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Stable Coulomb Bubbles?

L. G. Moretto, K. Tso, and G. J. Wozniak
Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

(Received 2 December 1996)

Coulomb bubbles, though stable against monopole displacement, are unstable at least with respe
quadrupole and octupole distortions. We show that there exists a temperature at which the pressu
the vapor filling the bubble stabilizes all the radial modes. In extremely thin bubbles, the crispati
modes become unstable due to the surface-surface interaction. [S0031-9007(97)02348-X]

PACS numbers: 21.10.Sf, 24.10.Nz, 47.20.Dr, 47.55.Dz
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The possibility of stable or metastable nonspheric
nuclear configurations, like bubbles or tori, has bee
occasionally considered [1–6]. Earlier studies, bas
upon the liquid drop model, showed the presence
a bubble monopole minimum above a certain fissili
parameter (Coulomb bubble) [4]. However, the high
deformation modes of the bubble appeared to be unsta
A recent calculation using the generalized rotating liqu
drop model has shown the appearance of metastable b
blelike minima at high angular momentum [7]. Similarly
finite temperature Hartree-Fock and Thomas-Fermi calc
lations give indications of the onset of bubble formatio
[6]. Recent simulations of nuclear collisions by means
transport equations indicate the possibility of bubble fo
mation [8–11].

Coulomb bubbles, their formation, stability, and even
tual demise are of broad interest, and are relevant not o
to nuclei, but also to highly electrified fluids when th
Coulomb interaction becomes dominant over the surfa
tension.

In what follows, we will show how the vapor pressur
solves the outstanding problem of the secular stability
Coulomb bubbles. Furthermore we shall illustrate th
role of a recently discovered surface instability (she
instability) [12] in their eventual demise.

Within the framework of the liquid drop model, the
energy E of a bubble in units of twice the surface
energy of the equivalent sphere (constant volume) can
easily written down as a function of the bubble monopo
coordinatex:

E ­
1
2

x2 1
1
2

s1 1 x3d2y3

1 X

∑
s1 1 x3d5y3 1

3
2

x5 2
5
2

x3s1 1 x3d2y3

∏
1

R
fs1 1 x3d5y3 2 x5g 2 x3P

. (1)

Here x is defined as the ratio of the inner sphere radi
R1 over the radius of the equivalent sphereRo. The
Coulomb, angular momentumand pressure terms are
defined in terms of the fissility parameterX, rotational
energyR, and reduced pressureP, respectively:
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X ­
Eo

c

2Eo
s

, R ­
Eo

R

2Eo
s

, P ­
pVo

2Eo
s

.

Here the common denominator2Eo
s is twice the sur-

face energy of the equivalent sphere,Eo
c and Eo

R are the
Coulomb and rotational energies, andp andVo are the ac-
tual pressure and equivalent sphere volume, respectivel

At zero pressure and angular momentum, the surfa
energy increases as a bubble develops from a sphere,
the Coulomb energy decreases as the charges are brou
farther apart due to the bubble expansion. Therefore,
interplay between the Coulomb and surface energies m
generate a minimum energy point along the monopo
coordinate. The bubble minimum appears first at a valu
of the fissility parameterX ­ 2.022, and becomes the
absolute minimum atX ­ 2.204 [4,13]. How can such
large values ofX be accessible, if the value ofX for 238U
is only 0.714, and even for the nucleus arising from th
fusion of two nuclei of238U, X ­ 1.427? The obvious
possibility lies in higher temperatures, which decrease th
surface energy coefficient (which must go to zero at th
critical temperature). For instance, within the framewor
of a Thomas-Fermi calculation [14,15], a nucleus like
238U 1 238U achieves the critical valueX ­ 2.204 for
bubble formation atT ­ 8.13 MeV.

The solid line in the upper inset of Fig. 1 plots
the dimensionless monopole coordinate of the bubb
minimum as a function of the fissility parameterX. The
radius of a Coulomb bubble is found to increase wit
the fissility parameterX. The spherical minimum and
the bubble minimum are separated by a barrier who
maximum valueDEb ­ 0.0306Eo

s is attained atX ­
2.022.

Similarly, at zero fissility and pressure, there exists
critical value sR ­ 0.953d of the rotational parameter at
which a bubble first appears, and a second critical valu
sR ­ 1.055d at which the bubble minimum becomes the
deeper minimum.

