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Very Simple Proof of the Causal Propagation of Gravity in Vacuum
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In this Letter we present a new property of the Bel-Robinson tensor which allows us to give a very
simple proof of the causal propagation of gravity in vacuum and that, moreover, provides an invariant
characterization for Petrov typeN space-times. [S0031-9007(96)02250-8]
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Causal propagation of gravity in vacuum follows from
the Cauchy problem for the Einstein field equations
empty space-time (see [1], and references therein). The
fore, this result can be viewed as a consequence of
hyperbolic form of vacuum Einstein’s equations. Here w
present a new and very simple proof which does not ma
explicit use of this fact. It is just a consequence of th
geometric properties of vacuum space-times. Particular
it follows from what we have called the “dominan
superenergy property” of the Bel-Robinson tensor. Th
property gives also a new characterization for Petrov ty
N space-times which makes a clear difference with t
other two usually considered radiative types (II and II
(see, for instance, [2,3]).

To begin with, let us remember some properties of t
Bel-Robinson tensor for any space-time [4] (see also [5
whose definition is

T ablm ; CarlsCb m
r s 1 CparlsCpb m

r s ,

where Cablm is the Weyl tensor and “*” is the usual
dual operation. The Bel-Robinson tensor is complete
symmetric and traceless:

T ablm ­ T sablmd, T alm
a ­ 0 ,

and it is covariantly conserved in empty space-time (wi
or without a cosmological constantL), that is to say,

Rab ­ Lgab �) =aT ablm ­ 0 , (1)

whereRab is the Ricci tensor. The “superenergy” densit
relative to any observer described by the timelike un
vector field $u, umum ­ 21, is defined by

W s $ud ; T ablmuaubulum $ 0 , (2)

so that it is non-negative and satisfies the followin
fundamental property:

' $u, W s $ud ­ 0 () Cablm ­ 0 () Tablm ­ 0 .
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Let us now define, for any timelike unit vector fieldû, the
following vector:

T asûd ; T ablmubulum ,

which is analogous to the typical local energy-flow vecto
Tabub constructed with the usual energy-momentu
tensorTab . By introducing the well-known electric and
magnetic parts of the Weyl tensor [6,7]

Eal ; Cablmubum, Hal ; 2Cp
ablmubum,

which are symmetric, traceless, and spatial (that is to s
orthogonal to$u), T as $ud andW s $ud can be expressed as

T as $ud ­ 2W s $udua 1 2hablmEbsHs
l um ,

W s $ud ­ ErsErs 1 HrsHrs .
(3)

Then we have the following result.
Proposition 1.—T as $ud is nonspacelike (i.e., T aTa #

0), for all $u, umum ­ 21.
The proof is as follows. Given any two spatial ten

sors Aab and Bab , we will denote byAB their matrix
product; that is to say,AB is the spatial tensor with com-
ponentssABdab ; AasBs

b . We also define the following
positive-definiteinner productA ? B ; AabBab . A di-
rect calculation gives

T aTa ­ 2 W2 1 4sEHd ? sEH 2 HEd

­ 2 W2 2 2sEH 1 HEd ? sEH 1 HEd

1 8sEEd ? sHHd .

Then, by using the Cauchy-Schwarz inequali
sA ? Bd2 # sA ? Ad sB ? Bd applied to A ­ EE and
B ­ HH we get
T aTa # 2 W2 2 2sEH 1 HEd ? sEH 1 HEd 1 8fsEEd ? sEEdg1y2fsHHd ? sHHdg1y2

­ 2 sE ? E 1 H ? Hd2 2 2sEH 1 HEd ? sEH 1 HEd 1 8fsEEd ? sEEdg1y2fsHHd ? sHHdg1y2,
i
where we have used (3) to obtain the second express
Now, for any spatial traceless symmetric tensorAab , it
can be shown that

sA ? Ad2 ­ 2fsAAd ? sAAdg , (4)
on.and, therefore, we finally obtain
T aTa # 2 sE ? E 2 H ? Hd2

2 2sEH 1 HEd ? sEH 1 HEd # 0 ,

which proves the proposition.
© 1997 The American Physical Society 783
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This property together with (2) constitute what we ca
the dominant superenergy property for the Bel-Robins
tensor, in analogy with the dominant energy condition f
the energy-momentum tensor (see [8]). An interesti
corollary is the following.

