristic lengtfL).  onto the complete signal. More concretely, ifa rep-
N and £ are nonlinear and linear operators, respectesents the fieldi at some resolutiol\’ > A, coarser
tively. Let us assume that the solution of this equatiorthan the basic resolution, the mapping generates =
has complex spatial structure down to some small cutW[a]. In order to generate a “synthetic” small-scale field,
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this mapping is simply iterated many more times; i.e.,Let us discretize the unit interval in~! segments, each
we generate a fractal field/(x,7) = lim,_.W®[a] = centered at positior;. For simplicity, let us define a local
W[W[W][---WI[a]---]]] (other means of generating syn- coordinate¢ = (x — x;—;)/2A which goes fromé = 0
thetic turbulence have been proposed [7], but fractal interto ¢ = 1 between pointsy;—; to x;+;. The piecewise
polation will be shown to be particularly well suited for linear mapping to generate the locally fractal field in the
our purposes). Once we have generated the full field, thiaterval [xi—1,xi+1] IS given by

unknown termN[a] — IN'[a] is evaluated according to diu(2€) + aj 1€ + biy, if £ (0, %),
its definition. One important element in our proposed ap- Wilu]= d’ (& — 1)": +’b if E(l 1
proach is that we shall be able to evaluate this term an- 226 @i2f +bip, M EE(, )
alytically from the parameters of the mappiklg (which

depend orii and the fractal dimension), without the need The parameters:; ; and b;; are related to the known

to explicitly construct the small-scale field. (Notice that Velocities according ta;; = 2[&—1 — @t — di(@i+1 —
such an explicit or numerical construction would require afti-1)}, @iz = 2[#ir1 — & = dip(@iv1 — #i-1)], biy =
computational mesh at scales much smaller thaalimi- ~ #-1(1 = di,1), and b;» = @t; — d;»ii;—1. The parame-

nating the usefulness of coarse graining in the first placeersdi, andd,, determine the vertical stretching of the
Once the unknown terrﬂ\rf\[Ja] — N[a] is expressed in left and right segments at each iteration, _and .they must
terms ofa, it is replaced into the dynamical coarse-graine .beyldi |. <1 for_ the mapping to be contracting _(|.e., for_a
equation, which may then be solved fixed point to exist). Repeated application of this mapping
While ’the method is. in principlé quite general we 9enerates a fractal function as the fixed point of the map,

now focus on a simple one-dimensional hydrodynamic”f(‘;i) :bwi"E]”f(é;l)]’ tWhi.Ch p?jsses tthrOUQE all tﬁe poinlts
problem, the randomly forced, viscous Burgers equatio X, i;), but has fluctuations down to much smaller scales.

with periodic boundary conditions in the interval [0, 1] bST d‘iil S+a{221el=at26375@1Ftitz:]eu:éagtﬁlllu(iltrlpaigssfhne(?ii{s(fz\,lvo

du + 9 (lw> = ,,082_” + flx,1). (3) steps of the construction process, as well as the 10th itera-
ar  dx \ 2 dx? ’ tion of the map.

This equation is also the prototype of a class of equations Interestingly, it is now possible to evaluate, by recur-

that governs a range of phenomena, from stochastience, a variety of integrals of the fractal function. For

growth of interfaces to directed polymers [2]. Recentinstance, solving fo!f(l) ur(¢)dé yields

work [8] shows that if the forcing has zero mean and a

1 ~ ~ ~
spectrum of the form{f(k, w)f(k', w)) = Ak~ '8(k + [ updé = iy + 20 F iy

K6(w + ') (ie., is white in time but has spatial 0 22 — diy — di2)

correlations), Kolmogorov-like scaling of the resulting (dig + dip) (@j+1 + i—1)
velocity is obtained({|a(k)|?) ~ k=5/3) for k < 7!, - 22 — d; | — din) - (6)

where n is a viscous cutoff scale. One also finds thatWe setdi, = —d;», because then Eq. (6) shows that

the second-order structure function follows a scalin ) . . ) )
%he integral (i.e., the synthetic velocity box filtered at

_ 2\ _ ,.2/3 ;
]ﬁzgar dr|r)n enZi(gr)1] (>)f thr e éi gvr;/:ullt(zz) ?Su ngeitsé /ghe(‘; Otthe scale ) reduces to the integral of the piecewise linear

unlike the case of 3D turbulence [9]). Therefore, this is an
application where we know that asymptoticallyy — 0)
the solution at small scales is scale invariant. Our method
explicitly uses this information to model the small-scale
features of the system. ale) ) Wi
The effective equation for the coarse-grained 1D veloc- M M
ity ii(x, ) is found by convolving Eq. (3) with a top-hat it
filter of size A [Ga(x) = A7 if |x] < A/2, zero other-
wise],

A(zi—1) N

i a1 - 1 a7 9%t W(@it1)

— 4+ —|zan )= flx,t) = —— + vo—=—, (4

at ax ( 2 uu) flx.1) 2 ax Vo “) .

