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The quark-gluon to hadron transition affects the evolution of cosmological perturbations. I
phase transition is first order, the sound speed vanishes during the transition, and density pertur
fall freely. This distorts the primordial Harrison-Zel’dovich spectrum of density fluctuations below
Hubble scale at the transition. Peaks are produced, which grow, at most, linearly in wave nu
both for the hadron-photon-lepton fluid and for cold dark matter. For cold dark matter whic
kinetically decoupled well before the QCD transition, clumps of masses below10210MØ are produced.
[S0031-9007(96)02289-2]
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QCD makes a transition from a quark-gluon plasma
high temperatures to a hadron gas at low temperatur
Lattice QCD simulations give a transition temperatur
T? , 150 MeV and indicate a first-order phase transitio
for the physical values of theu, d, s quark masses [1]. The
relevance of the QCD transition for cosmology, especial
for big-bang nucleosynthesis [2], has been discussed
fore, but the focus was on the effects of bubble form
tion [3,4]. In this paper we look at matter averaged ove
scalesl much larger than the bubble separation. We sho
that for a first-order phase transition the sound speedcs ­
s≠py≠rd1y2

s drops to zero for these wavelengths when th
transition temperatureT? is reached, stays zero for the en
tire time until the phase transition is completed, and afte
wards suddenly rises back tocs ø cy

p
3. In contrast, the

pressure stays positive and varies continuously, althou
it goes below the radiation fluid valuep ­ ry3. Since
cs is zero during the transition, there are no pressure p
turbations, no pressure gradients, and no restoring forc
Preexisting cosmological perturbations, generated by
flation [5] with a Harrison-Zel’dovich spectrum [6], go
into free fall. The superhorizon modes (at the time o
the transition) remain unaffected. The subhorizon mod
develop peaks indryr which grow with wave number
k . k?, wherek

phys
? , Hubble rateH at the end of the

QCD transition. The details of this growth depend on th
QCD equation of state nearT?. We analyze two cases:
First, we use the bag model [7], which gives a simp
parametrization and allows a simple discussion of the e
fects. It gives a maximal latent heat, and produces peaks
dryr which grow linearly ink. Next, we use lattice QCD
results [1,8,9], which indicate a smaller latent heat, and w
fit syT 3 ­ C1 1 C2s1 2 T?yT d1y3 aboveT?. This pro-
duces peaks indryr which grow ask3y4.

The sound speed (for wavelengthl much larger than the
bubble separation),cs ­ s≠py≠rd1y2

s , must be zero during
a first-order phase transition of a fluid with negligible
chemical potential (i.e., no relevant conserved quantu
number), since the fluid must obey
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r 1 p ­ T
dp
dT

, (1)

according to the second law of thermodynamics. Becau
the energy densityr is discontinuous in temperature
at T? for a first-order phase transition, the pressurep
must be continuous with a discontinuous slope. As th
universe expands at fixed temperatureT? during the phase
transition,r as a function of time slowly decreases from
r1sT?d to r2sT?d, p stays constant atpsT?d, and therefore
cs is zero during the whole time of the phase transition.

The interaction rates in the QCD-photon-lepton fluid
are much larger than the Hubble rate,GyH ¿ 1, there-
fore we are very close to thermal and chemical equilib
rium, the QCD transition is very close to a reversible
thermodynamic transformation, and the entropy in a co
moving volume is approximately conserved. Estimate
show that supercooling, hence entropy production, is ne
ligible sT? 2 TsupercoolingdyT? , 1023 [10]. Bubble for-
mation during the QCD phase transition is unimportant fo
our analysis, estimates give a bubble separation,b , 1 cm
[4], while the Hubble radius at the QCD transition is
RH , 10 km, therefore,byRH , 1026. We shall analyze
perturbations withl ¿ ,b.

In the bag model [7] it is assumed that forT . T? the
quark-gluon plasma (QGP) obeys

pQGPsT d ­ pideal
QGP sT d 2 B , (2)

where pideal
QGP sT d ­ sp2y90dgp

QGPT4, gp is the effective
number of relativistic helicity states, andB is the bag
constant. We includeu, d quarks and gluons in the quark-
gluon plasma,g, e, m, and three neutrinos in the photon-
lepton fluid sgLd, and forT , T? we have a hadron gas
(HG) of pions. We treat the pions as massless and ide
because their contribution is small anyway,gp

HGygp
QGP ­

3y37 and gp
HGygp

gL ­ 3y14.25. r follows from Eq. (2)
via the second law of thermodynamics, Eq. (1), ands from
s ­ dpydT . This gives, for the quark-gluon plasma,

rQGPsT d ­ rideal
QGP sT d 1 B , (3)
© 1997 The American Physical Society 791
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sQGP sT d ­ sideal
QGP sTd . (4)

The bag constant is determined by the critical temperatu
T? via pQGPsT?d ­ pHGsT?d.