Corollary.—' $u, umum ­ 21, such thatT aTa ­ 0
with T a fi 0 if and only if the space-time is of Petrov
type N. On the other hand,' $u, umum ­ 21, such that
T a ­ 0 if and only if the Petrov type is O.

The Petrov type isO if and only if (iff) T ablm ­ 0,
so that this is equivalent toT a ­ 0. If the Petrov type is
N then, as is well known, the Bel-Robinson tensor tak
the very simple formTablm ­ lalblllm, wherelm points
along the unique multiple null direction of the Weyl tenso
(see, for instance, [2,3,5,9]), from which it is obviou
thatT as $ud is always a nonzero null vector. Conversely
wheneverT aTa ­ 0, and taking into account that the
equality in the Cauchy-Schwarz inequality holds iffA ­
lB, we can conclude thatEE 2 HH ­ 0 and EH 1

HE ­ 0. But this is equivalent to havingsE 1 iHd sE 1

iHd ­ 0, which is one of the characterizations for Petro
typeN (or typeO in the caseE ­ H ­ 0). (For this and
other simple matters regarding the Petrov classificatio
see, for instance, [2,6].)

The previous result is therefore an intrinsic characte
zation for Petrov typeN space-times. Moreover, the anal
ogy with the electromagnetic field [9] (where the loca
energy-flow vectorTabub is a null vector iff pure elec-
tromagnetic radiation exists) provides a possible criteri
for the definition of intrinsic states of gravitational radia
tion. This criterion is in accordance with that of Lichnero
wicz (see [2,3,9]). There are, however, other similar b
different criteria in the literature, see [2,3], and it is no
clear to us as yet which is the most appropriate one.
any case, we believe that the above proposition may ser
at least, to refine any possible characterization of intrins
gravitational radiation by distinguishing between the typ
N and the other two usually considered radiative Petr
types (II and III) [2,3].

Let us now proof another result which will be neede
later. To that end, let us define, for any unit timelik
vector $u, the spatial symmetric tensor

T abs $ud ; T srlmPa
s Pb

r ulum ,

wherePa
b ­ d

a
b 1 uaub is the projector orthogonal to$u.

Proposition 2.—For all unit$u we haveT ? T # W2.
In order to prove the proposition let us comput

explicitly the tensorT abs $ud

T abs $ud ­ W s $udPab 2 2sEa
s Ebs 1 Ha

s Hbsd ,

so that we have

T abTab ­ 2W2 1 4fsEEd ? sEEd 1 sHHd ? sHHd

1 2sEEd ? sHHdg ,
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from where, using again (4) and the Cauchy-Schwa
inequality, we can easily getT abTab # W2, as we
wanted to show.

From propositions 1 and 2, we can deduce that
any orthonormal tetradh $u, $eij si ­ 1, 2, 3d (with $u as the
zeroth vector in the tetrad),

T 0000 $ jT ab00j .

The above propositions and corollary hold obviously als
in the case that$u is a timelike but non-necessarily uni
vector.

The above results allow us to prove in a very simp
way the causal propagation of gravity in vacuum. Th
proof is analogous to that of the “conservation theorem
for the matter fields, which can be found in [8]. From
now on we will consider only empty space-time, wit
or without a cosmological constantL, so that Rab ­
Lgab . Let us take any compact region of space-tim
K with boundary≠K (see Fig. 1) in which the stable
causality condition (see [8]) holds. Then,K can be
foliated by spacelike hypersurfacesSt ; ht ­ constj,
where t is a time function whose gradientv ­ dt is
timelike everywhere onK . The boundary≠K is divided
into three parts:s≠K d1 and s≠Kd2 are the past and
future nontimelike boundaries, respectively, ands≠K d3

is the remaining part, which may be empty (see Fig. 1
Suppose now thatCablm ­ 0 on s≠K d1 ands≠Kd3, and
define the following “superenergy integral” (which is a
non-negative function oft)

