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Faraday’s Instability for Viscous Fluids
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We derive an exact equation which is nonlocal in time for the linear evolution of the surface of
a viscous fluid, and show that this equation becomes local and of second order in an interesting
limit. We use our local equation to study Faraday’s instability in a strongly dissipative regime and
find a new scenario which is the analog of the Rayleigh-Taylor instability. Analytic and numerical
calculations are presented for the threshold of the forcing and for the most unstable mode with
impressive agreement with experiments and numerical work on the exact Navier-Stokes equations.
[S0031-9007(96)02234-X]
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If a horizontal fluid layer is vertically oscillated one has surface of the fluid at rest in contact with the atmosphere,
Faraday’s instability which is well understood for ideal flu- andz = —# is the position of the plate. Let(z) be the
ids [1]. The interest in viscous fluids is recent [2—8]. Theacceleration of the plate, then in the reference frame where
order parameter is the amplitude of the free surface. Whethe plate is at rest we have for an incompressible fluid
dissipation is considered the equation for the amplitude i$V - o = 0) the equation § = (x,y) are the horizontal
nonlical in time and it would be a great advantage to haveoordinates]
a local and simple equation in order to explore new phe-

nomena. Forweak viscosity a phenomenological approacrgt;)(;c o) + [5G 2,10) - VoG, z, 1) = 1 Vp(F,2,1)
leads to a Mathieu equation with damping which is in good o o o o
agreement with experiments [2]. This equation is easily — g,(1)2 + vV2B(E,2,1) 1)

obtianed in our formulation. For high vicosity we show
here that a simple local equation also exists and is agawherep is the pressurgy the mass density; the kinematic
a Mathieu equation very different from the previous oneuwiscosity, andg. () is the effective acceleration [gravity
This new equation allows one to understand how the instgslus the acceleration of the plaiér)]. The basic configu-
bility arises when the system is strongly dissipative: Weration is the rest staté = 0 with flat interface and time de-
find that for an acceleration of the plate in the form of a cospendent pressuge, = py — pg.(t)z (po = atmospheric
inus the mechanism producing the instability looks quitepressure). Perturbations of the basic configuratiors
different from the mechanism of parametric resonance, ang, + p 7, obey linearly
we interpret it as the analog of the Rayleigh-Taylor insta-
bility. Our equation also predicts new phenomena which 0, — vV)(X,z2,1) = —Va (R, 2,1). 2)
can be experimentally verified.

We consider a plate with a fluid layer of heightand If £ denotes the vertical displacement of the upper surface,
velocityv. The vertical axis i§, z = 0 corresponds to the the linearized boundary conditions (BC), there are [4,8]

v, (X, z,1)],—0 = 9,&(X,1),
[ 2.1) = 20wz ko = | 8.0 = gvzl}f(fc,t),

[3XUZ()-E,Z,Z) + azvx(;sz»t)]lzzo = [ayvz(;»zat) + azvy()_zszst)]lzzo =0, (3)

where 7 is the surface tension an¥l;, = (d,,9d,) the ! Upar @ny particular solution of (2) which we take in

horiz_o_ntal gradient. The first eqqa}tion (3) is the kinematicgradient forma ., = _6¢ with V2¢ = 0, and wherei,

condition, and the rest are conditions on the stress tensqfhich we call the diffusive component of the velocity,

o ot s T e e i S e general soluton f the omogeneous difsr
o § equation (2). Physically, sinag,,, satisfies the ideal fluid

BC si f highly vi fluid and | t rati
theysw;\?é r?(; %flhgen)égl[sgcgfs tid andiarge aspect ra IO'equations, we have i the boundary effects [8]. In

Our problem is to solve (2) with its BC. We take (3) v is privileged and a closed problem with only this
(—Vmr) as a source term and writ® = & + vp,, With ~ component of the velocity is obtained [9] (notice that
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d,¢ =  is just the Bernoulli equation), nonlocality of (6) as an equation f@f, is a consequence
2, = _ R P of (9), and it can be understood by introducing the
Veg(x,z,t) =0, 9,9k, z,1) = 7(x,z,1), characteristic time, = ¢2/v, where( is the penetration

