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Detecting and Analyzing Nonstationarity in a Time Series Using Nonlinear Cross Predictions
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We propose a test for stationarity in a time series which checks for the compatibility of nonlinear
approximations to the dynamics made in different segments of the sequence. The segments are
compared directly, rather than via statistical parameters. The approach provides detailed information
about episodes with similar dynamics during the measurement period. This allows for a detailed
analysis of physically relevant changes in the dynamics. [S0031-9007(97)02316-8]

PACS numbers: 05.45.+b, 02.50.Fz

Almost all methods of time series analysis, traditionalresolved study. Other material concerning nonstationarity
linear or nonlinear, must assume some kind of stationarityin a nonlinear setup is found in Ref. [6].
Therefore, changes in the dynamics during the measure- In the following, a novel approach is taken which
ment period usually constitute an undesired complicatioms based on the similarity between parts of the time
of the analysis. There are, however, situations where sucteries themselves, rather than the similaritpafameters
changes represent the most interesting structure in thgerived from the time series by local averages. In
recording. For example, electro-encephalographic (EEGparticular, the (nonlinear) cross-prediction error, that is,
recordings are often taken with the main purpose of identhe predictability of one segment using another segment as
tifying changes in the dynamical state of the brain. Sucha database, will be evaluated. This concept is particularly
changes occur, e.g., between different sleep stages, or heseful if nonstationarity is given by changes of the
tween epileptic seizures and normal brain activity. In thisshape of an attractor while dynamical invariants remain
Letter we propose an approach to the study of potentiallgffectively unchanged. Other statistics which measure the
nonstationary signals which does not only provide a powsimilarity of time series can be used alternatively.
erful test for stationarity but also allows for a time re- Let{x,;n = 1,...,N} be a time series which is split
solved study of the dynamical changes. While testing fointo contiguous segments of length the ith segment
stationarity might appear to be a technical problem of timebeing called S} = {x@-1i+1s...,xyy. Traditionally, a
series analysis, the analysis and understanding of nonststatisticy; is now computed for each such segment. It is
tionary signals is a topic of current research in many areathen tested if the sequentg;} is constant up to statistical
of science. fluctuations. How this is done depends on what we know

A number of statistical tests for stationarity in a time about the properties of the statistic in particular its
series have been proposed in the literature. Most of thprobability distribution. Alternatively, one can compare
tests we are aware of are based on ideas similar to thetatistics computed on segments to values obtained from
following: Estimate a certain parameter using differentthe full sequence. Note that is typically a scalar but
parts of the sequence. If the observed variations are foungectors like binned distributions can also be used. In
to be significant, that is, outside the expected statisticahis Letter, we will take a different approach and use
fluctuations, the time series is regarded as nonstationargtatistics defined on pairs of segmenis; = y(Sf,S}),
In many applications of linear (frequency based) timein particular the cross-prediction error.
series analysis, stationarity has to be valid only up to the Statistical testing with nonlinear parameteysis dif-
second moments (“weak stationarity”). Then, the obvioudicult because we can assume very little about the sta-
approach is to test for changes in second order quantitieistical properties ofy. Estimators of dimensions and
like the mean, the variance, or the power spectrum. Seéyapunov exponents do not usually follow normal dis-
e.g., [1] and references therein. Nonlinear statistics whicltributions. Mean prediction errors are composed of many
can be used include higher order correlations, dimension#ndividual errors and thus more likely to be normal. How-
Lyapunov exponents, and binned probability distribu-ever, the empirical errors are not expected to be indepen-
tions [2]. dent which complicates the estimation of the variance of

Stationarity can also be tested for without comparingy. By using statisticsy;; on pairs of segments we in-
running statistical parameters. One such test which isrease the number of parameters computed at a fixed num-
particularly useful in the context of correlation dimensionber of segments fronv /I to (N /1)?. It can be argued that
estimates is the space-time separation plot introducede gain largely redundant information for the purpose of
in Ref. [3]. Also the recurrence plot of Ref. [4] and statistical testing since thg;; for differenti, j are not ex-
the method proposed in [5] provide related information.pected to be independent. However, we will be able to
However, these algorithms do not allow for a time detect different and more hidden kinds of nonstationarity.
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We can get a more detailed picture about the nature dbrmulation, however, leaves room for the possibility that
the changes and, in particular, locate segments of a nothe approximation to the dynamics is performed on a
stationary sequence which are similar enough for the purdifferent data seX than the actual prediction. If we take
pose of our analysis and which can therefore be analyzekl and Y to be the same but exclude froftl}(y,) all

together. 2m — 1 vectors which share components wifh, then
In principle, y(S;,S;) can be any quantity which is $Y. | is an ordinary out-of-sample prediction of; [9].
sensitive to differences in the dynamics §h and S;, The root mean squared prediction errg(X,Y) of the