~ %% 0.5 ¢ 1.0
where 7 = 42 — #>. While one can certainly obtain o1 = i1
numerical solutions to this equation by using an effective . . .
viscosity model, e.g.r = —vegii,, Such a model can ';Ir?c'ti%)'n D(Ifgf()er(\a}\?rﬁicsﬁaitﬁé %%ﬁ';‘t%;hsefveg;{l’c“?” g;éh? fractal
; 3 ; i ynifi ; ug(s), —1, Ui, Ui+]-

only be Ju_stlfled f(_)r cases with S|gn|f|ca_1nt §cale separatlonjl;f to(£) = (Ase) — G )€ + @iy, then the dash-dotted line
and has little basis in the present application. is Wiluo(¢)], with W; defined as in Eq. (5). The dotted

Instead, let us employ the basic idea underlying fractaline is W;[W;[uo(£)]] and the continuous curve i8/(&£) =
interpolation [6], which is to replicate on smaller and w;/°[u,(¢)]. The dots mark the points to be interpolated. In
smaller scales features af present at a coarse scale. this exampleD = 3 (d;, = —27'/, d;, = 271/73).
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interpolation (i.e., the velocityi: filtered at scale &). of these equations. We use a pseudospectral code on
Moreover, this recursive technique can be used to evaluatee unit interval to solve forii(x,z) and 7(x, ), using

any (local) moment of fractally interpolated functions 27 modes (i.e.,A = 5i). This scale should be small
over diadic subintervals [6], such dép(f)!’[uf(g)]q d¢ enough for a scaling range to develop in the resolved
and flﬁ ,(E)P[us(€)]9dé. This is quite useful because field. The time advancement is based on the Adam-

the unknown subgrid stress produced by the synthetic BhaSthVt 2 SCZime- The fOfCisn? USQIZ’S =2 >(<: 1073,
: _  thetime step iddr = 5.0 X 107 [resulting in a Courant-
field aroundx; can be written as; = d S .
3/4 ) fl/4[uf(§ Iaé Friedricks-Lewey (CFL) number much less than unity),
[/1jaus(€)d€). After some algebra, one obtains and the viscosity iy = 1.0 X 1073, This value implies
2 a1 = L (5.0 d;(8 — 3d?) 8208,0 an expected cutoff scale for the real Burgers equation of
mili, di] = 12( ift)” + 48 aboutn ~ 7556, Much smaller than our coarse resolution.
1+ 1547 — 24d} + 124° The random forcing is generated in Fourier space by

3 L (82m)*. (7) superposing Fourier modes with prescribed amplitudes
192(1 = dj) equal to A//Ar and phasesd, chosen randomly at

Above, 8:ii = (iij+1 — @ii—1)/2, 87t = ;41 — 2ii;; +  each time step with a uniform weight in [0g2 The
ii;—1, andd; = =2P~2 where the sign will be chosen model expressions are evaluated in physical space, but
at random with equal probabilities. Still, the fractal transformed to Fourier space for differentiation. The
dimensionD is needed in order to evaluate Instead of nonlinear terms are dealiased by the 2 rule (zero padding),
prescribingD (or d;) a priori, a dynamical equation for and the minimum attainable value of (realizability) is

7 can be combined with Eq. (7) to self-consistently solveenforced numerically [12]. We found that Eq. (7) always

for  andd. From Burgers equation, we find had a unique solution faf; as a function ofr; with d; €
Py 97 9A [0,1]. Several simulations with different initial conditions
= ﬁa— = —g — 2—7- — 2— + 2(fu —af). have been performed. For example, if we &@t, r = 0)
X

to be a random signal with a Kolmogorov spectrum after
8

an initial decay the global kinetic energy = 5 fo i dx
The fluxA = (u3 — @%)/3 — @r and small-scale forcing reaches a plateau where forcing and dissipation are in
fu — Fa are computed in a straightforward fashion with @pproximate equilibrium. The squares in Fig. 2 show
the technique outlined above [10F = 2V0[(au/ax)2 . the time evolution ofe,, averaged over three different