The latent heat,L ; T?Ds, should be compared with
the difference in entropy between an ideal HG and an ide
QGP. This defines the ratioRL ; LysT?Dsdideal. The bag
model givesRL ­ 1. Lattice QCD indicates a first-order
transition both for quenched QCD (no dynamical quark
[8] and for QCD with three quarks and physical masse
[1]. For the latter case neither the value of the late
heat nor the equation of state are available. Quench
QCD givesLyT 4

? ø 1.4 [9], which impliesRL ø 0.2 since
gp

gluons ­ 16. We fit the shape of the QCD entropy to
quenched QCD data [8] forT . T? by

sfit
QGP

sideal
QGP

­ 1 1

∑µ
1 2

T?

T

∂g

2 1

∏
Dgp

gp
QGP

s1 2 RLd , (5)

where Dgp ; gp
QGP 2 gp

HG and RL ­ 0.2. A good fit
for our purpose is obtained forg [ s0.3, 0.4d. We fix
g ­ 1y3.

The growth of the scale factor during thec2
s ­ 0 part of

the QCD transition,a1ya2, follows from the conservation
of entropy in a comoving volume,

a1

a2

­

∑
1 1 RL

Dgp

gp
after

∏1y3

ø
Ω

1.4 RL ­ 1
1.1 RL ­ 0.2 , (6)

taking into account photons, leptons, and hadrons ingp
after .

Figure 1 shows the evolution of the sound speed with t
scale factora. AboveT?, the sound speed in the bag mode
has the value for an ultrarelativistic ideal gas,cs ­ 1y

p
3,

because the bag constant drops out when formingdpydT
anddrydT in Eqs. (2) and (3). The sound speed vanish
for about a third of a Hubble time forRL ­ 1 and for a
tenth of a Hubble time ifRL ­ 0.2. The pressure does not
drop all the way to zero, it drops topgLsT?d 1 pHGsT?d.

The evolution of linear cosmological perturbation
through the QCD transition is analyzed in the longitudina
sector (density perturbations) for perfect fluids. W
choose a slicingS of space-time with unperturbed mean

FIG. 1. The sound speedc2
s ­ s≠py≠rds during the QCD

transition for the bag model (dotted line) and for the lattic
QCD fit (full line).
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extrinsic curvature,dftr KijsSdg ­ 0. This implies that
our fundamental observers, which are defined to
at rest on the sliceS, usobsd ­ nsSd, have relative
velocities, which in the mean over all directions follow a
unperturbed Hubble flow. If the coordinate choice (gau
choice) is such that the time coordinatet is constant on the
slicesS, the gauge is fixed to be the uniform expansio
(Hubble) gauge [11]. As fundamental evolution equatio
for each fluid we have=mTmn ­ 0, i.e., the continuity
equation and (in the longitudinal sector) the 3-divergen
of the Euler equation of general relativity,

≠te ­ 23Hse 1 pd 2 Dc 2 3Hs r 1 pda , (7)

≠tc ­ 23Hc 2 p 2 s r 1 pda , (8)

where e ; dr, p ; dp, r ; r0, p ; p0, $=c ; $S ­
momentum density (Poynting vector),a ­ lapse func-
tion. The system of dynamical equations is closed b
Einstein’sR0̂0̂ equation, the general relativistic version o
Poisson’s equation,

sD 1 3 ÙHda ­ 4pGse 1 3pd , (9)

together with the equation of state. Equations (7)–(
define our general relativistic Cauchy problem in linea
perturbation theory in the longitudinal sector with initia
data se, cd freely chosen onSi. These three equations
are the Jeans equations extended to general relativity
the longitudinal sector. In all three of them the mea
over all directions is taken. This fact matches our slicin
condition that in the mean over all directions the relativ
velocity of our fundamental observers is unperturbe
Therefore the uniform expansion (Hubble) gauge cou
be called the “longitudinal Jeans gauge.”