respectively. Examples of such quantities can be foundequence’, givenX, is defined by
in Refs. [7,8]. For the application we have in mind,
theoretical rigor in the definition of is less important 1 Nt

i (X.Y) = \|x—— > (9ie1 = yus1)?.
than robustness and the possibility to obtain a stable PASD Ny — m Yn+1 7 Yn+l
estimate on rather short segmentsS;. One statistic

which meets these criteria is the error of a simple nonIineaporX — v, this is the usual take-one-out, out-of-sample
pred|ct|'on glgonthm. Predictions with locally constant prediction error. y(X,Y) probes in how far the locally
approximations yield stable results for sequences of a fewWgnstant approximation to the dynamics Xfis suitable

hundred points or less. Global nonlinear predictions cag, predict values inv. For a stationary time series, we
be performed with even less points, provided the glObaExpect thaty (s '

X , i,S]l-) is independent of andj unless the
ansatz is chosen properly. Here we want to avoid thegherence time of the process is longer tharif there is
latter nontrivial requirement. More attractive from the

. . C o D variability in the sequence on time scales longer thare
theoretical point of view is the cross correlation integrali; 4,e to a slow variable or due to a changing parameter
defined in Ref.. [7]. However, it requires !onger segmentgy, o diagonal terms (S!, 5!) will be typically smaller than
and a low noise level in order to obtain stable result

ith | uati f i I Shose withi # J.
without manual evaluation of scaling plots. . Note that in generay(X,Y) # v(Y,X). In particular,
Let us again stress that the main point of this Letter.

. . ] . . X ; if the attractor ofY is embedded within the attractor &f,
is to exploit the information contained in the relative sta-¢ example, ifY forms a periodic orbit which is present
tistics y(S;, S;), in addition to that contained in the di- '

: ) T as an unstable orbit iK, points inY can be well predicted
agonal termsy(S;,S;). Many nonlinear statistics can be sing X as a database. Howeve, does not contain
naturally generalized to relative quantities. We mentione nough information to predict all po,ints X. While the
cross-prediction errors and the cross correlation integra symmetry ofy,; can provide valuable insights, it may
Lyapunov exponents might also be generalized by meay Y '

. ) . 2 ; Iso be confusing in some cases. One can then use a
suring the divergence of pairs of trajectories, one take'%ymmetrized statistic like;;, + 7y
A , _ ij ji- .
from §;, one f_romS,. . ) Let us illustrate the method with a numerical example,
Let us deflr_1e_ thecross-prediction errory;; we will a generalization of the well known “baker's map”
use as a statistic to compare segments. It is computed

n=m

as follows. LetX = {x,, n = 1,Nx}andY = {y,, n = _ Up+1 = By,

1,Ny} be two time series and: be a small integer if v, = a:

denoting an embedding dimension. From both time series Untl = Up/a@,

we can form embedding vectoks,, n = m, Ny — 1} Upt1 = 0.5 + Buy,,

and {y,, n = m, Ny — 1}, respectively, in the same: if v, > a:

dimensional phase space, Whetge= (x,—m+1,...,Xn). vpr1 = (vp — @)/(1 — a),

Further let us fix a length scale For eachy, we want defined forv, € [0,1], a, 8 € 10, 1[. For this piecewise

to_ ma£<e a prediction one step into the fl_Jture, that iSiinear mapping, the two Lyapunov exponents can be
given y, = (Yu—m+1,-..,ys) We want to estimate,+1,  computed analytically (see, e.g., [10]):
using, however,X as a database. A locally constant

approximation to the dynamics relatikg andx, -+ yields
the estimate

1
AM=aln—+ (1 —a)ln ,
a 1l — «

A2=InB.

By varying 8 only, we can create sequences with different
In the above formulaU X (y,) = {x. : lIX, — y.ll < €}  dynamics but with the same maximal Lyapunov exponent.
is an e neighborhood ofy,, formed, however, within Indeed, we will generate a nonstationary time series by
the setX. |UZX(y,)| denotes the number of elements varying 8 slowly with time: 8 = n/N. We keepa =

in that neighborhood. For isolated points with empty0.4 fixed and measur&y = 40000 points by recording
neighborhoods we take the sample mean of the segment+ v. From this we subtract the running mean and we
X as an estimatey,,. This or similar schemes are normalize to unit running variance. The actual time series
widely used for prediction and noise reduction. Ouris thus

