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Stable Coulomb Bubbles?
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Coulomb bubbles, though stable against monopole displacement, are unstable at least with respect to
guadrupole and octupole distortions. We show that there exists a temperature at which the pressure of
the vapor filling the bubble stabilizes all the radial modes. In extremely thin bubbles, the crispation
modes become unstable due to the surface-surface interaction. [S0031-9007(97)02348-X]

PACS numbers: 21.10.Sf, 24.10.Nz, 47.20.Dr, 47.55.Dz
[
The possibility of stable or metastable nonspherical x = Eé _ Er  p_PVo
nuclear configurations, like bubbles or tori, has been 2E? 2E? 2E?

occasionally considered [1-6]. Earlier studies, base@iare the common denominat@E? is twice the sur-
upon the liquid drop model, showed the presence of,.e energy of the equivalent sphsetg’, and ES are the

a bubble monopole minimum above a certain fis_silityCOU|0mb and rotational energies, an@ndV, are the ac-
parameter (Coulomb bubble) [4]. However, the higher, 5 nressure and equivalent sphere volume, respectively.
deformation modes of the bubble appeared to be unstable. o ;a1 pressure and angular momentum, the surface

A recent calculation using the generalized rotating quuidenergy increases as a bubble develops from a sphere, but
drop model has shown the appearance of metastable bufize Coulomb energy decreases as the charges are brought
blelike minima at high angular momentum [7]. _Similarly, t3rther apart due to the bubble expansion. Therefore, an

finite temperature Hartree-Fock and Thomas-Fermi calCUperplay between the Coulomb and surface energies may
lations give indications of the onset of bubble formation anerate a minimum energy point along the monopole

[6]. Recent simulations of nuclear collisions by means OTf:Joordinate. The bubble minimum appears first at a value

transport equations indicate the possibility of bubble for-o¢ e fissility paramete = 2.022, and becomes the
mation [8—11]. ’

i i . absolute minimum aX = 2.204 [4,13]. How can such
Coulomb bubbles, their formation, stability, and eVeN-15rge values ok be accessible, if the value af for 238U

tual demise are of broad interest, and are relevant not onlky only 0.714, and even for the nucleus arising from the
to nuclei, but also to highly electrified fluids when the ¢ sion of twoinuclei of238U. X = 1.427? The obvious

Coulomb interaction becomes dominant over the SurfaCBossibility lies in higher temperatures, which decrease the

tension. surface energy coefficient (which must go to zero at the

In what follows, we will show how the vapor pressure ciica| temperature). For instance, within the framework
solves the outstanding problem of the secular stability oft 5 Thomas-Fermi calculation [14,15], a nucleus like
Coulomb bubbles. Furthermore we shall illustrate thexss; 4 23815 achieves the critical valud — 2.204 for

role of a recently discovered surface instability (sheey, ppie formation ar’ = 8.13 MeV.

instability) [12] in their eventual demise. The solid line in the upper inset of Fig. 1 plots
Within the framework of the liquid drop model, the {he gimensionless monopole coordinate of the bubble

energy £ of a bubble in units of twice the surface inimum as a function of the fissility parameter The
energy of the equivalent sphere (constant volume) can bg,jiys of a Coulomb bubble is found to increase with

easily written down as a function of the bubble monopoley, o fissility paramete’. The spherical minimum and

coordinatex: the bubble minimum are separated by a barrier whose
| | maximum valueAE, = 0.0306E¢ is attained atX =
E=—x>+ =1+ x}? 2.022.
2 2 Similarly, at zero fissility and pressure, there exists a
+ X[(l + 383 4 ixs _ ix3(1 + x3)2/3} critical value (R = 0.953) of the rotational parameter at
2 2 which a bubble first appears, and a second critical value
R ) (R = 1.055) at which the bubble minimum becomes the

* [(1 + x3)3/3 = x5] — X3P deeper minimum.