The pressure, on the other hand, does not give rise
a bubble minimum on its own. At constant pressure
zero fissility, and zero angular momentum, the sphe
minimum is the only minimum. Whenx increases, a
barrier is encountered beyond which there is a runawa
expansion of the bubble. At constantPx3, like at constant
© 1997 The American Physical Society
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FIG. 1. Effective fissility parameterXeff as a function of the
fissility parameterX of the equivalent sphere and the inne
radius x of the bubble. The dashed lines indicate the ons
of instability for specified modes. The solid and dotted curv
plot the value ofXeff as a function ofX for reduced pressures
at 0.0 and 0.2, respectively. (Upper inset) The projections
the solid and dotted curves on thex-X plane.

temperature and molar number, the pressure term beco
a constant energy shift, and the energy rises indefinit
with x like the total surface energy.

A Coulomb bubble that is stable against monopole o
cillations may be subjected to higher order perturbation
The higher deformation modes of the bubble can be
vided into two classes [13]: theradial modesand the
crispation modes. The deformations on the two surface
are in phase with each other for a radial mode, and th
are out of phase for a crispation mode.

The monopole oscillation obviously belongs to the cla
of radial modes. On the other hand, the lowest ord
crispation mode is the dipole mode which corresponds
a rigid displacement of the two spheres, one with resp
to the other. Notice that this mode, in the absence of
Coulomb and rotational terms, is indifferent, and leads
the eventual puncturing of the bubble. The introductio
of the Coulomb term tends to stabilize a bubble again
crispation dipole oscillation. The radial dipole mode
however, is trivial since it involves only the motion of th
center of mass. Hence, a nuclear bubble is always sta
with respect to a dipole perturbation within our prese
description.
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Unlike the dipole oscillation, higher multipole perturba-
tions tend to increase the surface energy, and thus stabil
the unperturbed bubbles. This surface effect is the sam
for the radial and crispation modes, since the two mode
differ only in the relative orientation of their surfaces. On
the other hand, the Coulomb effect is drastically differen
for the two modes. The Coulomb perturbation energy i
always negative for the radial mode, since the average d
tance between charges is increased slightly due to the p
turbation. A similar effect of Coulomb destabilization is
observed for the crispation mode in case of thick bubble
In fact, the two modes are indistinguishable for a solid
sphere. However, this destabilization effect becomes pr
gressively weaker as the bubble expands. When a bubb
is sufficiently thin, the Coulomb perturbation energy be
comes positive, and stabilizes the crispation modes. Th
is because the Coulomb force tends to resist the attem
to concentrate the charge in “clumps” distributed on th
surface of the thin bubble, as required by the higher ord
crispation modes. In general, the Coulomb destabilizatio
effect is always stronger for the radial modes. Therefore
a bubble that is stable with respect to radial perturbation
is always stable against crispation perturbations within ou
present description.

To see the role of the Coulomb term on the stability
of radial modes, let us recall that for a charged drop, th
reduced frequency of thenth modes is given by [16]

v2 ­
1
8

nsn 2 1d fsn 1 2d 2 4Xg . (2)

Notice that for X ­ 1 the frequency goes to zero for
n ­ 2. This is the onset of quadrupole instability, or the
well known fission instability. ForX . 1 progressively
higher modes are destabilized. Thelast unstablemode is
nlast ­ 4X 2 2. For instance,nlast increases from 10 to
14 asX is incremented from 3 to 4. This shows that
an increase of the Coulomb force destabilizes a larg
number of radial modes. In addition, Eq. (2) allows one
to define themost unstablemode (negative minimum
of v2). For example, the most unstable modes are
and 10 forX ­ 3 and4, respectively. Hence, a highly
charged sphere will not merely fission, but will break up
into many droplets through an instability associated wit
a high multipole mode. Interestingly, the most unstabl
mode does not coincide withnlast, nor with the lowest
(fission) mode either.

Equation (2) can be applied to the radial modes of th
bubble as well, provided that, at any given value of th
monopole coordinatex, an “effective” fissility parameter
is defined

Xeff ­
Ecsxd
2Essxd

.

Since the Coulomb term decreases withx, while the
corresponding surface term increases, the value ofXeff
decreases as the bubble expands at a given fissility para
eter, as shown in Fig. 1. If the original nucleus (x ­ 0)
825
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is unstable up to the multipole of ordern, as it develops
into a bubble (x . 0) it starts stabilizing the higher orde
radial modes. The dashed lines in Fig. 1 show that the l
unstable mode decreases with increasingx.