1 z
o X
9 = — Xn'+1 -
n+1 |U§(yn)|;(n,e’u§(;”) !
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0.5 . . . T T T . Predictability degrades rapidly with the temporal distance
. of the segments.
o 04¢F A s .
s o 0 94000000000 As a realistic example, we study_ a recording of th_e
= 03 1,0,0,%% o © *%0%0000 | breath rate of a human patient during almost an entire
5 o2k %6 night (about 5 h), measured twice a second. The data is
3 part of data set B from the Santa Fe Institute time series
a 01F 7 contest held in 1992. It is described in Ref. [11]. Obvi-
0 ! ! . . L L . ously, conditions cannot be assumed to be constant during
0 5 10 15 20 25 30 35 40 a night’'s sleep. Changes of the calibration and the instan-
segment number taneous variance, as well as the linear autocorrelations are
FIG. 1. "Diagonal” cross-prediction erray; for a nonstation- ~ €asy to detect by standard methods. In order to emphasize

ary sequence of the generalized baker's map witk 0.4 and
B = n/N. The total signal oV = 40000 is split into 40 seg-

ments of length 1000.

Wnp — <W>k

T R = P

where (-); denotes the average over indices= n —
k,...,n + k. Herek = 50. The nonstationarity in the

sequence is very hard to detect
remain unchanged. The running

show only very small variation, and finite time estimates
of the largest Lyapunov exponent essentially do no
change. Figure 1 shows the nonlinear prediction erro
vi; for 40 segments of length 1000 each. We use
anm = 2 dimensional embedding and neighborhoods o
radiuse = 0.25. Only towards the end of the sequence

one could suspect that something

The parameter drift is, however, revealed by cros

predictions using one segmeisf
as a database to predict values
Sj, as can be seen in Fig. 2.
encoded as gray scales. Black
white for y;; = 0.8, and linear

predicted

1 20
data base

W, = u, + v,,

that the algorithm is sensitive to changes in the nonlin-

ear structure, we subtract from the data the running mean
and divide it by the running root mean squared amplitude.

Further, all prediction errors are normalized to the error of

the best linear AR(1) model.

In order to detect nontrivial changes, we split the
recording into 40 nonoverlapping segmerfts of 850
points (425 sec) each. Cross predictions are performed
usingm = 2, and € is chosen to be&).25 (at unit rms

; b bIamplitude). In Fig. 3 we show the (auto-) prediction
srlr?ce marcljy ObSErVabiesyor vi; as a function of segment number. There are

€an and variance aig, ., fluctuations; most prominent are the lower errors
Yor segments 15-18. The cross-prediction error is shown
in Fig. 4 as grey shades. Black meaps= 0.9, white

> 1.3, and linear grey shades are used in between.

xcept from the lower errors for = j (see note [9]),

e see that there is a transition around one third of the
recording: segments up to about 15 are less useful for
predictions of segments after about 20 and vice versa.
That segments 15-18 are different was apparent from
SFig. 3 already. For this data set, most nonlinear tests are
able to detect that nonstationarity is present. The main
%vantage of the present method is that it provides more
@letailed, time resolved information than just a statement
that nonstationarity has been found.

The algorithm as described here contains a few parame-
ters which have to be chosen appropriately for each data

is changing.

of length I = 1000
within another segme
Prediction errors ar
is used for = 0.3,
shading in between.

12 - ® i

0.8 L °
06 ° -
04 - -
02 r -

prediction error

15 20 25
segment number

30 35 40

FIG. 3. Prediction errory;; for segments of a long, nonsta-

tionary recording of the breath rate of a human [11]. The set
was split into 40 segments of 850 points (425 secs) each. Er-
rors are normalized to the error of the best AR(1) model. Con-
siderable fluctuations are present but there is no indication of a

40

FIG. 2. Mutual predictions between sections of length 1000qualitative difference between the first and the second half of
for the baker’s map time series used in Fig. 1. the recording.
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finite time series, this probability distribution can only be
estimated up to statistical fluctuations. It is problematic
to define stationarity on the base of such an estimate. In
this Letter we have taken a rather pragmatic point of view
and call a signal stationary if anything which changes
in time (no matter if we call it a variable or a parame-
ter) does so on a time scale such that the changes aver-
age out over times much smaller than the duration of the
measurement.

We were able to detect changes in the dynamics of a
system even if scalar statistics do not change significantly.
The proposed method is meant to augment known tests for
stationarity, in particular, since it includes the possibility

1 20 40 to find interrelations and similarities between different

data base parts of a time series.
FIG. 4. Cross-prediction errors for segments of a recording of W€ thank Holger Kantz, James Theiler, and Peter
the breath rate of a human. In addition to the information inGrassberger for useful comments. This work was sup-

Fig. 3, this figure shows that there is a qualitative change in thgported by the SFB 237 of the Deutsche Forschungsge-
dynamics around segment 15. meinschatft.

predicted
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Is determined by the tradeoff between statistical stability = gqjag Analysi¢Academic Press, London, 1988).
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