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Systematic Approach to Confinement inN 5 1 Supersymmetric Gauge Theories
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We give necessary criteria forN ­ 1 supersymmetric theories to be in a smoothly confining phase
without chiral symmetry breaking and with a dynamically generated superpotential. Using our general
arguments we find all such confining SU and Sp theories with a single gauge group and no tree-level
superpotential. [S0031-9007(97)02297-7]
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Following the initial breakthrough in the works of
Seiberg on exact results inN ­ 1 supersymmetric QCD
(SQCD) [1], much progress has been made in extend
these results to other theories with different gauge a
matter fields [2–11]. We now have a whole zoo o
examples of supersymmetric theories for which we kno
results about the vacuum structure and the infrar
spectrum. A number of theories are known to hav
dual descriptions, others are known to confine with
without chiral symmetry breaking, and some theories
not possess a stable ground state.

Unfortunately, we are still lacking a systematic an
general approach that allows one to determine the infra
properties of a given theory. The results in the literatu
have mostly been obtained by an ingenious guess
the infrared spectrum. This guess is then justified
performing a number of nontrivial consistency check
which include matching of the global anomalies, detaile
study of the moduli space of vacua, and the behavior
the theory under perturbations.

In this Letter, we will depart from the customary tria
and error procedure and give some general argume
which allow us to classify a subset of supersymmetr
theories. To be specific, we intend to answer the ge
eral question of which supersymmetric field theories m
be confining without chiral symmetry breaking and wit
a confining superpotential. We present a few simp
arguments which allow us to rule out most theories
possible candidates for confinement without chiral sym
metry breaking. For the most part, these arguments
ready exist in the literature but our systematic way
putting them to use is new. As a demonstration of th
power of our arguments we give a complete list of a
SUsNd and SpsNd gauge theories with no tree-level supe
potential which confine without chiral symmetry breaking
and we determine the confined degrees of freedom a
the superpotential describing their interactions (“confinin
superpotential”).

To begin, let us first explain what we mean by “smoot
confinement without chiral symmetry breaking and wit
a nonvanishing confining superpotential,” which, from
now on, we will abbreviate by s-confinement. We wi
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call a theory confining when its infrared physics can b
described exactly in terms of gauge invariant compo
ites and their interactions. This description has to b
valid everywhere on the moduli space of vacua. Ou
definition of s-confinement also requires that the theo
dynamically generates a confining superpotential, whic
excludes models of the type presented in Ref. [11]. Fu
thermore, the phrase “without chiral symmetry breaking
implies that the origin of the classical moduli space i
also a vacuum in the quantum theory. In this vacuum
all the global symmetries of the ultraviolet remain un
broken. Finally, the confining superpotential is a holo
morphic function of the confined degrees of freedom an
couplings, which describes all the interactions in the e
treme infrared. Note that this definition excludes theorie
which are in a Coulomb phase on a submanifold of th
moduli space [2], or theories which have distinct Higg
and confining phases with associated phase boundaries
the moduli space.

Our prototype example for an s-confining theory i
Seiberg’s SQCD [1] with the number of flavorsF chosen
to equalN 1 1, whereN is the number of colors, and
a “flavor” is a pair of matter fields in the fundamenta
and antifundamental representations of SUsNd. Seiberg
argued that the matter fieldsQ and Q̄ are confined into
“mesons” M ­ QQ̄ and “baryons”B ­ QN , B̄ ­ Q̄N .
At the origin of moduli space all components of the
mesons and baryons are massless and interact via
confining superpotential

W ­
1

L2N21
fdetsMd 2 BMB̄g . (1)

At this point, the full global SUsN 1 1d 3 SUsN 1

1d 3 Us1dR 3 Us1d global symmetry of the model is
unbroken, and it is a nontrivial consistency check that a
global anomalies are matched by the mesons and baryo
The equations of motionM21 detsMd 2 BB̄ ­ 0, MB̄ ­
0, andBM ­ 0, when expressed in terms of the origina
degrees of freedom,Q andQ̄, are identical to the classical
constraints. This constitutes another consistency che
the quantum theory should reproduce these constraints
the classical limit,L ! 0, or for generic large vacuum
© 1997 The American Physical Society 799
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expectation values (VEVs) which completely break t
gauge group.

Other examples in the literature for theories whi
s-confine include SUsNd with an antisymmetric tensor
N 2 4 antifundamentals, and four flavors [3], Sps2Nd
with 2N 1 4 fundamentals [4], Sps2Nd with an antisym-
metric tensor and six fundamentals [5,6], a few SOsNd
theories with spinors, andG2 with five fundamentals [8,9].

We now present our arguments which enable us
identify other theories which s-confine. Except for th
discussion of generalizations at the end of this Letter
limit our attention to theories with one gauge group a
vanishing tree-level superpotential.