(9i1/0x)?] is the dissipation due to molecular viscosity realizations of the forcing.
and requires a more careful analysis since the fractal In order to illustrate the impact of the fractal subgrid

signal is not differentiable it/ > 1/2 (or 1 < D <2, ~model, we also perform a simulation with = 0. As
which is, of course, the interesting case). However, Ifexpected the energy injected cannot be dissipated, and

we stop the iteration of the map at theh step, i.e., we the simulation blows up (dash-dotted line). For purposes
introduce a cutoff scale a ~ 2 "A, we can'eval’uate of comparison, we also perform a direct simulation [of
integrals of(du/dx)> and obtain ’ Eqg. (3)] with no coarse graining or modeling, using® 2

_ 1 s @) =1 o
g = 2V0|:Z + 4d; 4d,2——1 (51‘ i)”. (9) 250

For forced Burgers equation with Kolmogorov scaling,  2-2°
the usual dimensional argument yielgs= C(v/¢)"/4, 2.00
with C = O(1). Besides the geometric rules of our _ 1.75
fractal interpolation scheme, this step is the only physical o 1.50])
modeling required. Combining this (witll = 1) and ~ 1.8
Eq. (9) we obtain an equation for the dissipation solely in "m
terms ofd and vy. As an aside, it can be easily shown ©
that lim,,—oe(d, vo) = O(vf) with B =1 if d < 1/2

or B = —3log,(2'/3d) if d > 1/2 which implies that 0.95
d =273 (or D = 3) is the cross-over scaling at which o.oo Rt Sl
a fractal signal dissipates energy even in the inviscid "0 20 40 60 80 100 120 140 160 180 200
limit [11]. Different dissipation mechanisms (such as t

hyperviscosity) would lead to different expressions §or FIG. 2. Kinetic energy, versus time for fully resolved equa-

in Eq. (9) and to a different estimate fgr. This, in turn, tion (solid curve), fractal model (squares), effective viscosity
may affect the value of. model (triangles), and coarse-grained solution without modeling
| h t £t f 4 (dash-dotted line). The inset shows the energy spectrum (same
n summary, We have a system o 9‘” equations ( )symbols) averaged in time betwe®&d < r < 200 and over
(7), (8), and (9) in the four unknownsi(r,d, ), and different realizations of the coarse-grained simulation, achiev-
are now in a position to explore numerical solutionsing improved convergence at lokv

1.00F
0.75
0.50
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modes and the same random forcing for the commorsmall-scale signal using the fractal interpolation technique
large-scale, modes. For the present valuevgfthe (iterating the mappingV; for n times, withn andd set

full simulation requires roughly 10 times the memory asto the locally computed values). As can be seen, values
compared with the model and takes 4 times longer peof n ande fluctuate greatly from one location to another,
time step. As shown in Fig. 2, solid line, the evolution indicative of a high level of intermittency.

of the global energy of the direct simulation and that of We stress again that during the simulation, we did
the coarse-grained simulations are quite close. Finallynot have to explicitly construct such a small-scale signal,
we have performed a simulation whereis replaced by because the fractal interpolation technique allows us to
an effective viscosity term (which runs about 5 timesanalytically evaluate their effect on the coarse scales
faster than the full fractal model), with the eddy viscositydirectly. Asi evolves in time, the synthetic small scales
verg = 5.0 X 107 adjusted so as to dissipate energyare “slaved” to the resolved ones, and evolve accordingly.
at the rate predicted by the direct numerical simulationThe simulation proceeds at the coarse resolution, but the
(DNS) (Fig. 2, triangles). We have also compared energgimulated dynamics af are as if the signal contained all
spectra (inset, Fig. 2). The fractal model displays goodhe small-scale fluctuations shown in the figure.
agreement with the DNS up to a wave number- The authors thank O. Knio for interesting discussions,
7/2A, about half of the cutoff wave number. At the and acknowledge the financial support of NSF (Grant
smallest octave of resolved scales, the spectrum of thido. CTS 9408344). A.S. was supported in part by a
coarse-grained simulation tends to fall somewhat abovéellowship from C. N. R. Computations were supported by
that of the direct simulation, an indication that the fractalan NSF equipment grant (No. CTS 9506077).
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