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An Einstein Model of Brittle Crack Propagation
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We propose a minimal nonlinear model of brittle crack propagation by considering only the m
of the crack-tip atom. The model captures many essential features of steady-state crack velocity
in excellent quantitative agreement with many-body dynamical simulations. The model exhibits l
trapping. For loads just above this, the crack velocity rises sharply, reaching a limiting value
below that predicted by elastic continuum theory. We trace the origin of the low limiting velocit
the anharmonicity of the potential well experienced by the crack-tip atom. [S0031-9007(96)0200

PACS numbers: 62.20.Mk, 63.20.Ry
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Recent molecular-dynamics (MD) simulations of cra
propagation [1,2], as well as experimental studies [3,
have reflected growing interest in the dynamical aspe
of brittle fracture, including the approach to a stea
(or quasisteady) state, the buildup of coherent excitat
near the crack tip [1,2], and the subsequent onset
instabilities [5,6]. In all of these works, it is fair to sa
that a coherent, quantitative understanding of the limit
velocity dependence on the local field has not yet be
advanced, though many good suggestions have been m
[2,7]. Here, we propose a minimal, one-atom, nonline
model for describing brittle fracture, which we call th
“Einstein ice-skater” (EIS) model.

By closely observing movies of MD simulations of bri
tle crack propagation in a two-dimensional (2D) triangu
lattice, under tensile (transverse, or mode I) loading an
zero initial temperature, we noticed that cracks appea
advance as a sequence of essentially one-particle mo
Along the natural cleavage direction separating a pair
close-packed planes (lines in 2D), bond-breaking eve
are well separated in time [8], which can be characteriz
as a zigzag, ice-skating kind of motion between the t
lines of atoms. When a bond breaks, the forward pa
ner moves ahead, approximately along the former bo
direction, while the rearward partner swings back to
final equilibrium position (see Fig. 1). This led us t
speculate that the steady-state velocity of a brittle cra
could be well approximated by a single-particle Einste
cell model, where the mobile crack-tip atom (the EIS
Fig. 1) moves in a field of six immobile neighbors (th
sixth, with whom the bond has just been broken, is
sumed to be beyond the range of interaction). The bo
breaking event launches the EIS approximately along
bonding direction. This compressive, nonlinear event
sults in a shearing motion along the transverse pair
close-packed lines at660± to the propagation direction
and gives rise to the local vibrational excitations that bu
up around the crack tip and move coherently with it [1,8

For sufficiently large strains, the EIS reaches a po
that stretches the next bond to breaking after a ti
0031-9007y96y78(1)y78(4)$10.00
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tbreak since the last bond-breaking event. The patte
then repeats—to the other side of the ice-skating phas
and the crack has then advanced by one nearest-neig
spacingr0 along the forward direction in the time2tbreak.
The crack velocity is thus given by

ycrack ­ r0y2tbreak . (1)

To find tbreak, we start from the configuration of the EI
and its five connected nearest neighbors and solve for
time dependence of the distancer01 between the EIS and
its neighbor No. 1;tbreak is the first time thatr01 reaches
the breaking pointrmax. The equation of motion for the
positionr0 of the EIS (atomic massm) is

mr̈0 ­ 2

6X
i­1

≠fsr0idy≠r0 , (2)

FIG. 1. Initial atomic coordinates for crack propagation in
triangular-lattice strip, four close-packed lines wide; the ou
two lines of atoms are fixed, while the inner two are mobi
Heavy lines indicate equilibrium (nearest-neighbor) bonds
lengthr0 ­ 1; heavy dashed lines are slightly stretched, nea
vertical bonds; light lines are bonds elastically stretched
length r1 ø 1 1 3ey4 by the uniaxial straine in the x
direction; the light dashed line is a just-broken bond w
neighbor No. 6. The EIS atom is indicated by the large op
circle: it moves initially approximately in the direction of th
arrow, stretching the bond with neighbor No. 1 until breaka
then heads toward its final equilibrium position (small circle)
© 1996 The American Physical Society
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which can be solved given the pair potent
fsr0id ­ fsjr0 2 ri jd and the initial conditions.
This equation is not trivial to solve, even for harmon
potentials, but can be solved numerically. We fi
assume the initial EIS coordinatesx ­ ay2, y ­ 0
and velocities Ùx ­ Ùy ­ 0 (the initial velocities of
steady-state crack-tip atoms in full MD simulations a
observed to be indeed very small). Withr0 ; 1, the
six immobile neighbors are assumed to be located
s2ay2, 1y2d, say2, 1d, s3ay2, 1y2d, s3ay2,21y2d, say2 1