The first argument follows from the requirement
smoothness of the confining superpotential at the origin
moduli space. In the absence of a tree-level superpote
and with only one gauge group, the global symmetr
and holomorphy are sufficient to completely determine
form of any nonperturbatively generated superpoten
[12]. For a theory with gauge groupG and matter fields
fi this superpotential is

W ~

√Y
i

f
mi

i

!
2yf

P
j

mj2msGdg
, (2)

where msGd is the Dynkin index [we normalize the
index of the fundamental representation to 1] of t
adjoint representation ofG, and mi are the indices of
the representations of thefi. Note that there may be
several (or zero) possible contractions of gauge indic
thus the superpotential can be a sum of several ter
We require the coefficient of this superpotential to
nonvanishing, then holomorphy at the origin implie
that the exponents of all fieldsfi are positive integers
Therefore,

P
j mj 2 msGd ­ 1 or 2, and for SU and Sp

theories anomaly cancellation further constrainsX
j

mj 2 msGd ­ 2 . (3)

This formula constitutes a necessary condition for
confinement; it enables us to rule out most theor
immediately. For example, for SQCD we find th
the only candidate theory is the theory withF ­ N 1

1. [Other solutions to Eq. (3) exist if allmi have a
common divisord, then for

P
j mj 2 msGd ­ d or 2d

the superpotential Eq. (3) may be regular. We will arg
at the end of this Letter that these solutions generica
do not yield s-confining theories. Another possibility
that the coefficient of the superpotential above vanish
We will consider this special case in our discussions
the end as well.] Unfortunately, Eq. (3) is not a sufficie
condition. An example for a theory which satisfies Eq. (
but does not s-confine is SUsNd with an adjoint superfield
and one flavor. This theory is easily seen to be in
Abelian Coulomb phase for generic VEVs of the adjoi
scalars and vanishing VEVs for the fundamentals.
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We could now simply examine all theories that satisf
Eq. (3) by finding all independent gauge invariants an
checking if this ansatz for the confining spectrum match
the anomalies. Apart from being very cumbersome, th
method is also not very useful to demonstrate that a giv
theory satisfying Eq. (3) is not s-confining.

A better strategy relies on our second observation. A
s-confining theory with a smooth description in terms o
gauge invariants at the origin must also be s-confinin
everywhere on its moduli space. This is because t
confining superpotential at the origin which is a simpl
polynomial in the fields is analytical everywhere, an
no additional massless states are present anywhere
the moduli space. Therefore, the theory restricted to
particular flat direction must have a smooth description
well. This observation has two very useful applications.

First, if we have a theory that s-confines and we kno
its confined spectrum and superpotential, we can eas
find new s-confining theories by going to different point
on moduli space. In the ultraviolet description, the gaug
group is broken to a subgroup of the original group
some matter fields are eaten by the Higgs mechanis
and the remaining ones decompose under the unbrok
subgroup. The corresponding confined description is o
tained by simply finding the corresponding point on th
moduli space of the confined theory. The global symm
tries will be broken in the same way, and some fields ma
be massive and can be integrated out. This newly fou
confined theory is guaranteed to pass all the standard c
sistency checks because they are a subset of the con
tency checks for the original theory. For example, th
anomalies of the new s-confining theory are guaranteed
match: the unbroken global symmetries are a subgroup
original global symmetries, and the anomalies under th
subgroup are left unchanged—both in the infrared an
ultraviolet descriptions—because the fermions which o
tain masses give canceling contributions to the anomalie

Second, the above observation can be turned around
provide another necessary condition for s-confinement.
anywhere on the moduli space of a given theory we find
theory which is not s-confining or completely higgsed, w
know that the original theory cannot be s-confining eithe

Let us study some examples. Suppose we knew th
SUsNd with N 1 1 flavors for some largeN is s-
confining, then we could immediately conclude that th
theories withn , N also s-confine. We simply need to
give a VEV to some of the quark-antiquark pairs to brea
SUsNd to any SUsnd subgroup. The quarks with VEVs
are eaten, leavingn 1 1 flavors and some singlets. We
remove these singlets by adding “mirror” superfields wit
opposite global charges and giving them a mass. We no
identify the corresponding point on the moduli space o
the confined SUsNd theory. Some fields obtain masse
from the superpotential of Eq. (1) when we expand aroun
the new point in moduli space. After integrating the
massive fields and removing the fields corresponding
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the singlets in the ultraviolet theory via masses w
mirror partners, we obtain the correct confined descript
of SUsnd.