It is convenient to work with the dimensionless variable
d ; eyr (density contrast),ĉ ; kphyscyr (,peculiar
velocity), and with conformal times d0 ; ≠h ; a≠t. In
our numerical analysis we have used the exact gene
relativistic equations, but it is instructive to look at th
subhorizon approximation,lphys ø H21, where one can
drop ÙH in the general relativistic Poisson equation (9
and the time dilation term (last term) in the continuit
equation (7). Furthermore, if we take the limit in which
the QCD transition time is much shorter than the Hubb
time, st1 2 t2d ø H21, and if we integrate the equations
during a correspondingly short time interval, we can dro
the remaining terms proportional toH, and Eqs. (7)–(9)
simplify to

d0 ­ kĉ ,

ĉ 0 ­ 2c2
s kd 2 s1 1 wdka , (10)µ

k
aH

∂2

a ­ 2
3
2

s1 1 3c2
s dd ,

where w ; pyr. With these approximations, the evo
lution of a modek of cosmological perturbations can be
solved analytically.
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The origin of large peaks indryr for k ¿ k?, where
k

phys
? , H at the transition, is easily understood in the ba

model. For the dynamics of the radiation fluid (QCD, ph
tons, leptons), one can neglect cold dark matter (CD
sincerCDMyrRAD ­ ayaequality ø 1028. The radiation
fluid in each mode makes standing acoustic oscillatio
before and after the QCD transition. Gravity is negligib
and the amplitudes ofd and

p
3 ĉ are equal . The solu-

tion before the QCD transition isdshd ­ Ain cosfvsh 2

h2d 2 w2g andĉ ­ d0yk, wherev ­ kcs ­ ky
p

3 and
w2 is the phase of the acoustic oscillation ath2, i.e., at
the beginning of the QCD transition. During the QCD
transition the sound speed is zero, there are no resto
forces from pressure gradients, and the radiation fluid go
into free fall. But, during this free fall, gravity is again
negligible for the radiation fluid, ifst1 2 t2d ø H21.
This is inertial motion in the sense of Newton. The p
culiar velocity is constant in time,̂cshd ­ ĉ2, and the
density contrast grows linearly in time with a slopek,
dshd ­ d2 1 ksh 2 h2dĉ2. Thus, the final amplitude
A1 grows linearly ink modulated by sinsw2d, which pro-
duces peaks in the spectrum. The height of these peak

A1

Ain

Ç
peaks

­
sh1 2 h2dk

p
3

;
k
k1

, (11)

for k ¿ k1. The usual free fall growing mode at subhor
zon scales behaves totally different:ĉyd , Hykphys ø 1
andd1yd2 ­ sh1yh2d2 ø 2. In our case the initial pe-
culiar velocityĉ from the acoustic oscillations of the radia
tion fluid is enormously larger than in the usual free fa
growing mode fork ¿ k?. Cosmic background explorer
(COBE) satellite observations [12] normalize the su
horizon spectrum of density perturbations assdryrdl ,
1024, if there is no tilt in the spectrum. Hence in the ba
model radiation-fluid modes withkyk1 * 104 go nonlin-
ear by the end of the QCD transition.

Our numerical results for the spectrum of density pertu
bations from the lattice QCD fit Eq. (5) are given in Fig. 2
We show the enhancement of the amplitudeARAD ;
sd2

RAD 1 3ĉ
2
RADd1y2 of the acoustic oscillations of the

radiation fluid after the transition compared to the am
plitude without transition. For CDM we show the am
plitude ACDM ; jdCDMj at T?y10 compared toARAD
without transition. In both cases we obtain peaks ov
the Harrison-Zel’dovich spectrum of primordial adiabat
density fluctuations. The modesk (horizontal axis) are
labeled by the CDM mass contained in a sphere of
dius ly2 ­ pyk. The positions of the first few peaks
and dips are the same for the lattice QCD fit and for t
bag model. In both cases the beginning of the peak-
structure is atk1, see Eq. (11), which is,k?. k1 cor-
responds toMCDM

1 ø 9 3 1029MØ. The peaks grow as
skyk2d3y4 for k ¿ k2, see Eq. (13). The radiation energ
insidel1y2 is ,1MØ, but it gets redshifted asMRADsad ,
saequalityyadMCDM. The time evolution of a subhorizon
g
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FIG. 2. The modifications of the CDM density contrast
ACDM ; jdCDMj sT?y10d and the radiation fluid amplitude
ARAD ; sd2

RAD 1 3ĉ
2
RADd1y2 due to the QCD transition (lat-

tice QCD fit). Both quantities are normalized to the pure
Harrison-Zel’dovich radiation amplitude. On the horizontal
axis the wave numberk is represented by the CDM mass con-
tained in a sphere of radiuspyk.

mode is shown in Fig. 3. Duringcs ­ 0, dRAD grows
linearly as in the bag model. AboveT? the evolution dif-
fers becausecs , 1y

p
3.