The pressure, on the other hand, does not give rise to
Here x is defined as the ratio of the inner sphere radiusa bubble minimum on its own. At constant pressure,
R, over the radius of the equivalent spheRg. The zero fissility, and zero angular momentum, the sphere
Coulomb, angular momenturand pressureterms are minimum is the only minimum. When increases, a
defined in terms of the fissility paramet&t, rotational barrier is encountered beyond which there is a runaway

energyR, and reduced pressulg respectively: expansion of the bubble. At constaft?, like at constant
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X (Fissility) Unlike the dipole oscillation, higher multipole perturba-
BBl BE 23 24 25 tions tend to increase the surface energy, and thus stabilize
«1 the unperturbed bubbles. This surface effect is the same
° for the radial and crispation modes, since the two modes
T ol g differ only in the relative orientation of their surfaces. On
g S e the other hand, the Coulomb effect is drastically different
\:' ole. for the two modes. The Coulomb perturbation energy is
ST "Teeal,. always negative for the radial mode, since the average dis-
P=02  Tee.., tance between charges is increased slightly due to the per-
- turbation. A similar effect of Coulomb destabilization is

observed for the crispation mode in case of thick bubbles.

In fact, the two modes are indistinguishable for a solid

[ o sphere. However, this destabilization effect becomes pro-
gressively weaker as the bubble expands. When a bubble
is sufficiently thin, the Coulomb perturbation energy be-

$ comes positive, and stabilizes the crispation modes. This

e is because the Coulomb force tends to resist the attempt
to concentrate the charge in “clumps” distributed on the

2 surface of the thin bubble, as required by the higher order

crispation modes. In general, the Coulomb destabilization
effect is always stronger for the radial modes. Therefore,
095 25 a bubble that is stable with respect to radial perturbations
1.25 1.5 175 2 © is always stable against crispation perturbations within our
x(radius) 1= ¥ (Fissility) present description.
o ) To see the role of the Coulomb term on the stability
F'G.-.l- Effective fissility parameteXe as a function of the ¢ 44| modes, let us recall that for a charged drop, the
issility parameterX of the equivalent sphere and the inner

radius x of the bubble. The dashed lines indicate the onsef€duced frequency of theth modes is given by [16]

of instability for specified modes. The solid and dotted curves , 1

plot the value ofX as a function ofX for reduced pressures © =g n(n = D[(n +2) — 4X]. 2
at 0.0 and 0.2, respectively. (Upper inset) The projections of |

the solid and dotted curves on theX plane. Notice that forX = 1 the frequency goes to zero for

n = 2. This is the onset of quadrupole instability, or the
well known fission instability. FoX > 1 progressively

¢ ¢ q | ber. th ¢ b hisqher modes are destabilized. Tlast unstablanode is
emperature and molar number, the pressure term ecomglast — 4X — 2. For instanceny,, increases from 10 to

a constant energy shift, and the energy rises indefinitelx4 asX is incremented from 3 to 4. This shows that

with x like the total surface energy. an increase of the Coulomb force destabilizes a larger

A Coulomb bubble that is stable against monopole 9SHumber of radial modes. In addition, Eq. (2) allows one

cillations may be subjected to higher order perturbation . . e
The higher deformation modes of the bubble can be d?g])c S)%f)lnnghreg(c;iplfgst;tgemggte u(rr]]setg%tlgemrggg? l;r:e 7

vided into tw(cj) clfill_shsez [f13]: theadial mr?desand tfhe and 10 forX = 3 and4, respectively. Hence, a highly
crispation modes The deformations on the two surfaces charged sphere will not merely fission, but will break up

are in phase with each other for a radial mode, and the?ﬁto many droplets through an instability associated with

are out of phase for a crispation mode. a high multipole mode. Interestingly, the most unstable
The monopole oscillation obviously belongs to the cIassmode does not coincide withy,., nor with the lowest

of' radial modes.' On the other hand,. the lowest orde fission) mode either.
crispation mode is the dipole mode which corresponds t Equation (2) can be applied to the radial modes of the

a rigid displacement of the two spheres, one with respedl \bble as well, provided that, at any given value of the

to the other. NOt'C.e that this m.od_e, In the absence of th%onopole coordinate, an “effective” fissility parameter
Coulomb and rotational terms, is indifferent, and leads tqs defined

the eventual puncturing of the bubble. The introduction E.(x)
of the Coulomb term tends to stabilize a bubble against Xeff = —— .

