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We investigate experimentally the optical tunneling times associated with frustrated total internal
reflection of a light beam. Using as physical clocks the lateral shifts and angular deviations
suffered by the transmitted and reflected beams, we measure both components of a complex
tunneling time: the phase time and a semiclassical time. The phase time is shown to imply
superluminal velocities and to depend strongly on boundary conditions not linked to the tunneling
process. By contrast, the semiclassical time yields subluminal velocities and is related solely to
tunneling. [S0031-9007(96)02276-4]

PACS numbers: 42.25.Bs, 42.25.Gy, 73.40.Gk

The tunnel effect is a cornerstone of both quantuncent unsuccessful attempt [13], no experimental work has
mechanics and classical electromagnetism, and preserggacceeded so far in exploring both time scales, and the
intriguing features that stimulate an ongoing interest. Imeed remains to make clear the experimental conditions
particular, how to define the time taken by the veryfor which either of these times will be observed.
process of tunneling has recently attracted a lot of In this Letter we distinguish and investigate experimen-
attention for both fundamental and technological reasongally the two time scales associated to the oldest example
Perhaps the simplest approach is to follow in timeof tunneling discovered in physics: frustrated total inter-
the peak of wave-packet tunneling through a barriernal reflection (FTIR) of light. Theoretical studies have
However, the result, known as the phase time [1], happershown indeed that the physics of tunneling is essentially
to saturate to a constant value for opaque barriers [2] smlentical for classical light waves and quantum mechani-
that the apparent velocity of the tunneling particle maycal wave functions [14,15]. In particular, Steinberg and
be larger than the velocity of light. This superluminal Chiao have recently studied systematically the equiva-
propagation stimulated a lively theoretical debate (seéence between the FTIR equation and the Schrédinger one
[3,4] for reviews). Other characteristic times for tunneling[16]. This opened up the opportunity to perform experi-
were then introduced, the most prominent being thements with light beams, easier to perform and interpret
“semiclassical time” mostly advocated by Biittiker andthan those with electron waves. Indeed, optical tunnel-
Landauer [5]. It yields subluminal velocities so that theing requires micrometer—rather than nanometer—sized
causality principle is explicitly obeyed. Other definitions barriers, and is not complicated by such side effects as
lead to complex time values. [6]. For simplicity, we electron-electron couplings [9,14].

introduce only that proposed by Pollak and Miller [7]: Figure 1 presents the scheme of our optical tunneling
alnt experiment. A light beam impinges from a dielectric
Te =Te + it = —i Py (1)  medium (indexn > 1) onto an air slab (index, width

where t — |¢| expli®) is the complex transmission co- e). For incidence angles greater than the critical angle

efficient of the wave amplitude an@d the angular fre-
quency of the incoming wave. The real partmfis just

the phase timergy = d®/dw, while its imaginary part 5i=Q,
7. = —dln|t]/dw (which we will call the loss time in ‘T Z
the following [8]) is essentially equivalent to the semi- k31 Glass
classical time in the opaque barrier limit [3,4]. Which of é
the two time scalesrq andr;, is best suited to character- D | o|EvAResCEt ip_y g Air
ize tunneling is still very controversial. R i et v

Some experiments have been carried out to test the = Glass
different theoretical predictions. Early results by Guéret g ™ .
et al. [9] on quasielectrons tunneling through heterostruc- - JTE 1
tures, and by Estevet al.[10] on a Josephson junction %

yleldgd ez_:lch one time value conS|ster_1t with the Se.mIT:IG. 1. Measurement principle of tunneling times. While
classical time. By contrast, other experiments have SINCRnneling, the beam proceeds alomgwith a velocity v, =
demonstrated data consistent with phase times, and i/, sini) and rotates with an effective angular frequency

plying superluminal velocities [11,12]. In spite of one re- Q = nc/2wrcsd2i).
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i. = sin"!(1/n) of total internal reflection, most of the which provides a second clock that allows one to measure
beam is reflected, and part of it tunnels through thehe loss time. This duality of clocks is very analogous
slab. Let us now consider an incident wave packet antb that demonstrated by Buttiker’'s analysis of the Larmor
follow the motion of its peak. FTIR is a two-dimensional Clock [22]. Finally, the same analysis can be performed
process: Tunneling occurs in thedirection, while the for both the lateral shift and angular deviation of the
wave packet goes on propagating in thelirection. As partially reflected beam, so that phase and loss times
its peak emerges from the second interface, it has thusssociated with reflection on the barrier can also be
undergone both a temporal shift, and a spatial shift measured in principle.
D alongx. If we assume than the propagation velocity A specific property of FTIR is the existence of two
alongx is uniform during tunneling, the® and r¢ are polarization states, TE and TM. The propagation equation
proportional, so that the phase time can be obtained veny the z direction was shown to be equivalent to the
simply by measurind. Schrddinger equation in TE polarization [16]. However,
This heuristic argument can be fully justified ana-FTIR in TM polarization is also a tunnel effect, but with
Iytically. If k = (k,k,) is the incident wave vec- different boundary conditions. This will thus allow us to
tor, then stationary phase analyses [17,18] show thahvestigate the influence of the latter on tunneling times.
D = (o®/ok,), , while 7¢ = (0P /dw)i,. Assuming Our experimental setup is presented in Fig. 2. We
a exg—iwt) time dependence, the phadein transverse direct a lowest-order (TEM) Gaussian laser beam of