9, — Vu.G.z.1) = 0., 4 length of the fluid _motion (for example, &h > 1 we

(@0 = ¥¥)u: (%, 2,1) @ havet¢ =~ k!, and ifkh < 1 then¢ = h). We identify
(1. 2. )loco = 0,E(F, 1) 7p as the characteristic time of the memory effects since

< » & = t s s

it represents the time taken by a perturbation to spread
[7(X,2,1) = 2v0.u-(X, 2, )| .=0 =[g.(t) — (v/p) V2 1é(%, 1), In the fluid. If 7p < Q! whereQ is a characteristic
frequency of the system, we can expect (6) to become

u;(%,2,0)|.=0 = 20V3 &(1), local in time. Replacingu.; in (6) we obtain [F(s)
. . and G(s) dimensionless positive functions of= kk and
Oz lu(X, 2, 0)|;=—n = [u(¥,2,0)l:=—p = 0. O()) = order ofA]

® o@a) + Fknate
Making a horizontal Fourier transform we have new vari- ) )
ables ¢y, u, etc., and solvingv2¢ = 0 as ¢i(z, 1) = + 2vkG(kh)d, & (1) + 0 (1)éx (1) = 0,(10)
A(r)coshk(z + h) + By(r)sinhk(z + h), we determine

(Ag, By)interms ofé, andu,, with the first and the last F(s) = tanhs[3 costs(sinh2s — 25 — 45°/3)
BC (5). The second BC (5) gives a constraint equation

(9, + 20k*)2 (1) + wi(t) € ()
N (9, + 2vk?)

+ s2(sinh2s — 25)]/(sinh2s — 2s)?,
G(s) = tanhs(cosh2s + 2s* + 1)/(sinh2s — 2s).

coshkh ek (2, D)l e——n We can check thato(9? &)/ F (kh)d?é, =~ Q€2 /v =
Q7p and then (10) is an expansion in powers(®fp,
+ 2vktanhkhd uy(z, 1)l = 0, (6) and for Qrp < 1 we conclude that the local second

wherew?(t) = ktanhkh[g.(t) + 7k%/p]is the usual fre- order equation (10) [withoutD(d7&,)] is sufficient to
quency of surface waves for constantr) = ¢. The in- describe the behavior of the surface. This condition can
terpretation of this exact equation is simple: The last twdde written as(v/Q)!/2 > ¢. If we call § the length
terms represent the effect of the boundaries, and if onéf the boundary layer it is well known that in the case
eliminates these terms this means that we only take intef weak viscosity 8 = (v/Q)'/2, but, when viscosity
account dissipation in the region where the velocity is ofincreases,é can saturate all the region in which the
potential form. The equation without these two terms isfluid is in motion, i.e., one hag =~ ¢, and the condition
the phenomenological approximation of Ref. [2] (the con-(»/€)!/? > ¢ means just that we are in this situation.
ditions of validity are discussed there), where the ampli-This is what characterizes the lubrication regime and what

tude is damped with the well-known facter 2+ [8]. we understand by high viscosity.
Equation (6) is not a closed equation &y, but from Since one always haé < h we see that) < v/h?
(4) and (5) we can determing; as a nonlocal functional is a sufficient condition to be in the lubrication regime.
of {£(*)} solving the problem We now apply Eq. (10) to Faraday's instability, and in
) ) order to compare with other works we choogdr) =
[0, — »(9; — k) ]uu(z,1) = 0, (7)  g(1 + T'cosQr). The regime of weak viscosity for this
forcing has been exhaustively studied by Kumar [2]
Uz (z, =0 = —2vk> & (1), who concluded that the instability is subharmonic. This

