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Detecting and Analyzing Nonstationarity in a Time Series Using Nonlinear Cross Predictions
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(Received 24 July 1996; revised manuscript received 31 October 1996)

We propose a test for stationarity in a time series which checks for the compatibility of nonlinear
approximations to the dynamics made in different segments of the sequence. The segments are
compared directly, rather than via statistical parameters. The approach provides detailed information
about episodes with similar dynamics during the measurement period. This allows for a detailed
analysis of physically relevant changes in the dynamics. [S0031-9007(97)02316-8]

PACS numbers: 05.45.+b, 02.50.Fz
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Almost all methods of time series analysis, tradition
linear or nonlinear, must assume some kind of stationari
Therefore, changes in the dynamics during the measu
ment period usually constitute an undesired complicati
of the analysis. There are, however, situations where su
changes represent the most interesting structure in
recording. For example, electro-encephalographic (EE
recordings are often taken with the main purpose of ide
tifying changes in the dynamical state of the brain. Su
changes occur, e.g., between different sleep stages, or
tween epileptic seizures and normal brain activity. In th
Letter we propose an approach to the study of potentia
nonstationary signals which does not only provide a po
erful test for stationarity but also allows for a time re
solved study of the dynamical changes. While testing f
stationarity might appear to be a technical problem of tim
series analysis, the analysis and understanding of non
tionary signals is a topic of current research in many are
of science.

A number of statistical tests for stationarity in a tim
series have been proposed in the literature. Most of
tests we are aware of are based on ideas similar to
following: Estimate a certain parameter using differe
parts of the sequence. If the observed variations are fou
to be significant, that is, outside the expected statistic
fluctuations, the time series is regarded as nonstationa
In many applications of linear (frequency based) tim
series analysis, stationarity has to be valid only up to t
second moments (“weak stationarity”). Then, the obvio
approach is to test for changes in second order quantit
like the mean, the variance, or the power spectrum. S
e.g., [1] and references therein. Nonlinear statistics whi
can be used include higher order correlations, dimensio
Lyapunov exponents, and binned probability distribu
tions [2].

Stationarity can also be tested for without comparin
running statistical parameters. One such test which
particularly useful in the context of correlation dimensio
estimates is the space-time separation plot introduc
in Ref. [3]. Also the recurrence plot of Ref. [4] and
the method proposed in [5] provide related informatio
However, these algorithms do not allow for a tim
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resolved study. Other material concerning nonstationarit
in a nonlinear setup is found in Ref. [6].

In the following, a novel approach is taken which
is based on the similarity between parts of the time
series themselves, rather than the similarity ofparameters
derived from the time series by local averages. In
particular, the (nonlinear) cross-prediction error, that is
the predictability of one segment using another segment
a database, will be evaluated. This concept is particular
useful if nonstationarity is given by changes of the
shape of an attractor while dynamical invariants remai
effectively unchanged. Other statistics which measure th
similarity of time series can be used alternatively.

Let hxn; n ­ 1, . . . , Nj be a time series which is split
into contiguous segments of lengthl, the ith segment
being called Sl

i ­ hxsi21dl11, . . . , xilj. Traditionally, a
statisticgi is now computed for each such segment. It is
then tested if the sequencehgij is constant up to statistical
fluctuations. How this is done depends on what we know
about the properties of the statisticg, in particular its
probability distribution. Alternatively, one can compare
statistics computed on segments to values obtained fro
the full sequence. Note thatg is typically a scalar but
vectors like binned distributions can also be used. I
this Letter, we will take a different approach and use
statistics defined on pairs of segments,gij ­ gsSl

i , Sl
jd,

in particular the cross-prediction error.
Statistical testing with nonlinear parametersg is dif-

ficult because we can assume very little about the st
tistical properties ofg. Estimators of dimensions and
Lyapunov exponents do not usually follow normal dis-
tributions. Mean prediction errors are composed of man
individual errors and thus more likely to be normal. How-
ever, the empirical errors are not expected to be indepe
dent which complicates the estimation of the variance o
g. By using statisticsgij on pairs of segments we in-
crease the number of parameters computed at a fixed nu
ber of segments fromNyl to sNyld2. It can be argued that
we gain largely redundant information for the purpose o
statistical testing since thegij for different i, j are not ex-
pected to be independent. However, we will be able t
detect different and more hidden kinds of nonstationarity
© 1997 The American Physical Society 843
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We can get a more detailed picture about the nature
the changes and, in particular, locate segments of a n
stationary sequence which are similar enough for the p
pose of our analysis and which can therefore be analyz
together.

In principle, gsSi , Sjd can be any quantity which is
sensitive to differences in the dynamics inSi and Sj,
respectively. Examples of such quantities can be fou
in Refs. [7,8]. For the application we have in mind
theoretical rigor in the definition ofg is less important
than robustness and the possibility to obtain a stab
estimate on rather short segmentsSi , Sj. One statistic
which meets these criteria is the error of a simple nonline
prediction algorithm. Predictions with locally constan
approximations yield stable results for sequences of a f
hundred points or less. Global nonlinear predictions c
be performed with even less points, provided the glob
ansatz is chosen properly. Here we want to avoid t
latter nontrivial requirement. More attractive from th
theoretical point of view is the cross correlation integr
defined in Ref. [7]. However, it requires longer segmen
and a low noise level in order to obtain stable resu
without manual evaluation of scaling plots.

