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Very Simple Proof of the Causal Propagation of Gravity in Vacuum
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In this Letter we present a new property of the Bel-Robinson tensor which allows us to give a very
simple proof of the causal propagation of gravity in vacuum and that, moreover, provides an invariant
characterization for Petrov typ€ space-times. [S0031-9007(96)02250-8]

PACS numbers: 04.20.Cv, 04.20.Gz

Causal propagation of gravity in vacuum follows from Let us now define, for any timelike unit vector figld the
the Cauchy problem for the Einstein field equations infollowing vector:
empty space-time (see [1], and references therein). There- (o _ afi
fore, this result can be viewed as a consequence of the T@) =T Puguruy

hyperb:)hc form 0‘;"6‘0“““‘ Ellnsteln ? eageﬁgns. Hetre Wlfwhich is analogous to the typical local energy-flow vector
present a new and very simpie proof which does not ma ?‘aﬁuﬂ constructed with the usual energy-momentum

explicit use of thi_s fact. Itis just a consequence of the'[ensorTaB. By introducing the well-known electric and
geometric properties of vacuum space-times. Particularly

it follows from what we have called the “dominant magnetic parts of the Weyl tensor [6,7]

superenergy property” of the Bel-Robinson tensor. This E, , = CQBA,Luﬁu“, H,, = _CZMMMBMM’
property gives also a new characterization for Petrov type

N space-times which makes a clear difference with thavhich are symmetric, traceless, and spatial (that is to say,
other two usually considered radiative types (Il and Il)orthogonal tai), 7 *(i) and W (ii) can be expressed as

(see, for instance, [2,3]). QPN (P aBip o
To begin with, let us remember some properties of the Te@) = —Wu* + 27 EpoHyuu,

Bel-Robinson tensor for any space-time [4] (see also [5]), W(u) = E,,E*’ + H,,H"’. ®)
whose definition s . ; Then we have the following result
Taﬁm_z CHrTChly + CMPMC*[;_ o> Proposition 1—7 () is nonspécelikei(e., TT, <
where Cap,, is the Weyl tensor and “*" is the usual ) for all 7, uyut = —1,
dual operation. The Bel-Robinson tensor is completely " The proof is as follows. Given any two spatial ten-
symmetric and traceless: sorsA.p and B,g, we will denote byAB their matrix
TP = q@Brw) T2 =0, product; that is to saydB is the spatial tensor with com-
and it is covariantly conserved in empty space-time (withPOnentsAB)as = A.,Bj. We also define the following
or without a cosmological constant), that is to say, positive-definiteinner productd - B = A.gB*F. A di-
Rap = Agap = v, T B — ¢ 1) rect calculation gives
whereR,z is the Ricci tensor. The “superenergy” density 7 %T, = — W? + 4(EH) - (EH — HE)
relative to any observer described by the timelike unit
vector fieldz, zilﬂu“ = —1, is defined b))// == W'~ 2EH + HE) - (EH + HE)
W) = T *PMuuguyu, =0, (2) + 8(EE) - (HH).
so that it is non-negative and satisfies the followingThen, by using the Cauchy-Schwarz inequality
fundamental property: (A-B?=(A-A)(B-B) applied to A=EE and

Ja, W@ =0 Coprp =0 Topr, = 0. |B=HHweget

T*T, < — W? - 2(EH + HE) - (EH + HE) + 8[(EE) - (EE)]"*[(HH) - (HH)]"/?
= —(E-E+H-H)?—2EH + HE) - (EH + HE) + 8[(EE) - (EE)]"*[(HH) - (HH)]?,

. l . .
where we have used (3) to obtain the second expressioand, therefore, we finally obtain
Now, for any spatial traceless symmetric tengqys, it T*T,<—(E-E—H-H)}?

can be shown that
— 2(EH + HE) - (EH + HE) =0,

(A - A)? = 2[(AA) - (4A4)], (4)  which proves the proposition.
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This property together with (2) constitute what we callfrom where, using again (4) and the Cauchy-Schwarz
the dominant superenergy property for the Bel-Robinsornequality, we can easily gef *# 7,5z = W?, as we
tensor, in analogy with the dominant energy condition forwanted to show.
the energy-momentum tensor (see [8]). An interesting From propositions 1 and 2, we can deduce that in

corollary is the following. any orthonormal tetrag, ¢;} (i = 1,2,3) (with z as the
Corollary.—3 @, u,u* = —1, such thatT *7, = 0  zeroth vector in the tetrad),
with 7« # 0 if and only if the space-time is of Petrov
- o 0000 = |7 @B00)|
type N. On the other hand «, u,u* = —1, such that .