. means that the system oscillates at half the frequency
[sinnkh uz(z, 1) + k coshkhuzi(z, D]z~ of the driving force, and the mechanism of selection
—k(8, + 20k E(1) . (8) of the wavelength is the parametric resonance condition
) ] ) ) w; ~ Q/2 (from now on,wy is the frequency of surface
An exact nonlocal equation fof; is obtained replacing \yayes for constarg). Other frequencies are also resonant
the solution of (7)_W|th BC (8) in (6). Using Laplace i wi ~nQ/2 with n =2,3,4... and to each new
transform, we obtain resonance we can associate a tongue in the spacek,
v, , but these tongues have a higher threshBlgince they
ug(z,t) = j dt' & (K (1t — t',2) are more strongly dissipated. In his work Kumar made
o 0 only a brief incursion in the lubrication regime, reporting
+ f dz'u (2, t0)G(t — t0,2',z), (9) the appearance of a series of bicritical points in which a
~h subharmonic region has the same threshold as harmonic
where u,(z, 1) is an initial condition, and the kernels region. We reproduce exactly these observations (see
K(t,z) andG(t, 7/, z) vanish forr < 0 (causality) and for Fig. 1) with Eg. (10), and we can interpret them as
t — o due to the finite duration of memory effects. Thethe appearance of a new selection mechanism which is
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different from the usual one. Puttin® = ¢&e”' and  resented byv,’> and the dissipative effect represented

x = Qrin (10), by y. We consider the dependencekirof the Floquet
W(x) + %[E — V)P () =0, (11) exponent, sincé/ol/2 ~ QQ (except .for a slowly varying.
Q function ofk), an appropriate function to compare ampli-

where E = Qj — %, V(x) = —Vocosx, Qj = w;/ fication, and dissipation is the ratip/Qq (see Fig. 3):
F(kn), v = vk>G(kh)/F(kh), and Vo = TQ5/(1 +  For big k the dissipative effect is dominant and those
tk*/pg). Notice that if (10) is the equation of a modes are very stable, while for smadlthe amplifi-
pendulum, ) is its frequency andy its dissipation. cation is less effective in front of a dissipation which
Equation (11) is a Schrédinger-type equation in a periodigaturate§ y(kh < 1) = 5v/4h*]. This provides an ex-
potential and we can use standard methods. The firgflanation for the appearance of an intermediate made
thing we do is to follow the minimal threshold of each which makes the amplification more effective and at the
tongue when() is varying [see Fig. 2(a)]: A series of same time diminishes the dissipation. This maddeal-
bicritical points appear, and this process saturates whelows one to understand why the system goes through a
(1 — 0in avaluel'.. If we now draw the most unstable series of bicritical points: Since the unstable modes are
mode corresponding to ea€h we obtain Fig. 2(b). The observed by the resonance conditian ~ n{)/2 (we
points of discontinuity of the curve arise each time oneare obviously abusing this condition which is correct for
arrives at a bicritical point in Fig. 2(a), and we now weakly viscous fluids), wherf) becomes smaller more
observe a saturation of the most unstable mode at a valugnd more tongues will have their characteristic méde
k. when() — 0. smaller thark.. and will not be favored while the tongues
The case() small gives qualitative information of with k = k. will be privileged. From (12) the mar-
what is happening in the lubrication regime, and weginal curve Réu) = 0is I' = A(y/Qo) (1 + 7k*/pg),
can study this limiting case using Wentzel-Kramers-where A(s) is a dimensionless function defined for=
Brillouin (WKB) techniques in (11). We easily show 0 with the propertiesA(0) = 1, A/(0) = 2+/2, A’ > 0,
that for |[E|] > V, the system is always stable. For A” > 0, andA(s > 1) = 4.33s> + 3.21. The marginal
|E| <V, we can calculate the amplification factor curve can be written af’ = f“(kh,a,ﬂ) in terms of
of the Floquet solutions which satisfy the relationthe adimensional variablekh, « = v?/h’g and B8 =
&t + 2m/Q) = e/ Vg (1), wherew is the Floquet  7/phg, and one can show thdt as a function ok has
exponent. The WKB calculation gives for the exponent only one minimuml. = I'(k.h, «, 8) which corresponds
Vol/2 U (x — E/Vo\'? (Fig. 3) to the saturation pointl’s,k.). One necessar-
Re(u) = — <ﬁ> dx —vy. (12) ily has I'. = ¢(a, B), k« = 0(a, B)/h, where ¢ and

ToEMm 0 are dimensionless functions with the properties=
Since under the conditiolE| < V, the integral is of or-
el < Vo g 1, ¢(a,0) = A(348 @) and 0 = 1, 6(a.0) = 0.86.