crispation dipole oscillation. The radial dipole mode, 2E;(x)

however, is trivial since it involves only the motion of the Since the Coulomb term decreases with while the
center of mass. Hence, a nuclear bubble is always stabt®rresponding surface term increases, the valu¥.gf

with respect to a dipole perturbation within our presentdecreases as the bubble expands at a given fissility param-
description. eter, as shown in Fig. 1. If the original nucleus= 0)
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is unstable up to the multipole of order as it develops 0.25
into a bubble £ > 0) it starts stabilizing the higher order
radial modes. The dashed lines in Fig. 1 show that the last 0.ROR
unstable mode decreases with increasing i
The solid curve in Fig. 1 indicates the values X
associated with the bubble minima at different fissilities.
At the threshold fissility ofX = 2.022, the value ofX.¢
lies just about at thea = 4 stability line, indicating that
the bubble is unstable up to the= 4 mode. As more
charge is brought into the bubble with increasing values
of X, the Coulomb bubble expands and it becomes stable
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with respect to thes = 4 and even to the octupole mode 03 By 4+ By (r,=1.2fm) ]
(n = 3) at X = 2.5. However, the Coulomb bubble is
still unstable with respect to the quadrupole mode=( o2l stable i

2). In fact, a further increase of does not stabilize the
quadrupole mode.
Yet, it may be possible to have a stable nuclear bubble.
If the bubble is warm, it fills up with vapor arising from
the fluid itself. The effect of pressure on the stability
of the radial modes is most remarkable! The resulting 0.0 ' ‘ ' ' ‘ '
. . 2.25 2.560 R.75 3.00 3.25 3.50
pressure acts only upon the monopole mode, by displacing Fissility Parameter X
outwards the Coulomb minimum. The effect on the other
radial modes is nil, since only changes in volume areFIG. 2. (Top) The linear contour plot (dotted and solid lines)
relevant to pressure. Consequently, the positions in fggﬁiéhergs”sirréaﬂﬁﬁ ?igglitt“bb;?amgg”;m aTShg fé’gscﬁ'gg of
of the last unstable mOdes. for a .ﬂxed Valge)()ﬂo not line indicgtes the onset of instyatglity for the quadrupole mode.
change. The dotted curve in the inset of Fig. 1 shows thgottom) For the system oP8U + 238U, the line plots the
expansion of the Coulomb bubble provided by a reducethcreasing values oP and X with temperature. The dashed
pressure of 0.2. When this dotted curve is projectedine is the dashed line from the top panel.
onto the surface oK., it appears below the quadrupole
stability line. This shows that the bubble has become
secularly stable with respect to all the modes bottom panel of Fig. 2. The dashed line is equivalent
To study this pressure effect in combination with theto the dashed line in the top panel, which defines the
fissility parameter, a contour plot indicating the innerboundary conditions of bubble stability against all the
radius at the bubble minimum is shown as a function ofradial modes. The solid line shows the temperature effect
P and X in the top panel of Fig. 2. The lower limit of on both the reduced pressure and the fissility parameter.
X is 2.022, the fissility at which a bubble minimum first In this case, a nuclear temperature of about 10 MeV
appears. The dashed line indicates the onset of instabilitig sufficient to stabilize a bubble configuration against
for the quadrupole mode, which also defines the boundargerturbations of all radial modes.
conditions of bubble stability against all the radial modes. Thus far, we have considered the effects of surface,
It can be seen that at a given value Xf it is always charge, and pressure on distorted bubbles, and found that
possible to find a pressure large enough to shift the bubbl@) stability against radial perturbations can be achieved,
minimum to a thinner and stable configuration. and (b) that it is a sufficient condition for the overall
A natural source for this pressure, in the case of nuclebubble stability. However, when a bubble becomes rather
or other fluids in vacuum, is the pressure of the saturatethin, a possible demise of the bubble may be associated
vapor, which spontaneously fills up the bubbleit> 0.  with the sheet instability which has not been treated
As the outer surface is looking into vacuum, one mighthere so far. The sheet instability [12] is a new kind
think that no pressure is exerted on it. However, sincedf Rayleigh-like surface instability associated with the
the outer surface is constantly evaporating, an ablatioorispation modes. A nuclear sheet of any thickness tends
pressure is generated. Since the average impulse broughbt escape from the high surface energy by breaking up
in by a vapor particle is equal at equilibrium to that of theinto a number of spherical fragments with less overall
evaporated particle, it follows that the ablation pressure isurface. However, any perturbation of finite wavelength
exactly equal to one-half of the vapor pressure. increases the surface area, and consequently the energy
Using the Thomas-Fermi model [17], a temperature camf the sheet, independent of the sheet thickness. Clearly,
always be found at which the vapor pressure stabilizethis barrier prevents the sheet from reaching the more
the bubble against all the radial mode perturbations. Arstable configurations. However, when a nuclear sheet
example for the system df8U + 23U is shown in the becomes sufficiently thin, the two nuclear surfaces interact