Let us again stress that the main point of this Lett
is to exploit the information contained in the relative sta
tistics gsSi , Sjd, in addition to that contained in the di-
agonal termsgsSi , Sid. Many nonlinear statistics can be
naturally generalized to relative quantities. We mention
cross-prediction errors and the cross correlation integr
Lyapunov exponents might also be generalized by me
suring the divergence of pairs of trajectories, one tak
from Si, one fromSj .

Let us define thecross-prediction errorgij we will
use as a statistic to compare segments. It is compu
as follows. LetX ; hxn, n ­ 1, NXj andY ; hyn, n ­
1, NY j be two time series andm be a small integer
denoting an embedding dimension. From both time ser
we can form embedding vectorsh $xn, n ­ m, NX 2 1j
and h $yn, n ­ m, NY 2 1j, respectively, in the samem
dimensional phase space, where$xn ­ sxn2m11, . . . , xnd.
Further let us fix a length scalee. For each$yn we want
to make a prediction one step into the future, that
given $yn ­ s yn2m11, . . . , ynd we want to estimateyn11,
using, however,X as a database. A locally constan
approximation to the dynamics relating$xn andxn11 yields
the estimate

ŷX
n11 ­

1
jUX

e s $yndj

X
$xn0 [UX

e s $ynd
xn011 .

In the above formula,UX
e s $ynd ­ h $xn0 : k$xn0 2 $ynk , ej

is an e neighborhood of$yn, formed, however, within
the setX. jUX

e s $yndj denotes the number of element
in that neighborhood. For isolated points with emp
neighborhoods we take the sample mean of the segm
X as an estimatêyX

n11. This or similar schemes are
widely used for prediction and noise reduction. Ou
844
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formulation, however, leaves room for the possibility tha
the approximation to the dynamics is performed on
different data setX than the actual prediction. If we take
X and Y to be the same but exclude fromUY

e s $ynd all
2m 2 1 vectors which share components with$yn, then
ŷY

n11 is an ordinary out-of-sample prediction ofyn11 [9].
The root mean squared prediction errorgsX, Y d of the
sequenceY , givenX, is defined by

gsX, Yd ­

vuut 1
NY 2 m

NY 21X
n­m

s ŷX
n11 2 yn11d2 .

For X ­ Y , this is the usual take-one-out, out-of-sampl
prediction error. gsX, Yd probes in how far the locally
constant approximation to the dynamics ofX is suitable
to predict values inY . For a stationary time series, we
expect thatgsSl

i , Sl
jd is independent ofi andj unless the

coherence time of the process is longer thanl. If there is
variability in the sequence on time scales longer thanl, be
it due to a slow variable or due to a changing paramete
the diagonal termsgsSl

i , Sl
i d will be typically smaller than

those withi fi j.
Note that in generalgsX, Yd fi gsY , Xd. In particular,

if the attractor ofY is embedded within the attractor ofX,
for example, ifY forms a periodic orbit which is present
as an unstable orbit inX, points inY can be well predicted
using X as a database. However,Y does not contain
enough information to predict all points inX. While the
asymmetry ofgij can provide valuable insights, it may
also be confusing in some cases. One can then us
symmetrized statistic likegij 1 gji .

Let us illustrate the method with a numerical example
a generalization of the well known “baker’s map”

if yn # a:
un11 ­ bun ,

yn11 ­ ynya ,

if yn . a:
un11 ­ 0.5 1 bun ,

yn11 ­ syn 2 adys1 2 ad ,

defined foryn [ f0, 1g, a, b [ g0, 1f. For this piecewise
linear mapping, the two Lyapunov exponents can b
computed analytically (see, e.g., [10]):

l1 ­ a ln
1
a

1 s1 2 ad ln
1

1 2 a
,

l2 ­ ln b .

By varyingb only, we can create sequences with differen
dynamics but with the same maximal Lyapunov exponen
Indeed, we will generate a nonstationary time series b
varying b slowly with time: b ­ nyN. We keepa ­
0.4 fixed and measureN ­ 40 000 points by recording
u 1 y. From this we subtract the running mean and w
normalize to unit running variance. The actual time serie
is thus
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FIG. 1. ”Diagonal” cross-prediction errorgii for a nonstation-
ary sequence of the generalized baker’s map witha ­ 0.4 and
b ­ nyN . The total signal ofN ­ 40 000 is split into 40 seg-
ments of length 1000.

xn ­
wn 2 kwlkp

ksw 2 kwlkd2lk
, wn ­ un 1 yn ,

where k?lk denotes the average over indicesn0 ­ n 2

k, . . . , n 1 k. Here k ­ 50. The nonstationarity in the
sequence is very hard to detect since many observa
remain unchanged. The running mean and variance
constant up to finite sample fluctuations, autocorrelatio
show only very small variation, and finite time estimat
of the largest Lyapunov exponent essentially do n
change. Figure 1 shows the nonlinear prediction er
gii for 40 segments of length 1000 each. We us
an m ­ 2 dimensional embedding and neighborhoods
radiuse ­ 0.25. Only towards the end of the sequen
one could suspect that something is changing.

