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Dual Optical Tunneling Times in Frustrated Total Internal Reflection
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We investigate experimentally the optical tunneling times associated with frustrated total internal
reflection of a light beam. Using as physical clocks the lateral shifts and angular deviations
suffered by the transmitted and reflected beams, we measure both components of a comple
tunneling time: the phase time and a semiclassical time. The phase time is shown to imply
superluminal velocities and to depend strongly on boundary conditions not linked to the tunneling
process. By contrast, the semiclassical time yields subluminal velocities and is related solely to
tunneling. [S0031-9007(96)02276-4]
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The tunnel effect is a cornerstone of both quantu
mechanics and classical electromagnetism, and prese
intriguing features that stimulate an ongoing interest.
particular, how to define the time taken by the ver
process of tunneling has recently attracted a lot
attention for both fundamental and technological reason
Perhaps the simplest approach is to follow in tim
the peak of wave-packet tunneling through a barrie
However, the result, known as the phase time [1], happe
to saturate to a constant value for opaque barriers [2]
that the apparent velocity of the tunneling particle ma
be larger than the velocity of light. This superlumina
propagation stimulated a lively theoretical debate (s
[3,4] for reviews). Other characteristic times for tunnelin
were then introduced, the most prominent being th
“semiclassical time” mostly advocated by Büttiker an
Landauer [5]. It yields subluminal velocities so that th
causality principle is explicitly obeyed. Other definition
lead to complex time valuestc [6]. For simplicity, we
introduce only that proposed by Pollak and Miller [7]:

tc ­ tF 1 itL ­ 2i
≠ ln t
≠v

, (1)

where t ­ jtj expsiFd is the complex transmission co-
efficient of the wave amplitude andv the angular fre-
quency of the incoming wave. The real part oftc is just
the phase time:tF ­ ≠Fy≠v, while its imaginary part
tL ­ 2≠ ln jtjy≠v (which we will call the loss time in
the following [8]) is essentially equivalent to the semi
classical time in the opaque barrier limit [3,4]. Which o
the two time scales,tF andtL, is best suited to character-
ize tunneling is still very controversial.

Some experiments have been carried out to test t
different theoretical predictions. Early results by Guér
et al. [9] on quasielectrons tunneling through heterostru
tures, and by Esteveet al. [10] on a Josephson junction
yielded each one time value consistent with the sem
classical time. By contrast, other experiments have sin
demonstrated data consistent with phase times, and
plying superluminal velocities [11,12]. In spite of one re
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cent unsuccessful attempt [13], no experimental work
succeeded so far in exploring both time scales, and
need remains to make clear the experimental conditi
for which either of these times will be observed.

In this Letter we distinguish and investigate experime
tally the two time scales associated to the oldest exam
of tunneling discovered in physics: frustrated total inte
nal reflection (FTIR) of light. Theoretical studies hav
shown indeed that the physics of tunneling is essentia
identical for classical light waves and quantum mecha
cal wave functions [14,15]. In particular, Steinberg a
Chiao have recently studied systematically the equi
lence between the FTIR equation and the Schrödinger
[16]. This opened up the opportunity to perform expe
ments with light beams, easier to perform and interp
than those with electron waves. Indeed, optical tunn
ing requires micrometer—rather than nanometer—siz
barriers, and is not complicated by such side effects
electron-electron couplings [9,14].

Figure 1 presents the scheme of our optical tunnel
experiment. A light beam impinges from a dielectr
medium (indexn . 1) onto an air slab (index1, width
e). For incidence anglesi greater than the critical angle

FIG. 1. Measurement principle of tunneling times. Whi
tunneling, the beam proceeds alongx with a velocity yx ­
scyn sinid and rotates with an effective angular frequen
V ­ ncy2wRcscs2id.
© 1997 The American Physical Society 851
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ic ­ sin21s1ynd of total internal reflection, most of the
beam is reflected, and part of it tunnels through th
slab. Let us now consider an incident wave packet a
follow the motion of its peak. FTIR is a two-dimensiona
process: Tunneling occurs in thez direction, while the
wave packet goes on propagating in thex direction. As
its peak emerges from the second interface, it has th
undergone both a temporal shifttF and a spatial shift
D along x. If we assume than the propagation velocit
along x is uniform during tunneling, thenD and tF are
proportional, so that the phase time can be obtained ve
simply by measuringD.