der O(1), we can estimate Rg) = Vol/2 — v, and the
N
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instability is then a competition the amplifying effect rep- 13 — /
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FIG. 1. Simulation of (11) for the same values of Kumar in FIG. 2. (a) The minimum threshold of each tongue when the
Ref. [2]; h =02 cm, v = 1.02 cn?/s, p = 1.2 g/cm?, 7 = frequency of the driving force is changing. The black circles
67.6 g/s*, Q/2m = 6 Hz. The tongues are classified by the are the bicritical points. (b) The most unstable mode vs the
resonance conditiong = 1 is the first subharmonic tongue value of the frequency of the driving force. The simulation is
(SH), n = 2 is the following harmonic tongue (H), etc. made for the same values of Fig. 1.
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30 2 ke 4 8 8 10 determined byh. We can estimate in a very simple

: way the wavelengt« /k. =~ 27h/0.86 and the forcing
I, = A3.48\/a) = 52.4a + 3.21, and the result agrees
very well with the experimental data known to us as
can be seen in Fig. 4 where our low frequency estima-
tions give 27 /k. = 2.1 cm andI'. = 4. Studying the
WKB solutions, we can verify that the amplification of
~ the deformation of the surface occurs in the regions where
r ] E — V(x) < 0 (in the casdE| < V), where an effective
i negative acceleration generally dominates. The reason for
Tl the amplification is simple: The system is exposed to
10} ! a negative acceleration and is unstable as the Rayleigh-
A Taylor instability [10], where a heavy fluid is over a
light one. WhenE — V(x) > 0, the solutions change

25
20}

15|

St 1 their phase and are damped. During a period both ef-
Y/82, [ —— R Lo
[ M fects [amplification wherE — V(x) < 0 and dissipation
0 L ) ) when E — V(x) > 0] compete, and relation (12) is the
0 200 400 €00 800 1000 representation of this balance. This is qualitatively differ-
K [emi}] ent from the usual parametric resonance mechanism for

] ) - _ weakly viscous fluids since the origin of the amplification
FIG. 3. The curve above is the marginal stability curve; itsjg gifferent. As a final remark, we have explored here the

horizontal scale is in the top of the drawing. The curve beneath . s . .
low frequency region where the lubrication approximation

representsy/Q; its horizontal scale is in the bottom of the ) . @
drawing. is valid, but this does not exclude the validity of the ap-

proximation in other regions of the space of parameters
It can be shown thab(a, 8) is a slowly varying func- which are being investigated, and this fact can explain the
tion of B and (a > B, B) = 0.86; consequently, in a surprising agreement obtained with experimental results at
wide range of parameters, the structure’s wavelength iswuch higher frequencies (Fig. 4).

We thank Pierre Collet (Paris) and F. Melo (Santiago)
for discussions and critical reading of the manuscript. We
acknowledge support from Fondecyt, CEE, ECOS, and
Céatedra Presidencial.

5

[1] T.B. Benjamin and Ursell, Proc. R. Soc. London2®5

E ) ﬁ\x 505 (1954).

: ' ¢ 20 30 40 50 &0 [2] K. Kumar, Proc. R. Soc. London A52 1113 (1996);
= 2 Q2 [Hz.] K. Kumar and L.S. Tuckerman, J. Fluid Mech79, 49
N (1994).

[3] J. Bechhoefer, V. Ego, S. Manneville, and B. Johnson,
J. Fluid Mech.288 325 (1995).

[4] J. Beyer and R. Friedrich, Phys. Rev5H, 1162 (1995).

[5] W.S. Edwards and S. Fauve, Phys. Rev £ 788 (1993).

[6] O. Lioubashevsky, H. Arbell, and J. Fineberg, Phys. Rev.

o . Lett. 76, 3959 (1996).
10 20 30 40 S0 60 [7] A. Kudrolli and J.P. Gollub, Physica D (to be published).
/2 [Hz.] [8] L.D. Landau and E. M. LifshitzFluid Mechanics(Perga-

FIG. 4. The black points are experimental data for the __ Mon. New York, 1987), 2nd ed. .
wavelength and the threshold extracted from Ref. [2], and the[9] E. Cerda and E. Tirapegui, Bull. Acad. R. Belgique (to be
curves are obtained by solving numerically the second order  published).

equation (11). The parameters dre= 0.29 cm, and(v, p, 7) [10] S. ChandrasekaHydrodynamic and Hydromagnetic Sta-
are the same as in Fig. 1. bility (Dover, New York, 1981).

862