The parameter drift is, however, revealed by cro
predictions using one segmentSl

i of length l ­ 1000
as a database to predict values within another segm
Sl

j , as can be seen in Fig. 2. Prediction errors
encoded as gray scales. Black is used forgij # 0.3,
white for gij $ 0.8, and linear shading in between

FIG. 2. Mutual predictions between sections of length 10
for the baker’s map time series used in Fig. 1.
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Predictability degrades rapidly with the temporal distanc
of the segments.

As a realistic example, we study a recording of th
breath rate of a human patient during almost an enti
night (about 5 h), measured twice a second. The data
part of data set B from the Santa Fe Institute time seri
contest held in 1992. It is described in Ref. [11]. Obvi
ously, conditions cannot be assumed to be constant dur
a night’s sleep. Changes of the calibration and the insta
taneous variance, as well as the linear autocorrelations
easy to detect by standard methods. In order to emphas
that the algorithm is sensitive to changes in the nonlin
ear structure, we subtract from the data the running me
and divide it by the running root mean squared amplitud
Further, all prediction errors are normalized to the error o
the best linear AR(1) model.

In order to detect nontrivial changes, we split th
recording into 40 nonoverlapping segmentsSi of 850
points (425 sec) each. Cross predictions are perform
using m ­ 2, and e is chosen to be0.25 (at unit rms
amplitude). In Fig. 3 we show the (auto-) prediction
error gii as a function of segment number. There ar
some fluctuations; most prominent are the lower erro
for segments 15–18. The cross-prediction error is show
in Fig. 4 as grey shades. Black meansg # 0.9, white
g . 1.3, and linear grey shades are used in betwee
Except from the lower errors fori ­ j (see note [9]),
we see that there is a transition around one third of th
recording: segments up to about 15 are less useful
predictions of segments after about 20 and vice vers
That segments 15–18 are different was apparent fro
Fig. 3 already. For this data set, most nonlinear tests a
able to detect that nonstationarity is present. The ma
advantage of the present method is that it provides mo
detailed, time resolved information than just a stateme
that nonstationarity has been found.

The algorithm as described here contains a few param
ters which have to be chosen appropriately for each da

FIG. 3. Prediction errorgii for segments of a long, nonsta-
tionary recording of the breath rate of a human [11]. The s
was split into 40 segments of 850 points (425 secs) each. E
rors are normalized to the error of the best AR(1) model. Co
siderable fluctuations are present but there is no indication o
qualitative difference between the first and the second half
the recording.
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FIG. 4. Cross-prediction errors for segments of a recording
the breath rate of a human. In addition to the information
Fig. 3, this figure shows that there is a qualitative change in t
dynamics around segment 15.

set. The embedding dimensionm and neighborhood size
e should yield good overall predictions. The segment si
is determined by the tradeoff between statistical stabil
of gij for long segments and finer time resolution for sho
segments. A slight advantage may be gained by the use
overlapping segments. Other relative statistics than cr
predictions may be used and the table of thegij may be
visualized by other means than grey scale plotting.
particular, ongoing research is devoted to the evaluat
of gij in terms of cluster analysis.

In a nonlinear setting, for instance, if it is planned t
apply algorithms from the theory of deterministic chao
to a time series, weak stationarity (constant second m
ments) is certainly not enough. Let us further rema
that the widespread notion that thesystemwhich produces
the time series must remain unchanged during the time
measurement is neither a necessary nor a sufficient c
dition for stationarity. The reason is that there is noa
posteriori distinction between a system parameter (to r
main constant) and a variable (which may evolve in time
Thus a system with a rapidly fluctuating parameter m
yield a stationary time series because these fluctuatio
can be averaged over, while a system with constant
rameters can produce signals which for all practical wo
must be considered nonstationary. An example for t
latter case is given by intermittency where the time evol
tion of some variables may become arbitrarily slow. F
processes, stationarity can be defined by requiring that
joint probability distribution remains constant. Given
846
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finite time series, this probability distribution can only be
estimated up to statistical fluctuations. It is problematic
to define stationarity on the base of such an estimate. In
this Letter we have taken a rather pragmatic point of view
and call a signal stationary if anything which changes
in time (no matter if we call it a variable or a parame-
ter) does so on a time scale such that the changes ave
age out over times much smaller than the duration of the
measurement.

We were able to detect changes in the dynamics of a
system even if scalar statistics do not change significantly
The proposed method is meant to augment known tests fo
stationarity, in particular, since it includes the possibility
to find interrelations and similarities between different
parts of a time series.
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