T« = 0 if and only if the Petrov type is O.
The Petrov type i) if and only if (iff) 7 @A+ = 0,

so that this is equivalent td © = 0. If the Petrov type is
N then, as is well known, the Bel-Robinson tensor take
the very simple fornﬂ’aBM = lalgl)l,, Wherel, points
along the unique multiple null direction of the Weyl tensor
(see, for instance, [2,3,5,9]), from which it is obvious
that 7 %(u) is always a nonzero null vector. Conversely,
wheneverT “T, = 0, and taking into account that the

equality in the Cauchy-Schwarz inequality holds Aff= ?\r W'thot”ta CO,[STOIOQ'CaI const?m, SO th?tR“ﬁ =t'
AB, we can conclude thaEE — HH = 0 and EH + 8ap. LEL US laKe any compact region ofr space-ime

HE = 0. But this is equivalent to havingg + iH) (E + I with boundaryd K (see Fig. 1) in which the stable

iH) = 0, which is one of the characterizations for Petrov?e?gstal(ijtybconditionl'k(se(; [8]) hc;ldség Lheﬂ(_ can be
typeN (or typeO in the caseZ = H = 0). (For this and oliated by spacelike hypersurfaces, = {r = cons,

: . = .. Where is a time function whose gradient = dt is
g(t:;erfosrlri‘r:]péltznngstt[ezrsqr)e garding the Petrov classificatio imelike everywhere oK. The boundary X is divided

The previous result is therefore an intrinsic characterii"© three parts(9X), and (4X), are the past and

zation for Petrov typ@/ space-times. Moreover, the anal- .fUt;Jhre nontimelike b?unﬂgrri]es, resbpectivetly, dmd]f:)? 1
ogy with the electromagnetic field [9] (where the Iocalg N remam'?ﬁarpar’ W_'% magljc()e emg(g:%ee '%‘ )-
energy-flow vectorT, gu? is a null vector iff pure elec- Uppose now apau = 00N ( 1 an 3, an

tromagnetic radiation exists) provides a possible criterior‘PIe}clne the_ foIIowmg superenergy integral” (which is a
for the definition of intrinsic states of gravitational radia- hon-negative function of)

tion. This criterion is in accordance with that of Lichnero- .

wicz (see [2,3,9]). There are, however, other similar but w(r) = j;_(z K W(w)n

different criteria in the literature, see [2,3], and it is not . !

clear to us as yet which is the most appropriate one. In = f <[ Ta(;,)dgabﬂ)d/ =0,

any case, we believe that the above proposition may serve, SaNK

at least, to refine any possible characterization of intrinsic
gravitational radiation by distinguishing between the type

The above propositions and corollary hold obviously also
in the case thak is a timelike but non-necessarily unit
Yector.

The above results allow us to prove in a very simple
way the causal propagation of gravity in vacuum. The
proof is analogous to that of the “conservation theorem”
for the matter fields, which can be found in [8]. From
now on we will consider only empty space-time, with

N and the other two usually considered radiative Petrov (] —— il o, ;-’ (8K,
types (Il and 111) [2,3]. sl 4 T
Let us now proof another result which will be needed / \ i
later. To that end, let us define, for any unit timelike P — S e g
vectori, the spatial symmetric tensor f = K T"‘ = ﬁ‘./
TB®m@) = T‘T”)‘”Pngu,\u#, Illf"'"xll ﬁ\\ \T'[?-] J'I

wherePg = 65 + u®ug is the projector orthogonal t. B Sgs “’“*"'->\ J-(E)NK
Proposition 2.—For all unit: we haveT - T = W2
(BK), =

In order to prove the proposition let us compute
explicitly the tensorT *# (i)

FIG. 1. Compact regiorK with boundarydX. As usual,
light cones are at-45° and the future direction points upwards.
Then, the boundaryJ has three different parts: the past
and future nontimelike parts, which are marked(&$C), and
so that we have (0.X),, respectively, and the remaining part denoted & );.
X is foliated by spacelike hypersurfac&; = {r = cons},
T“BTQB = —W? + 4[(EE) - (EE) + (HH) - (HH) wheret is a time function. The shadowed zone corresponds
to the causal past of the hypersurfagein X, that is to say,
+ 2(EE) - (HH)], toJ (2 N XK.