The solid curve in Fig. 1 indicates the values ofXeff

associated with the bubble minima at different fissilitie
At the threshold fissility ofX ­ 2.022, the value ofXeff
lies just about at then ­ 4 stability line, indicating that
the bubble is unstable up to then ­ 4 mode. As more
charge is brought into the bubble with increasing valu
of X, the Coulomb bubble expands and it becomes sta
with respect to then ­ 4 and even to the octupole mod
(n ­ 3) at X ­ 2.5. However, the Coulomb bubble is
still unstable with respect to the quadrupole mode (n ­
2). In fact, a further increase ofX does not stabilize the
quadrupole mode.

Yet, it may be possible to have a stable nuclear bubb
If the bubble is warm, it fills up with vapor arising from
the fluid itself. The effect of pressure on the stabilit
of the radial modes is most remarkable! The resulti
pressure acts only upon the monopole mode, by displac
outwards the Coulomb minimum. The effect on the oth
radial modes is nil, since only changes in volume a
relevant to pressure. Consequently, the positions inx
of the last unstable modes for a fixed value ofX do not
change. The dotted curve in the inset of Fig. 1 shows
expansion of the Coulomb bubble provided by a reduc
pressure of 0.2. When this dotted curve is project
onto the surface ofXeff, it appears below the quadrupol
stability line. This shows that the bubble has becom
secularly stable with respect to all the modes.

To study this pressure effect in combination with th
fissility parameter, a contour plot indicating the inne
radius at the bubble minimum is shown as a function
P and X in the top panel of Fig. 2. The lower limit of
X is 2.022, the fissility at which a bubble minimum firs
appears. The dashed line indicates the onset of instab
for the quadrupole mode, which also defines the bound
conditions of bubble stability against all the radial mode
It can be seen that at a given value ofX, it is always
possible to find a pressure large enough to shift the bub
minimum to a thinner and stable configuration.

A natural source for this pressure, in the case of nuc
or other fluids in vacuum, is the pressure of the satura
vapor, which spontaneously fills up the bubble ifT . 0.
As the outer surface is looking into vacuum, one mig
think that no pressure is exerted on it. However, sin
the outer surface is constantly evaporating, an ablat
pressure is generated. Since the average impulse bro
in by a vapor particle is equal at equilibrium to that of th
evaporated particle, it follows that the ablation pressure
exactly equal to one-half of the vapor pressure.

Using the Thomas-Fermi model [17], a temperature c
always be found at which the vapor pressure stabiliz
the bubble against all the radial mode perturbations.
example for the system of238U 1 238U is shown in the
826
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FIG. 2. (Top) The linear contour plot (dotted and solid lines)
shows the inner radius of a bubble minimum as a function o
reduced pressureP and fissility parameterX. The dashed
line indicates the onset of instability for the quadrupole mode
(Bottom) For the system of238U 1 238U, the line plots the
increasing values ofP and X with temperature. The dashed
line is the dashed line from the top panel.

bottom panel of Fig. 2. The dashed line is equivalen
to the dashed line in the top panel, which defines th
boundary conditions of bubble stability against all the
radial modes. The solid line shows the temperature effec
on both the reduced pressure and the fissility paramete
In this case, a nuclear temperature of about 10 MeV
is sufficient to stabilize a bubble configuration agains
perturbations of all radial modes.

Thus far, we have considered the effects of surface
charge, and pressure on distorted bubbles, and found th
(a) stability against radial perturbations can be achieved
and (b) that it is a sufficient condition for the overall
bubble stability. However, when a bubble becomes rathe
thin, a possible demise of the bubble may be associate
with the sheet instability which has not been treated
here so far. The sheet instability [12] is a new kind
of Rayleigh-like surface instability associated with the
crispation modes. A nuclear sheet of any thickness tend
to escape from the high surface energy by breaking u
into a number of spherical fragments with less overal
surface. However, any perturbation of finite wavelength
increases the surface area, and consequently the ene
of the sheet, independent of the sheet thickness. Clearl
this barrier prevents the sheet from reaching the mor
stable configurations. However, when a nuclear shee
becomes sufficiently thin, the two nuclear surfaces interac
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with each other. This proximity interaction may becom
sufficiently strong to overcome the sharp barrier a
causes the sheet to puncture into numerous fragme
Using the expression in Ref. [18] for the proximity
potential, a critical wavelength is determined for th
onset of this surface instability for a flat sheet:lc ­
1.1b exps2dy3bd, whereb is the range of the proximity
interaction andd is the thickness of the sheet.