wstd ;
Z

J2sSt d>K
W s $ydh

­
Z tµZ

St0 >K
T as $yd dsajSt0

∂
dt0 $ 0 ,

FIG. 1. Compact regionK with boundary≠K . As usual,
light cones are at645± and the future direction points upwards
Then, the boundary≠K has three different parts: the pas
and future nontimelike parts, which are marked ass≠K d1 and
s≠K d2, respectively, and the remaining part denoted bys≠K d3.
K is foliated by spacelike hypersurfacesSt ; ht ­ constj,
where t is a time function. The shadowed zone correspon
to the causal past of the hypersurfaceSt in K , that is to say,
to J2sStd > K .
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where as usualJ2sStd denotes the causal past ofSt,
h is the canonical volume 4-form anddsajSt0

is the
hypersurface element ofSt0 , which points along$y. Then,
by using the Gauss theorem, we arrive at

dw
dt

­
Z

St>K
T as $yd dsajSt

­
Z

J2sSt d>K
=aT as $ydh 2

Z
J2sStd>s≠Kd2

3 T as $yd dsa js≠Kd2 .

The dominant superenergy property tells us th
T as $yd dsajs≠Kd2 is non-negative and, on the other hand
proposition 2 implies the existence of some consta
M . 0 such thatT ablms=a=btd=lt=mt # sMy3dW s $yd
on the compactK (where the components of=at and
=a=bt are bounded). Thus, by taking into account (1
we have

0 #
dw
dt

# 3
Z

J2sStd>K
T ablms=a=btd

3 =lt=mth # Mw .

From this, and given thatwstd vanishes for early enough
values oft, it follows thatwstd will vanish for all t, which
implies thatW s $yd ­ 0 () Tablm ­ 0 (or, equivalently
Cablm ­ 0) on K . Thus, analogously to the case o
matter fields, we have the following:

The conservation theorem.—In empty space-time (w
a possible cosmological constant), if the Weyl tensor (o
equivalently, the Bel-Robinson tensor) is zero ons≠K d3

and on the initial hypersurfaces≠Kd1, then it is zero
everywhere onK .

From this theorem it can be deduced that, in vacuum
if the Weyl tensor is zero on a closed achronal setS then
it is zero on its future Cauchy developmentD 1sS d [8]
(see Fig. 2). This follows because intfD 1sS dg is globally
hyperbolic (and thus causally stable) for achronalS , and
then we can take its closureD 1sS d as the compactK to
apply the above theorem (see Fig. 2). It is obvious th
this result holds equally for the past Cauchy developme
D 2sS d of S . This result is then interpreted as sayin
that gravity propagates causally in vacuum, in the sen
that it cannot travel faster than light.

Some important remarks are in order. First, we wish
stress that in the case under considerationsRmn ­ Lgmnd,
the full Riemann tensor can be written as

Rablm ­ Cablm 1
L

3
sgalgbm 2 gamgbld .

Thus, the cosmological constant gives only a kind o
“background” constant curvature which does not prop
gate at all. Therefore, we have shown the causal propa
tion of the part of the curvature tensor thatcan propagate
in vacuum.

Second, it is interesting to notice that, contrary t
what happened in the case of matter fields where t
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FIG. 2. The particular case in which the compact regionK of
Fig. 1 is the closure of the future Cauchy developmentD 1sS d
of any closed achronal setS . As in Fig. 1, light cones are at
645±. As we see, nows≠K d1 is the closed achronal setS
itself, s≠K d2 is the future Cauchy horizonH1sS d of S (which
is null), ands≠K d3 is empty.

dominant energy conditionmust be assumedin order to
assure the causal propagation of matter [8], in our case
the dominant superenergy property does not have to b
imposed: It is just a property which the gravitational field
has. Of course, this might depend on the particular theory
describing the gravitational field (we have used Einstein’s
general relativity), but in any of these possible theories the
result would hold if there is a superenergy tensor with the
properties of the Bel-Robinson tensor. This will be true
for most theories describing gravity in a geometrical way
and with appropriate vacuum field equations.

Finally, it is curious that the proof we have presented
for the causal propagation of gravity in vacuum is purely
geometric and does not seem to be a consequence of th
hyperbolic character of the vacuum Einstein field equa-
tions (even though we have made use of them). Further
more, our result reinforces the fact that the Bel-Robinson
tensor is a very useful tool in proving some global proper-
ties of space-times, as has been already manifested in th
proof of the uniform asymptotic behavior of solutions to
linear field equations in Minkowski space-time [10].
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