a0e, 21y2d, and s2ay2 2 a0e, 21y2d, where a0 ­p
3y2, a ­ a0s1 1 ed, ande is the uniaxial strain in the

transverse direction to crack propagation. (See Fig. 1
We can obtain a crude estimate fortbreak by imagin-

ing that the EIS starts at the turning point of its moti
in the final harmonic equilibrium well. The bulk Einstei
model is characterized by a frequency ofvE ­

p
3 v0,

wherev0 is the fundamental frequency given bymv
2
0 ­

f00sr0d. Hence, if the timetbreak is one-half the period
(from one turning point to the other at bond breakin
then ycrack ­

p
3 r0v0y2p . Since the triangular-lattice

shear-wave speedcs ­
p

3y8 r0v0 (which is very close
to the Rayleigh, or surface wave speed [9]),ycrackycs øp

2yp ­ 0.45, independent of the anharmonicity of th
potential. Since the effective frequency of a stretched
harmonic bond decreases (actually to zero at the inflec
point), the crack velocity in the anharmonic case should
lower.

To go beyond this estimate, we investigated two kin
of attractive snapping-bond potentials: harmonic (HS
and anharmonic (ASB), the latter based on the Mo
potential

fsrd ­ s1 2 e2asr21dd2y2a2. (3)

Here we scale the distance byr0 and the energy by
mr2

0 v
2
0; a is the repulsive parameter (the familia

Lennard-Jones 6-12 potential is closely approxima
by a ­ 6; most materials can be represented
4 # a # 6). The ASB potential is obtained from
r
0

c

m
lu
h
,

l

t

e

at

,

n-
on
e

s
)
e

d
y

Eq. (3) by flattening it out atrmax ­ 1 2 lns1 2
p

xdya

in the attractive region (beyond the minimum of th
Morse potential); the cohesive energy is thenxy2a2,
for x , 1. The ASB force jumps discontinuously a
this point from a negative value to zero—hence t
term “snapping bond.” For small displacements ab
r ­ 1, Eq. (3) is approximately harmonic,sr 2 1d2y2.
The HSB potential cuts off at the same energy as
ASB, but at r0

max ­ 1 1
p

xya , rmax. We find that
the range and maximum attractive force of the poten
are the essential parameters that govern the cra
velocity.

Our choice of snapping-bond potentials makes prec
the definition of the distance beyond which a bond is c
sidered “broken,” an ambiguous concept for complet
continuous potentials. Since our goal is to compare
EIS model with a fully dynamical system, a well-define
breaking point for both is a distinct advantage. The fu
dynamical systems we compare with are rather rest
tive, namely, close-packed lines of atoms of widthw ­
4, 8, 16, and 64, with the outer two clamped, and the inn
free to move; moreover, only nearest-neighbor interacti
are considered. (Strips were typically 200r0 in length;
steady-state propagation is attained well within 10% of t
length.)

For this thin-strip, fixed-grip geometry, the critica
Griffith strain eG for initiating forward crack motion can
be computed by equating the potential energy in t
transverse sections of the strip of heightr0y2: one far
behind the crack with all bonds in equilibrium, except f
the one broken bond, and the other far in front, with
bonds equally stretched. The Griffith criterion is obtain
from

sw 2 1dfsr1d ­ fsr2d ­ xy2a2, (4)

where r1 is the elastically stretched bondsr2
1 ­ a2 1

1y4d and r2 is the broken bond across the gap of t
relaxed crack. The Griffith criterioneG is thus
eG ­

8>><>>:
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An intriguing aspect of the EIS model is the straightfo
ward emergence of the lattice-trapping phenomenon [1
unless the strain exceeds a value well aboveeG, the dis-
tance between the EIS and its neighbor No. 1 will not rea
rmax. The strain must therefore exceedeG by a barrier
amount of overstrain that is a characteristic of the ato
istic nature of the crack tip, and which can only be eva
ated atomistically. In Fig. 2, we show our results for t
crack-tip velocity (in units ofcs), as a function of the strain
for the EIS model and for the fully dynamicalw ­ 4 strip
-
]:

h

-
-

e

(a ­ 6, x ­
1
2 ). The EIS model agrees to within 10% o

the velocity with the MD results—remarkable for such
simple model.

However, the lattice-trapping strain is underestima
by 13% for the anharmonic and 12% for the harmo
system, which is most clearly due to neglected corre
tions with farther neighbors in the EIS model. For t
anharmonic system, the onset of crack motion for
fully dynamical w ­ 4 strip occurs at a crack velocit
of about 30% of the shear-wave speed, while for
79
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harmonic system, the crack starts at about 50% of
shear-wave speed. Under further loading, the crack
velocity increases roughly linearly with strain but with
higher slope for the harmonic than for the anharmo
system.