This heuristic argument can be fully justified ana
lytically. If k ­ skx , kzd is the incident wave vec-
tor, then stationary phase analyses [17,18] show th
D ­ s≠Fy≠kxdv , while tF ­ s≠Fy≠vdkx

. Assuming
a exps2ivtd time dependence, the phaseF in transverse
electric (TE) polarization reads [18]

F ­
p

2
2 tan21

∑
2kzK

k2
z 2 K2

cothsKed
∏

, (2)

where K is the modulus of the evanescent-wave wav
vector. Inserting Eq. (2) into the expressions ofD and
tF leads to

tF ­ scyn sinidD , (3)

provided sinhs2Kedy2Ke ¿ 1, which is valid for barrier
widths larger than one wavelength [19]. The same res
is obtained in transverse magnetic (TM) polarization. I
the well-known Larmor clock theoretical approach, spin
polarized electrons are submitted to a magnetic field wh
tunneling under the barrier. The resulting spin precessi
then provides a measure of the traversal time. The ba
idea is the same here: An additional degree of freedo
the lateral displacement, is used as a clock to meas
the traversal time. Note that this displacement is just t
Goos-Hänchen shift, usually observed upon total intern
reflection [20]. In that context Kogelnik and Webe
[21] have already emphasized the equivalence betwe
temporal and spatial shifts.

As noticed by Hartman [2], tunneling also imposes
change in the mean energy, or wave vector, of a wa
packet. This can be easily understood for FTIR, as pla
wave components with smaller incidence angle are bet
transmitted than those with larger incidence angles, so t
the emerging beam suffers an angular deviationdi, that
can be shown to read

di ­
1

kwR

µ
≠ ln jtj

≠i

∂
v

­
1

2wR cosi

µ
≠ ln jtj

≠kx

∂
v

, (4)

wherewR is the beam Rayleigh length, that characterize
its divergence. Calculations similar to those mentione
above show thatdi is related to the loss timetL ­
s≠ ln jtjy≠vdkx

by

tL ­ f2wR cscs2idyncgdi , (5)

providedji 2 icj ø py2. Because of differential losses,
the beam mean direction thus rotates during tunnelin
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which provides a second clock that allows one to measu
the loss time. This duality of clocks is very analogous
to that demonstrated by Büttiker’s analysis of the Larmo
Clock [22]. Finally, the same analysis can be performe
for both the lateral shift and angular deviation of the
partially reflected beam, so that phase and loss time
associated with reflection on the barrier can also b
measured in principle.

A specific property of FTIR is the existence of two
polarization states, TE and TM. The propagation equatio
in the z direction was shown to be equivalent to the
Schrödinger equation in TE polarization [16]. However,
FTIR in TM polarization is also a tunnel effect, but with
different boundary conditions. This will thus allow us to
investigate the influence of the latter on tunneling times.

Our experimental setup is presented in Fig. 2. W
direct a lowest-order (TEM00) Gaussian laser beam of
wavelength3.39 mm onto two right-angle prisms P1 and
P2, facing one another by their hypotenuses. P2 can be
displaced with respect to P1 by means of a piezoelectric
transducer PZT. The parallelism and spacinge between
the prisms are controlled by an interferometric method
described in Ref. [23], with an accuracy one of the order
of 50 nm. The fused silica prisms have a refractive inde
n ­ 1.409, so that the critical angle isic ­ 45.21±. We
have chosen an incidence anglei ­ 45.5± close toic to
optimize the lateral shift. However,i 2 ic is much larger
than the divergence of the laser beam (about0.01±), so
that all the beam components are well into the tunnelin
regime. The laser beam is either TE or TM polarized, an
has a Rayleigh lengthwR ­ 75 cm inside the glass.

In a first set of experiments, we measure the tunnele
beam displacementD' perpendicular to the incident beam
axis, as a function of prism spacinge. As the beam shift is
of a few wavelengths only, we use the sensitive detectio
technique proposed by Emileet al. [24]. The beam is sent
through a diaphragm D[ mounted on a calibrated piezo-
electric transducer PZT, and the apertured-beam intens
is detected by a photodiode PD. We impart a sinusoida
horizontal displacement to the diaphragm perpendicularl
to the beam axis, at a frequencyf ­ 90 Hz. Because of
the beam profile symmetry, the intensity signal is periodi
at frequency 2f if the mean position of the diaphragm is
centered on the beam. Any deviation from beam cente

FIG. 2. Experimental setup. P1, P2, prisms,i incidence angle,
D[ diaphragm, PZT piezotranslators, and PD photodiode.
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induces a component at frequencyf in the signal, whose
amplitude is proportional to the deviation to first orde
This component can easily be demodulated by a lock
amplifier. By displacing the aperture by a known amoun
we obtain a step function in the demodulated signal tha
used to calibrate the data. To obtain the phase time va
we take into account the setup geometry, and in particu
the displacement of P2. Taking advantage of the nearly
normal incidence of the laser beam on P1 (due toi . 45±,
see Fig. 2), we obtain

tFsed ­

µ
n sini

c

∂ ∑
D'sed
cosi

2 e coss45±d
∏

. (6)

The same setup can also be installed on the reflected b
to measure the reflection phase time.

In a second set of experiments, we measure the ang
deviation in air of the transmitted beam, as a function
e. We simply insert a lens L of focal lengthLf ­ 24 cm
in the transmitted beam. An angular deviation results
a shift Di of the laser spot in the focal plane of L, with
Di ­ Lfdiair. Di is then measured by the same metho
as before. From Eq. (5) anddiair ­ ndi, the loss time is
obtained astLsed ­ 2 cscs2idwRDisedyLfn2c.

