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Direct Detection Feedback for Preserving Quantum Coherence in an Open Cavity
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Institute of Physics, Belarus Academy of Sciences, F. Skarina Avenue 70, Minsk 220072, Belarus

(Received 5 September 1996)

It is shown that the Yurke-Stoler coherent state of field in an open cavity preserves its nonclassical
structure if the outgoing radiation is measured by a photodetector and the photocurrent is used for phas
modulation of the intracavity field. [S0031-9007(96)02264-8]

PACS numbers: 42.50.Lc, 03.65.Bz
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One of the most peculiar features of the quantum
scription of the world, most brightly distinguishing it from
the classical description, is the notion of quantum sup
position of two states of the system, which cannot
considered as arising from the lack of information abo
the system state. Schrödinger was perhaps the first
realized that quantum superposition can take place a
in a macroscopic system, for example, a cat in a clo
box, if described quantum mechanically, can in princip
be in a superposition of the states of life and death [
In the last few years this phenomenon has been wid
studied for one of the most simple quantum systems
single-mode field in a cavity, in which case the sup
position of two coherent states with opposite amplitud
Nsjal 1 eiu j 2 ald, where u is arbitrary andN is a
normalization constant, is usually called the Schrödin
cat state [2]. The density operator of this state has
form r ­ rmix 1 rint, wherermix ­ N2sjal kaj 1 j 2

al k2ajd corresponds to a mixture of two states whi
rint ­ N2seiuj 2 al kaj 1 e2iujal k2ajd describes the
interference between these states. Such states have
widely studied in recent years in connection with the
possible applications to quantum cryptography and qu
tum computation [3,4], but using quantum superpositio
in quantum computers is highly complicated by fast dec
of the interference part of the density operator in the pr
ence of dissipation, the phenomenon generally known
quantum decoherence [5]. The rate of this decay for
case of a cat state in an open cavity is2gjaj2, whereg

is the energy decay rate [6], i.e., the larger the cat s
jaj2, the faster decays quantum interference (quantum
herence). In this Letter we describe an experimentally
alizable way for preventing quantum coherence from f
decay in a dissipative system.

Our approach is based on the properties of opera
which may be called generalized photon creation a
annihilation operators:

Aw ­ eiwa1aa ,

A1
w ­ a1e2iwa1a,

wherea1 anda are usual photon creation and annihilatio
operators, andw is ac-number.
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OperatorsAw and A1
w obey usual boson commutation

relations:

fAw , A1
w g ­ 1 ,

and therefore they can be considered as lowering an
raising operators for a basic set of vectorsjNl, N ­
0, 1, 2, . . . in the Hilbert space of harmonic oscillator [7]:

AwjNl ­
p

NjN 2 1l , (1)

A1
w jNl ­

p
N 1 1jN 1 1l .

As A1
w Aw ­ a1a, these vectors are eigenstates of both

A1
w Aw anda1a and therefore they may differ from Fock

statesjnl only by phase:

jNl ­ eiFn jnl .

Multiplying both sides of Eq. (1) bykn 2 1j and substi-
tuting for Aw andjNl we obtain the following relation:

eiwsn21deiFn ­ eiFn21 .

If we assume the phase shift for vacuum state to be zer
then

Fn ­ Fn21 2 wsn 2 1d ­ 2w
nsn 2 1d

2
.

The eigenstates of operatorAw ,

AwjAl ­ AjAl ,

have the following form:

jAl ­ e2 1

2
jAj2

1X̀
N­0

AN
p

N!
jNl

­ e2 1

2
jAj2

1X̀
n­0

AneiFn

p
n!