To compare our EIS results to MD simulations and
periments we rescaled the wider system strains by
Griffith strain (eG , 1y

p
w) and found good agreemen

except for slight, but systematic increases in the lat
trapping strain with size for harmonic potentials. We c
understand this by noting that wide anharmonic syste
where stretched bonds weaken, are more compliant
tend to have local strains near the crack tip that are cl
to those in the narrow strips. On the other hand, harmo
bonds do not weaken with stretching, so that the glo
strains is spread more democratically across the sys
We emphasize that, even in wide systems where the gl
strain can be arbitrarily small, the fact that local strains n
the crack tip are large (of order 10%, as in the narro
strip case) is a significant reason for the success of the
model.

We find that crack velocities in anharmonic syste
are essentially independent of the anharmonicity par
eter, at least over the range4 # a # 6; in fact, the curves
for a ­ 4 and 5 practically overlap. As the cohesi
strengthx decreases from1

2 down to 1
8 (along with the

range of the potential), crack velocities in anharmonic s
tems show a slight increases,10%d in ultimate slope
and greater variability in the jump-off lattice-trappin
strain. (In the limit x ! 0, of course, the harmoni
limit is approached [7].) In general, velocities in anh
monic systems are lower than in harmonic ones, show
variation with strain, and exhibit relatively lower lattic
trapping (when the strain is scaled byeG). Similar trends
are exhibited in the full MD simulations, including thos
using full, continuous (rather than discontinuous snapp
bond) potentials [1,2,7,8], and those for systems m
wider thanw ­ 4. Again, the principal differences ar
in the lattice-trapping strains. We can therefore concl
that the EIS approximates very well the crack-tip atom
motion, just as our intuition from larger-scale MD simul
tions had suggested.

Our minimal EIS model indeed confirms speculatio
about the correlation of the limiting steady-state crack
velocity and anharmonicity [2,7,8]. The more “realisti
anharmonic interactions give steady-state crack-tip ve
ities that never exceed 0.4 of the Rayleigh speed, in
cellent agreement with experimental observations [3
With the EIS model, the origin of this low speed c
clearly be attributed to the smaller attractive force on
crack-tip atom at the point of bond breaking, as compa
to the harmonic (or linear elastic) analysis.

Under loading, the thin-strip MD crack-tip velocity i
Fig. 2 jumps sharply at the lattice-trapping strain to
slowly rising linear regime, and then once again ris
sharply at a strain of0.15 ­ 1.3eG . Close examination
of atomic configurations revealed that this second
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FIG. 2. Crack velocity (in units of shear-wave speedcs) as
a function of strain for the anharmonic snapping-bond (AS
and harmonic snapping-bond (HSB) potentials. Results for
EIS model are shown for Morse parametera ­ 6 and cohesive
bond-strengthx ­ 1

2 , along withw ­ 4 strip MD simulations
(closed circles for ASB and open for HSB).

is associated with two instabilities: the first is a wa
of large-amplitude surface (Rayleigh) waves behind
crack tip; at somewhat higher strains, the crack beg
to jump from the central channel to one of the si
channels next to the fixed-grip atoms (see Fig. 1).
have observed this zigzag propagation by plus or mi
one channel in much wider systems, where, at even hig
strains, dislocations are emitted, followed immediately
branching. Dynamical instabilities such as these div
energy from brittle bond breaking, causing the crack-
velocity to drop rather than rise. Dislocation emission a
real crack branching are, of course, forbidden proces
in the artificially narrow 4-wide strip, and are complete
absent in the one-particle EIS model.

Finally, the hysteresis under unloading and heal
up of the crack can be obtained from the EIS.
do this, we simply detect when the 6-neighbor mo
reconnects the bond between the EIS atom and neig
No. 6, rather than opening up the crack in the forwa
direction. This occurs soon beloweG for the anharmonic
potential (namely, 0.98eG), but substantially lower for
the harmonic potential (0.85eG). Crack propagation and
crack healing are thus quite asymmetric processes.

In conclusion, the Einstein ice-skater model of brit
crack propagation is able to predict quantitatively t
steady-state crack velocity under loading, including latt
trapping, as well as hysteresis upon unloading and cr
healing. The maximum velocity achieved in full MD
simulations as a function of strain is principally limite
by the anharmonicity in the attractive region of the p
potential, which is captured by the EIS; however, it
also affected by instabilities that involve collective motio
(energy buildup, dislocation emission, and branchin
which is inaccessible to the one-particle EIS mod
Nevertheless, this simple EIS model allows us to expla
in quite satisfactory quantitative fashion, the effect
nonlinear motion of the crack-tip atom on the limitin
crack velocity.
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