The square dots in Fig. 3 show the results for tran
mission phase times [(a) and (b)], reflection phase tim
[(c) and (d)], and transmission loss times [(e) and (f)], as

FIG. 3. Experimental (square dots) and computed (solid line
tunneling times. (a)–(b): transmission phase times; (c)–(
reflection phase times; (e)–(f): transmission loss times, in
and TM polarization, respectively. The dashed lines indica
the time to crosse at light velocity. The dotted line shows the
predicted semiclassical time.
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function ofe, in TE (a), (c), (e) and TM (b), (d), (f) polari-
zation. The data are averaged over several runs, and
error bars are indicative of statistical uncertainties. Me
surements were stopped aboute ­ 25 mm, as the trans-
mitted intensity becomes too low for thicker barriers. T
corresponding theoretical curves, obtained from Eqs.
and (2) and averaging over the wave vector distributi
are displayed as solid lines for comparison.

The transmission phase times first increase linearly
then saturate to an almost constant value. This confi
the so-called Hartman effect: The phase time is indep
dent of barrier thickness in the opaque barrier limit [2
This remarkable property has been noticed before by Sp
mann et al. [12] in the context of transmission thoug
multistack dielectric coatings. To illustrate the resultin
superluminal propagation, a dashed line represents
light-velocity limit eyc: All points below that line corre-
spond to superluminal velocities. In TE polarization, th
is the case for all experimental points for barrier widt
larger than8 mm. By contrast, the loss time variation i
about flat for thin barriers, and then increases quasilinea
All points lie above the light velocity limit, or are consis
tent with it within the experimental error bars. The da
points are actually parallel to the prediction of the sem
classical timesh̄vyc2dseyh̄Kd [5,16], displayed as a dotted
line. The effective velocity therefore tends to a consta
value, as given by Büttiker and Landauer’s theory. The
is, however, a clear discrepancy, as the measured and c
puted loss times turn out to be smaller than the semic
sical time by a fixed time lag, about 200 fs here. Final
one may notice that the loss time becomes much lar
than the phase time for opaque barriers: Ate ­ 20 mm,
we havetL ­ 500 fs, whiletF ­ 40 fs only in TE polari-
zation. The complex tunneling time is hence dominated
its imaginary part.

Several authors have predicted that transmission
reflection phase times should be equal [3,16]. O
data clearly demonstrate this point, as can be seen
comparing Figs. 3(a) to 3(c), and 3(b) to 3(d). Th
equality is not predicted to hold for the loss time
The reflection loss timetR

L should be related to the
transmission loss time bytR

L ­ sTyRdtL, where T and
R are the transmission and reflection intensity coefficie
[22]. As T decays to zero very quickly, the reflectio
loss times are extremely small, of the order of a fe
femtoseconds at most, which is less than the sensiti
threshold of the experiment. Indeed, our attempts
measure the reflection loss times yielded results consis
with zero.

The polarization dependence of the data is especi
noteworthy. As stressed before, TE and TM evanesc
waves have the same functional dependence exps2Kzd,
but differ by their boundary conditions. The TM phas
times turn out to be larger than the TE ones by almos
factor of 2, while the TE and TM loss times are near
equal. This shows that the phase times depend stro
853
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on the boundary conditions, which are not really part
tunneling. By contrast, the loss time (or semiclassic
time) depends very little on the boundary conditions, b
only on the tunneling process itself.

In summary, we have investigated the tunneling tim
associated with frustrated total internal reflection of ligh
We have shown that the additional degree of freedo
associated with beam propagation along the interfa
provides a clock, similar to the well-known Larmo
clock. The real and imaginary parts of the comple
tunneling time correspond, respectively, to the spatial a
angular shifts of the beam, and can thus be measure
a stationary experiment. This method differs therefo
from the pulsed experiments of Steinberget al. [11] and
Spielmannet al. [12].

Our experimental results demonstrate the equality b
tween phase times upon reflection and transmission,
that the loss times upon reflection are much smaller th
those upon transmission. As predicted by Hartman,
phase time tends to a constant in a deep tunneling regi
while the transmission loss time increases linearly, in p
allel with the semiclassical time, the effective velocity be
ing subluminal. Incidentally, the very demonstration o
the angular shift suffered by the tunneling beam is al
the first observation of a nonspecular effect on a Gauss
beam distinct from a beam displacement, to the best of
knowledge. Finally, the phase time was shown to depe
on the TE or TM boundary conditions, in contrast with th
loss time.

In most technological applications, how long the tun
neling wave or quantum particle couples to other degre
of freedominside the barrier is the most important ques
tion. A time value that depends strongly on bounda
conditions is clearly not adequate. To that extent, o
results substantiate the semiclassical time as the most
evant to describe the physics of tunneling.

*Also with: Lycée Joliot-Curie, 144 Boulevard de Vitré
F-35700 Rennes Cedex, France.
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