The slower rise ink for the lattice QCD fit can be under-
stood by a WKB analysis. With the same approximation
as above, Eqs. (10) reduce to

d00 1 c2
s k2d ­ 0 . (12)

Under the WKB condition,jdcsydhjycs ø v ­ csk, the
solution readsd ­ Ains3c2

s d21y4 cossk
R

csdhd. Note that
the peculiar velocitys,ĉd decreases withc1y2

s , which can
be seen in Fig. 3. Just aboveT? the sound speed may
be approximated bycs ~ sh2 2 hd. This gives the solu-
tions of Eq. (12) asd ~ z1y4J61y4szd with z ; csksh2 2

hdy2. The normalization for largek is provided by the

FIG. 3. The evolution in conformal timeh of the density
contrast sdRADd and the peculiar velocitys,ĉRADd of the
radiation fluid for the highest peak of Fig. 2 in uniform
expansion (Hubble) gauge. During the QCD transition in
the lattice QCD fit—marked by the two vertical lines—
the velocity stays approximately constant and the densit
contrast grows linearly. The amplitude in the WKB regime
is normalized to 1 long before the transition.
793
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WKB solution. At h2, one matches the linearly growing
solution in the regime of vanishing sound speed (h2 ,

h , h1). The final amplification is

A1

Ain

Ç
peaks

­

p
p

2Gs 5
4 d

Ç
c0

ssh2d
3k

Ç1y4

sh1 2 h2dk

;
µ

k
k2

∂3y4

, (13)

for k ¿ k2. k2 depends on the duration of thecs ­ 0
regime and thus depends onRL. For RL ­ 0.2 it corre-
sponds to a massM2 ­ 2 3 10210MØ, which is indicated
in Fig. 2 together with the asymptotic envelopeskyk2d3y4.
Without tilt, COBE normalized modes withkyk2 * 105

go nonlinear by the end of the QCD transition. The pe
turbations in the radiation fluid will get wiped out by col
lisional damping from neutrinos at temperatures belowT?

but above1 MeV.
For cold dark matter we consider any nonrelativist

matter which decouples kinetically well before the QC
transition. The neutralino, most likely the lightest supe
symmetric particle [13], is weakly interacting. Thus it de
couples kinetically at aboutT , 1 MeV and is excluded
to make our CDM. It would belong to the radiation fluid
at T?. Candidates for our CDM are axions or primordia
black holes.

CDM falls into the gravity wells generated during th
transition by the radiation fluid. In the bag model thi
leads to peaks in CDM which grow linearly fork ¿ k1,
i.e., dCDM

1 2 dCDM
2 ­ fHst1 2 t2dy2g2dRAD

1 . After the
transition, dCDM grows logarithmically. For our lattice
QCD fit, the CDM peaks are shown in Fig. 2. An analyti
analysis of the CDM evolution will be presented in
longer paper.

The implications of these peaks above the Harriso
Zel’dovich spectrum generated in a standard scenario w
a first-order QCD transition are the following: (1) Fo
CDM which is kinetically decoupled well before the QCD
transition, clumps withMCDM & 10210MØ are produced.
They go nonlinear after equality and virialize by violen
gravitational relaxation. Assuming a COBE normalize
spectrum, with tiltn 2 1 ­ 0s0.2d and3s peaks, the size
of 10210MØ clumps isø14 AU s1 AUd. (2) Big-bang
nucleosynthesis will not be affected by nonlinear acous
oscillations of the radiation fluid forkyk1 * 104 (bag
model) resp.106 (lattice QCD fit), because they are wipe
out by collisional damping from neutrinos before big-ban
nucleosynthesis. (3) Primordial black hole formation
unlikely, because the nonlinear acoustic oscillations in t
radiation fluid are generated far below the Hubble scale
the QCD transition. This is in contrast to Ref. [14].

Note added.—M. Nagasawa and J. Yokoyama hav
claimed in astro-ph/9612014 that the sound speed d
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not vanish during a first-order QCD transition. Their
comparison of QCD with the water-vapor system is no
appropriate, because, in the latter, the particle number
conserved.
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