jnl ,

and represent a subclass of generalized coherent states
The most interesting case arises forw ­ p. Taking into

account that for an ordinary coherent statejal,

eiwa1ajal ­ jaeiwl ,

it is easy to verify that

eipa1aasjal 1 ij 2 aldy
p

2 ­ 2 ia

3 sjal 1 ij 2 aldy
p

2 ;
© 1997 The American Physical Society
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that is, the eigenstate ofAp is the so-called Yurke-Stoler
(YS) coherent state [9]:

jAl ­
1

p
2

sjal 1 ij 2 ald ,

where a ­ iA. Using close analogy between the op
eratorsAp and a we can find master equations and co
responding processes preserving the structure of the
coherent state. For example, the density operatorr of a
single mode of an open cavity with decay rateg obeys the
following master equation [10]:

≠r

≠t
­

g

2
s2ara1 2 a1ar 2 ra1ad ,

and if the initial state of the field is a coherent stateja0l,
then with time the state remains coherent with decreas
amplitudeastd ­ a0e2gty2. Therefore, if the dynamics
of the cavity field is governed by the master equation

≠r

≠t
­

g

2
s2AprA1

p 2 A1
p Apr 2 rA1

p Ap d ,

or equivalently
≠r

≠t
­

g

2
s2eipa1aara1e2ipa1a 2 a1ar 2 ra1ad ,

(2)
then the initial YS statesja0l 1 ij 2 a0ldy

p
2 will remain

a YS state with decreasing amplitudeastd ­ a0e2gty2.
The structure of Eq. (2) is exactly that, typical for a sy

tem with measurement mediated feedback, which give
natural way for practical application of the formalism de
veloped above. Using feedback for manipulating qua
tum properties of the field has become recently a wide
investigated problem [11]. Possibility of creating [12] an
preserving [13] quantum superpositions by means
quantum nondemolition measurement mediated feedb
has been illustrated in several recent theoretical wor
However, our approach is quite different and much mo
simple, as it does not require a highly complicated intr
cavity quantum-nondemolition technique but uses dire
detection of external radiation.

According to the theory of feedback, based on th
continuous photodetection theory [14,15], if the extern
field is being measured by a photodetector and ea
photocount is followed by fast, compared to cavity photo
lifetime, interaction between the feedback loop and t
cavity field, which interaction is described by equationµ

≠r

≠t

∂
fb

­ L r ,

whereL is some superoperator, then the master equat
of the cavity field reads as

≠r

≠t
­

g

2
s2eL tara1 2 a1ar 2 ra1ad ,

where t is the feedback interaction time,t ø g21.
In our case, to achieve the dynamics described
Eq. (2) we needL r ­ ivfa1a, rg andvt ­ p , which
-
r-
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corresponds to shifting the phase of the cavity field byp

in each act of feedback interaction. Such a shifting c
be realized by increasing the optical length of the cavi
by means of an intracavity electro-optical modulator.

The physical meaning of such a feedback can be u
derstood in the following way. If the field going out o
a cavity with the decay rateg is measured by a photode
tector and in the time intervalf0, td exactlyn photocounts
occur at timest1, t2, ..., tn, then the conditional state of the
field is given by the following expression [16,17]:

jccstdl ­ g
n

2 e2 g

2
a1ast2tndae2 g

2
a1astn2tn21da · · · ae2 g

2
a1at1

3 jcs0dl . (3)

This expression shows that when the initial state of t
field is a YS statejcs0dl ­ sja0l 1 ij 2 a0ldy

p
2, the

evolution of the state consists of two processes: betwe
two counts the amplitude of state decays:sjatn

l 1 ij 2

atn
ldy

p
2 ! sjatn11 l 1 ij 2 atn11 ldy

p
2 (here we omit

normalization factors), whereat is defined as above,
while each photocount brings about a shifting b
p the relative phase of statesjatn

l and j 2 atn
l:

sjatn
l 1 ij 2 atn

ldy
p

2 ! sjatn
l 2 ij 2 atn

ldy
p

2. We
see that if the number of photons detected in the tim
interval f0, td is known exactly, the conditional state o
the field remains a YS coherent state. However, if th
number is unknown, the interference of two states
destroyed due to phase shifting after time of the ord
of average half-distance between two successive cou
tdecoh , 221g21ja0j

22. Feedback allows us to obtain an
unconditional decaying YS state, restoring the phase
the intracavity field after a photocount occurs. The effe
of feedback is easy to see from Eq. (3), rewritten in th
presence of feedback as

jccstdl ­ g
n

2 e2 g

2
a1ast2tndeipa1aae2 g

2
a1astn2tn21deipa1a

3 a · · · eipa1aae2 g

2
a1at1jcs0dl .