T*B(i) = W@)P*P — 2ESEP® + HYHP7),
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(9K), = H*(S)

where as usual/~—(Z;) denotes the causal past &f,
n is the canonical volume 4-form ando,|s, is the
hypersurface element &, which points along>. Then,
by using the Gauss theorem, we arrive at

dw =.[ T@) doals,
S,NK

Z
=f mrwm—f
JI-)NK J=(Z)N(0XK),

X Ta(l-;)dO'akag():.
: IG. 2. The particular case in which the compact regiérof
The dominant superener roperty tells us that. ;

T@)do) i r?on—ne g}t/ivepang o)r/1 the other hand ig. 1 is the closure of the future Cauchy developn®nt(S)

V) adoal(9x), 1S gatn ' 'of any closed achronal sé&. As in Fig. 1, light cones are at
proposition 2 implies the existence of some constant-45°. As we see, nowd.K); is the closed achronal set
M > 0 such thatT *P “(V,Vt)VptV,t = (M/3)W(v)  itself, (9K), is the future Cauchy horizoA *(S) of S (which
on the compactX (where the components &F,z and is null), and(9 X)s is empty.

V. Vgt are bounded). Thus, by taking into account (1),
we have

(8K), =S closed achronal set

dominant energy conditiomust be assumedn order to
0= dw < 3[ Ta,B)L,u,(VaVBt) assure the causal propagation of matter [8], in our case
dt J-(E)NK the dominant superenergy property does not have to be
imposed: lItis just a property which the gravitational field
has. Of course, this might depend on the particular theory

From this, and given that(z) vanishes for early enough describing the gravitational field (we have used Einstein’s
values oft, it follows thatw (¢) will vanish for all 7, which ~ 9eneral relativity), butin any of these possible theories the
implies thatW () = 0 <= Tap,, = 0 (or, equivalently result vyould hold if there is a superenergy tensor with the
Caprx = 0) on XK. Thus, analogously to the case of properties of the Bel-Robinson tensor. This will be true
matter fields, we have the following: for most theorles_ describing gravity in a.geometncal way
The conservation theorem.—In empty space-time (witnd With appropriate vacuum field equations.
a possible cosmological constant), if the Weyl tensor (or, Finally, it is curious that the proof we have presented
equivalently, the Bel-Robinson tensor) is zero(6k ) or the causal propagation of gravity in vacuum is purely
and on the initial hypersurfac¢aX);, then it is zero 9geometric and does not seem to be a consequence of the
everywhere orK . hyperbolic character of the vacuum Einstein field equa-

From this theorem it can be deduced that, in vacuumtions (even though we have made use of them). Further-
if the Weyl tensor is zero on a closed achronal S¢hen ~ More, our result reinforces_the fa(_:t that the Bel-Robinson
it is zero on its future Cauchy developmeBt*(S) [8]  tensoris avery useful tool in proving some gIo_baI proper-
(see Fig. 2). This follows because[if? *(S)]is globally ~ ties of space-times, as has be.en alreat_:iy manlfes_ted in the
hyperbolic (and thus causally stable) for achrofaland ~ Proof of the uniform asymptotic behavior of solutions to
then we can take its closuf® *(S) as the compacK to linear field equations in I\_/Imkqwsh space-'tlmg [10].
apply the above theorem (see Fig. 2). It is obvious that M. A. G B. thanks theDlrecc_no ngeral d’'Universitats,
this result holds equally for the past Cauchy developmenf€neralitat de Catalunydor financial support.

D~(S) of S. This result is then interpreted as saying
that gravity propagates causally in vacuum, in the sense

X VitVytn = Mw .

that it cannot travel faster than light. *Also at Laboratori de Fica Matematica, IEC, Barcelona,
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