A bubble behaves much like a sheet, and is subj
to the sheet instability. Since a bubble, like a she
must rely on the proximity interaction to become unstab
it will retain its surface stability until the range of the
surface-surface interaction is of the order of its thickne
Thus a critical range of proximity interaction for the ons
of bubble instability against crispation perturbation can
defined asbc ­ fsx, X, nd.

Figure 3(a) plots the value ofbc for the onset of dipole
instability at the indicated values of fissility. Notice tha
the line for X ­ 0 is missing, since the dipole mode o
a neutral bubble is indifferent, and any finite proximit
effect is sufficient to trigger the instability. Recall tha
the introduction of charge stabilizes a bubble again
dipole oscillation, and thus offsets the proximity effec
Consequently, the value ofbc at any given bubble radius
increases withX as shown in Fig. 3(a).

Unlike the dipole mode, the surface energy of high
multipole perturbations increases monotonically with th

FIG. 3. (a) Critical range of proximity interaction (bc) as a
function of inner radius (x) for the dipole mode at various
fissility parameters (X ­ 0.5 3.0). (b) bc as a function ofx for
multipole modes (n ­ 2 10) of a neutral bubble. The dashed
line indicates values ofbc for a charged bubble (X ­ 1.5)
undergoing quadrupole perturbation.
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bubble radius. To study the interplay between this surfac
effect and the proximity interaction, a neutral bubble
is considered. The solid lines in Fig. 3(b) plotbc as
a function of x for progressively higher order modes
(n ­ 2 10). Clearly, the quadrupole instability is most
easily triggered among the multipole modes. As the
proximity interaction becomes stronger (largerbc), higher
order multipoles are gradually destabilized. The dashe
line in Fig. 3(b) shows the onset of quadrupole instability
for a charged bubble withX ­ 1.5. Interestingly, the
dashed and the corresponding solid lines cross at abo
x ­ 0.6, reflecting different Coulomb effects mentioned
earlier for thin and thick bubbles undergoing multipole
crispation perturbations. An increase in charge stabilize
a bubble against higher order modes and offsets th
proximity effect (largerbc) until it becomes sufficiently
thick (x , 0.6 for the quadrupole mode atX ­ 1.5).

In conclusion, the depletion of charge in the central cav
ity of nuclear bubbles reduces the Coulomb energy sig
nificantly and thus stabilizes “Coulomb” bubbles agains
monopole oscillations. These Coulomb bubbles, howeve
are at least unstable to perturbation of the quadrupole r
dial mode. On the other hand, a sufficiently high tem-
perature generates a vapor pressure in the central cav
which drives the bubble to a thinner configuration that is
stable against all the radial modes. Finally, a thin Coulom
bubble behaves like a sheet, and becomes susceptible t
proximity surface instability via the crispation modes when
its thickness is comparable to the range of the proximity
interaction.

This work was supported by the Director, Office of
Energy Research, Division of Nuclear Physics of the
Office of High Energy and Nuclear Physics of the U.S.
Department of Energy under Contract No. DE-AC03-
76SF00098.

[1] J. A. Wheeler (unpublished).
[2] P. Siemens and H. Bethe, Phys. Rev. Lett.18, 704 (1967).
[3] C. Y. Wong, Phys. Lett. B41, 446 (1972);41, 451 (1972).
[4] C. Y. Wong, Ann. Phys. (N.Y.)77, 279 (1973).
[5] C. Y. Wong et al., Phys. Lett.66B, 19 (1977).
[6] C. Y. Wong, Phys. Rev. Lett.55, 1973 (1985).
[7] G. Royeret al., Nucl. Phys.A605, 403 (1996).
[8] B. Borderieet al., Phys. Lett. B302, 15 (1993).
[9] B. Borderieet al., Phys. Lett. B307, 404 (1993).

[10] W. Baueret al., Phys. Rev. Lett.69, 1888 (1992).
[11] H. M. Xu et al., Phys. Rev. C49, 1778 (1994).
[12] L. G. Morettoet al., Phys. Rev. Lett.69, 1884 (1992).
[13] K. Tso, Ph.D. thesis, LBL Report No. 38884, 1996.
[14] C. Guetet al., Phys. Lett. B205, 427 (1988).
[15] H. R. Jaqaman, Phys. Rev. C40, 1677 (1989).
[16] L. G. Moretto and G. J. Wozniak, Ann. Rev. Part. Nucl.

Sci. 43, 379 (1993).
[17] Wolfgang A. Kupperet al., Ann. Phys. (N.Y.)88, 454

(1974).
[18] J. Blocki et al., Ann. Phys. (N.Y.)105, 427 (1977).
827