It follows from the above that the proposed method fo
preserving quantum coherence in an open cavity is ve
sensitive to quantum efficiencyh of the photodetector.
Below we calculate the influence of the detector ineffi
ciency, introducing an additional channel of losses wi
the rategs1 2 hd, and rewriting Eq. (2) as

≠r

≠t
­ ghDsAp dr 1 gs1 2 hdDsadr , (4)

where the superoperatorDsxd for any operatorx is
defined in the following way:

Dsxdr ­
1
2

s2xrx1 2 x1xr 2 rx1xd .

To solve Eq. (4) we will use the positiveP representation
[18], where the density operator is represented as

rstd ­
Z

Psa, b, td
jal kbj

kb j al
d2ad2b . (5)
841
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Equation (4) gives the following equation for the
quasiprobability densityPsa, b, td:

≠

≠t
Psa, b, td ­

g

2

µ
≠

≠a
a 1

≠

≠bp
bp

∂
Psa, b, td

1 ghabpfPs2a, 2b, td 2 Psa, b, tdg ,

which splits into two independent equations:

≠

≠t
P1sa, b, td ­

g

2

µ
≠

≠a
a 1

≠

≠bp
bp

∂
P1sa, b, td , (6)

≠

≠t
P2sa, b, td ­

g

2

µ
≠

≠a
a 1

≠

≠bp
bp

∂
P2sa, b, td

2 2ghabpP2sa, b, td , (7)

by introducing new functions

P1sa, b, td ­ Psa, b, td 1 Ps2a, 2b, td , (8)

P2sa, b, td ­ Psa, b, td 2 Ps2a, 2b, td . (9)

For the initial YS state with the amplitudea0 the solutions
of Eqs. (6) and (7) read as

P1sa, b, td ­ dsa 2 atddsb 2 atd

1 dsa 1 atddsb 1 atd , (10)

P2sa, b, 0d ­ ihdsa 1 atddsb 2 atd

2 dsa 2 atddsb 1 atdj

3 e2ja0j
222hja0j

2s12e2gtd, (11)

where at is defined as above, giving according t
Eqs. (8), (9), and (5) the following evolution of the
density operator:

rstd ­
1
2

sjatl katj 1 j 2 atl k2atjd

1
i
2

e22s12hd ja0j
2s12e2gt dsj 2 atl

3 katj 2 jatl k2atjd .

This expression shows that the additional channel
losses results in the decoherence with the characte
tic time tdecoh , 221g21s1 2 hd21ja0j

22, which corre-
sponds to one-half of the mean time interval between tw
successive photons in this channel. So the inefficiency
the photodetector in the feedback loop restricts the ma
mum sizeja0j

2 of a cat, which can be preserved from fas
decoherence by the proposed method. The importance
high efficiency photodetectors in our scheme is demo
strated by the following example: even forh ­ 0.9 the
decoherence will be slowed down to the rates of the ord
of the energy decay rate only forja0j

2 ­ 5. However,
842
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the effect of feedback can be observed with more op
mism for realization quantum efficiency ofh ­ 0.5 in
which case the rate of decoherence will be twice less th
without feedback for anya0.

In conclusion we want to remark that our approach c
be considered as an example of a more general princ
of possibility to preserve the nonclassicality of the field i
side an open cavity, using the information obtained fro
the measurement of the external field for manipulati
intracavity field characteristics. In the considered ca
where the information obtained from direct detection
external field is used for intracavity phase modulatio
though the mean number of photons inside the cavity
creases exponentially, the state preserves its highly n
classical form—it remains a Schrödinger-cat-like state.
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