A nontrivial example of a theory which can be show
to not s-confine is SUs4d with three antisymmetric tensor
and two flavors. This theory satisfies Eq. (3) and
therefore a candidate for s-confinement. By giving
VEV to an antisymmetric tensor we can flow from th
l
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theory to Sps4d with two antisymmetric tensors and fou
fundamentals. VEVs for the other antisymmetric tens
let us flow further to SUs2d with eight fundamentals which
is known to be at an interacting fixed point in the infrare
We conclude that the SUs4d and Sps4d theories and all
theories that flow to them cannot be s-confining eith
This allows us to rule out the following chain of theorie
all of which are gauge anomaly free and satisfy Eq. (3
SUs7d ! SUs6d ! SUs5d ! SUs4d ! Sps4d

N 2 h 4 h N M h 3 h 2 M M h 2 h 3 M 2 h 2 h 2 M 4 h (4)
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Note that a VEV for one of the quark flavors o
the SUs4d theory lets us flow to an SUs3d theory with
four flavors which is s-confining. We must therefore b
careful, when we find a flow to an s-confining theory;
does not follow that the original theory is s-confining a
well. The flow is only a necessary condition. Howeve
we suspect that a theory with a single gauge group a
no tree-level superpotential is s-confining if it is found t
flow to s-confining theories in all directions of its modu
space. We do not know of any counterexamples.

Armed with formula in Eq. (3) and our observatio
on flows of s-confining theories, we were able to fin
all s-confining SU and Sp gauge theories with a sing
gauge group and no tree-level superpotential for arbitra
tensor representations. To achieve this, we first found
possible matter contents satisfying Eq. (3). We list a
these theories in Table I. We then studied the possi
flows of these theories and discarded all those w
flows to theories which do not s-confine. This proce
eliminated all except about a dozen theories for whi
we then explicitly determined the independent gau
invariants and matched anomalies to find the confini
spectra. These results are summarized in Table I.

Six of the ten theories which s-confine are new [13

SUsNd with M 1 M 1 3h 1 3h, SUs7d with 2M 1

6h, SUs6d with 2M 1 h 1 5h, SUs6d with N 1 4h 1

4h, SUs5d with 2M 1 2h 1 4h, and SUs5d with 3M 1

3h. For the theories which do not s-confine we indicate
the method by which we obtained this result: either b
noting that the theory has a branch with only unbrok
Us1d gauge groups, or else by flowing along a fla
direction to a theory with a smaller non-Abelian gaug
group which does not s-confine.

Detailed results on the new theories including th
confining spectra, superpotentials, various flows, a
consistency checks will be reported elsewhere [14]. He
we just point out a few salient features.

Most of the new s-confining theories contain vectorlik
matter. Perturbing these theories by adding mass te
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for some of the vectorlike matter, we easily obtain e
act results on the theories with the matter integrated o
Among the theories that we find in this way are new th
ories which confine with chiral symmetry breaking, th
ories with runaway vacua, and theories which confi
without chiral symmetry breaking and vanishing supe
potentials. Since many of the new theories presented h
are chiral, they can be used to find models of dynam
cal supersymmetry breaking along the lines of Refs. [1
Examples for such supersymmetry breaking theories w
also be included in a detailed paper [14]. Our s-confini
theories might be used for building extensions of the st
dard model with composite quarks and leptons [16].

Finally, we comment on possible exceptions and gen
alizations of our arguments. A possible exception to o
condition in Eq. (3) arises, when allmi andmsGd have a
common divisor. Then the superpotential Eq. (2) can
holomorphic even when

P
j mj 2 msGd fi 2. However,

whereas Eq. (3) is preserved under most flows, the pr
erty that allm’s have a common divisor is not. Therefore
such theories flow to theories which are not s-confinin
and by our second necessary condition the original the
is not s-confining either.

Another possibility is that the confining superpotenti
vanishes, and the confined degrees of freedom are fre
the infrared. This can happen only if there are no classi
constraints among the basic gauge invariant opera
which satisfy the ’t Hooft anomaly matching condition
otherwise the quantum solution would not have the corr
classical limit. Examples of theories which are believ
to confine in this way can be found in the literatu
[7,11,14].

Generalizations to SOsNd groups are not completely
straightforward because in the case of SOsNd theories
“exotic composites” containing the chiral superfieldWa

might appear in the infrared spectrum and superpoten
thus modifying our argument and result of Eq. (3).

Generalizations to theories with more than one gau
group or tree level superpotentials are more difficu
The additional interactions break some of the glob
symmetries which are now not sufficient to complete
801
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TABLE I. All SU and Sp theories satisfying
P

j mj 2
msGd ­ 2. Note that this list is finite because the indices o
higher index tensor representations grow very rapidly with th
size of the gauge group. We list the gauge group and t
field content of the theories in the first column. In the secon
column, we indicate which theories are s-confining. For th
remaining ones we give the flows to nonconfining theories
indicate that there is a Coulomb branch on the moduli space.

determine the functional form of the confining superpo
tential. Another complication is that in these theorie
the flat directions of the quantum theory are sometim
difficult to identify. Since our second argument applie
only to flows in directions which are on the quantum
moduli space, incorrect conclusions would be obtaine
802
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from flows along classical flat directions which are not
flat in the quantum theory.

In summary, we have discussed general criteria fo
s-confinement and used them to find all s-confining
theories with SUsNd or Sps2Nd gauge groups.
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