electric (TE) polarization reads [18] wavelength3.39 xwm onto two right-angle prisms;Pand
. P,, facing one another by their hypotenuses; dan be
—1 < . . . .

¢ = —tan |:k12 s COWK@)] (2)  displaced with respect to; by means of a piezoelectric

transducer PZT. The parallelism and spacéinbetween
She prisms are controlled by an interferometric method
described in Ref. [23], with an accuracy erof the order
) of 50 nm. The fused silica prisms have a refractive index
7¢ = (c/nsini)D, (3)  n = 1.409, so that the critical angle i& = 45.21°. We
provided sinf2Ke)/2Ke > 1, which is valid for barrier have chosen an incidence angle= 45.5° close toi, to
widths larger than one wavelength [19]. The same resuloptimize the lateral shift. Howevei,— i, is much larger
is obtained in transverse magnetic (TM) polarization. Inthan the divergence of the laser beam (ab@0i °), so
the well-known Larmor clock theoretical approach, spin-that all the beam components are well into the tunneling
polarized electrons are submitted to a magnetic field whiléegime. The laser beam is either TE or TM polarized, and
tunneling under the barrier. The resulting spin precessiohas a Rayleigh lengtrzy = 75 cm inside the glass.
then provides a measure of the traversal time. The basic In a first set of experiments, we measure the tunneled
idea is the same here: An additional degree of freedonfeam displacemei?, perpendicular to the incident beam
the lateral displacement, is used as a clock to measumxis, as a function of prism spaciag As the beam shift is
the traversal time. Note that this displacement is just thef a few wavelengths only, we use the sensitive detection
Goos-Hanchen shift, usually observed upon total internaiechnique proposed by Emiés al. [24]. The beam is sent
reflection [20]. In that context Kogelnik and Weber through a diaphragm & mounted on a calibrated piezo-
[21] have already emphasized the equivalence betweetlectric transducer PZT, and the apertured-beam intensity
temporal and spatial shifts. is detected by a photodiode PD. We impart a sinusoidal
As noticed by Hartman [2], tunneling also imposes ahorizontal displacement to the diaphragm perpendicularly
change in the mean energy, or wave vector, of a wav#o the beam axis, at a frequengy= 90 Hz. Because of
packet. This can be easily understood for FTIR, as planthe beam profile symmetry, the intensity signal is periodic
wave components with smaller incidence angle are betteat frequency 2 if the mean position of the diaphragm is
transmitted than those with larger incidence angles, so thaentered on the beam. Any deviation from beam center
the emerging beam suffers an angular deviatonthat
can be shown to read

1 aln|t|> 1 <8|n|t|>
Si=— = 4
! ka< i o 2wgcosi \ 0k, /o @

wherewy, is the beam Rayleigh length, that characterizes LASER
its divergence. Calculations similar to those mentioned >
above show thatsi is related to the loss time; = BEAM
(@Inltl/dw)k, by

7. = [2wg €sd2i)/nc]di, (5)

provided|i — i.| < 7 /2. Because of differential losses, f|G. 2. Experimental setup.  PP,, prisms,i incidence angle,
the beam mean direction thus rotates during tunnelingdg diaphragm, PZT piezotranslators, and PD photodiode.

where K is the modulus of the evanescent-wave wav
vector. Inserting Eq. (2) into the expressionsi®»fand
7o leads to
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induces a component at frequengyn the signal, whose function ofe, in TE (a), (c), (e) and TM (b), (d), (f) polari-
amplitude is proportional to the deviation to first order.zation. The data are averaged over several runs, and the
This component can easily be demodulated by a lock-irerror bars are indicative of statistical uncertainties. Mea-
amplifier. By displacing the aperture by a known amount,surements were stopped abeut 25 um, as the trans-

we obtain a step function in the demodulated signal that isnitted intensity becomes too low for thicker barriers. The
used to calibrate the data. To obtain the phase time valueprresponding theoretical curves, obtained from Egs. (1)
we take into account the setup geometry, and in particulaand (2) and averaging over the wave vector distribution,
the displacement of 2 Taking advantage of the nearly are displayed as solid lines for comparison.

normal incidence of the laser beam on(Bue toi = 45°, The transmission phase times first increase linearly and
see Fig. 2), we obtain then saturate to an almost constant value. This confirms
in; the so-called Hartman effect: The phase time is indepen-
nsini\[ D, (e) o - et ; C R
Top(e) = - cos ecod45°) |.  (6)  dent of barrier thickness in the opaque barrier limit [2].