<+—— T=10MeV

Reduced Pressure (P = pV,/2E.°)

=4
n

unstable
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with each other. This proximity interaction may becomebubble radius. To study the interplay between this surface
sufficiently strong to overcome the sharp barrier andeffect and the proximity interaction, a neutral bubble
causes the sheet to puncture into numerous fragments. considered. The solid lines in Fig. 3(b) plét as
Using the expression in Ref. [18] for the proximity a function of x for progressively higher order modes
potential, a critical wavelength is determined for the(n = 2-10). Clearly, the quadrupole instability is most

onset of this surface instability for a flat sheet; =  easily triggered among the multipole modes. As the
1.1 exp(2d/3b), whereb is the range of the proximity proximity interaction becomes stronger (largej, higher
interaction and/ is the thickness of the sheet. order multipoles are gradually destabilized. The dashed

A bubble behaves much like a sheet, and is subjedine in Fig. 3(b) shows the onset of quadrupole instability
to the sheet instability. Since a bubble, like a sheetfor a charged bubble wittk = 1.5. Interestingly, the
must rely on the proximity interaction to become unstabledashed and the corresponding solid lines cross at about
it will retain its surface stability until the range of the x = 0.6, reflecting different Coulomb effects mentioned
surface-surface interaction is of the order of its thicknessearlier for thin and thick bubbles undergoing multipole
Thus a critical range of proximity interaction for the onsetcrispation perturbations. An increase in charge stabilizes
of bubble instability against crispation perturbation can bea bubble against higher order modes and offsets the
defined as, = f(x, X, n). proximity effect (largerb.) until it becomes sufficiently

Figure 3(a) plots the value @f. for the onset of dipole thick (x < 0.6 for the quadrupole mode at = 1.5).
instability at the indicated values of fissility. Notice that In conclusion, the depletion of charge in the central cav-
the line for X = 0 is missing, since the dipole mode of ity of nuclear bubbles reduces the Coulomb energy sig-
a neutral bubble is indifferent, and any finite proximity nificantly and thus stabilizes “Coulomb” bubbles against
effect is sufficient to trigger the instability. Recall that monopole oscillations. These Coulomb bubbles, however,
the introduction of charge stabilizes a bubble againsare at least unstable to perturbation of the quadrupole ra-
dipole oscillation, and thus offsets the proximity effect.dial mode. On the other hand, a sufficiently high tem-
Consequently, the value &f at any given bubble radius perature generates a vapor pressure in the central cavity
increases witlX as shown in Fig. 3(a). which drives the bubble to a thinner configuration that is

Unlike the dipole mode, the surface energy of higherstable against all the radial modes. Finally, a thin Coulomb
multipole perturbations increases monotonically with thebubble behaves like a sheet, and becomes susceptible to a

proximity surface instability via the crispation modes when
its thickness is comparable to the range of the proximity
interaction.
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