é‘:nis remarkable property has been noticed before by Spiel-
to measure the reflection phase time mannet al.[12] in the context of transmission though

In a second set of experiments, we measure the angulg?ultistack dielectric coatings. To illustrate the resulting
deviation in air of the transmitted beam, as a function Ofsuperlumlnal propagation, a dashed line represents the

e. We simply insert a lens L of focal lengity — 24 cm light-velocity limit ¢/c: All points below that line corre-

in the transmitted beam. An angular deviation results ierond to superiuminal vglocities. In TE polarization,. this
a shift D, of the laser spot in the focal plane of L, with Is the case for all experimental points for barrier widths

D, = Lydi,;. D, is then measured by the same me'[hooJargler tharg pm. By_ contrast, the_loss time varia.ti_on is
aé before FromLEq (5) anif,;, = n8i, the loss time is about flat for thin barriers, and then increases quasilinearly.
. . air ’

obtained as-; (¢) = 2 csd2i)wg D, (e)/Lsn’c. :[AII tpm_r:';]s_![le {;tlﬁpv;ahthe I|ght_ velotcr:y I|m|t,bor areﬁ:)nsc,;si
The square dots in Fig. 3 show the results for transict Wit It WIthin Ih€ experimental error bars. © data

mission phase times [(a) and (b)], reflection phase timeBOintS are actually parallel to the prediction of the semi-

. : lassical timd/iw /c?)(e/hK) [5,16], displayed as a dotted
[(c) and (d)], and transmission loss times [(¢) and (f)], as {ne. The effective velocity therefore tends to a constant

value, as given by Bittiker and Landauer’s theory. There

The same setup can also be installed on the reflected be

@ 80 Transmission. - - is, however, a clear discrepancy, as the measured and com-

:/60- (a) T 1 1(b) M puted loss times turn out to be smaller than the semiclas-

&40} | ) sical time by a fixed time lag, about 200 fs here. Finally,

° i one may notice that the loss time becomes much larger

220 # 1[E~ + than the phase time for opaque barriers: eAt 20 pum,
e we haver; = 500 fs, while rq, = 40 fs only in TE polari-

o /
%arfierlgviélfhz(gn%)s %arfierl&i}ﬁhz(ﬂrﬁf zation. The complex tunneling time is hence dominated by

its imaginary part.

@ O PN Several authors have predicted that transmission and
S 6o Reflection 11 d LLL reflection phase times should be equal [3,16]. Our
g 40l () TE] [ ™ ] data clearly demonstrate this point, as can be seen by
o comparing Figs. 3(a) to 3(c), and 3(b) to 3(d). This
£ 207 110 ) equality is not predicted to hold for the loss times:
= The reflection loss timery should be related to the

0 1 1 1 I 1 L 1 1
%an%erlgviéfhz(gré)s %arrsierlgri:ighz(gré)s transmission Ioss ti_me by; = (T/_R)T_L, Wh_ereT and_

R are the transmission and reflection intensity coefficients
[22]. As T decays to zero very quickly, the reflection
loss times are extremely small, of the order of a few
femtoseconds at most, which is less than the sensitivity
threshold of the experiment. Indeed, our attempts to
_______________ . _ measure the reflection loss times yielded results consistent

with zero.
%argierlgvillihz(ﬂré)s garrsierlwiclltsh%&rf)s The polarization dependence of the data is especially
noteworthy. As stressed before, TE and TM evanescent

FIG. 3. Experimental (square dots) and computed (solid linesyyaves have the same functional dependencé-exp),

tunneling times. (a)-(b): transmission phase times; (C)‘(d)lgbut differ by their boundary conditions. The TM phase
[
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reflection phase times; (e)—(f): transmission loss times, in T ¢ tto be | than the TE by al ¢
and TM polarization, respectively. The dashed lines indicate'MeS turn out o be larger than the 1 ones by almost a
the time to crosg at light velocity. The dotted line shows the factor of 2, while the TE and TM loss times are nearly

predicted semiclassical time. equal. This shows that the phase times depend strongly
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