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An Einstein Model of Brittle Crack Propagation
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We propose a minimal nonlinear model of brittle crack propagation by considering only the motion
of the crack-tip atom. The model captures many essential features of steady-state crack velocity and is
in excellent quantitative agreement with many-body dynamical simulations. The model exhibits lattice
trapping. For loads just above this, the crack velocity rises sharply, reaching a limiting value well
below that predicted by elastic continuum theory. We trace the origin of the low limiting velocity to
the anharmonicity of the potential well experienced by the crack-tip atom. [S0031-9007(96)02003-0]

PACS numbers: 62.20.Mk, 63.20.Ry

Recent molecular-dynamics (MD) simulations of crackr,...x Since the last bond-breaking event. The pattern
propagation [1,2], as well as experimental studies [3,4]then repeats—to the other side of the ice-skating phase—
have reflected growing interest in the dynamical aspectand the crack has then advanced by one nearest-neighbor
of brittle fracture, including the approach to a steadyspacingry along the forward direction in the tin® ..

(or quasisteady) state, the buildup of coherent excitatioffhe crack velocity is thus given by
near the crack tip [1,2], and the subsequent onset of Verack = 70/ 2tbreak - (1)

instabilities [5,6]. In all of these works, it is fair to say To find foeq, We start from the configuration of the EIS

that a coherent, quantitative understanding of the limitin nd its five connected nearest neighbors and solve for the
locity d d the local field h tyetb .
veloctly dependence on the local 1ie as not yet bee e dependence of the distangg between the EIS and

f‘;ﬁ?”"jﬁ;f@fErg‘gggeggorﬂiﬁﬁrﬁgﬁsg'ﬁg_sa[‘oarf rﬁ’gr?,?n;”jysgneighbpr NO. L7reai iS the first time thato, reaches
model for describing brittle fracture, which we call the the 'b.reaklng POINE gy Th? equation of motion for the
“Einstein ice-skater” (EIS) model. positionr, of the EIS (atomic mass) is
By closely observing movies of MD simulations of brit- . 6
tle crack propagation in a two-dimensional (2D) triangular mro = — Z ¢ (roi)/ o, (2)
lattice, under tensile (transverse, or mode |) loading and at
zero initial temperature, we noticed that cracks appear to
advance as a sequence of essentially one-particle moves.
Along the natural cleavage direction separating a pair of
close-packed planes (lines in 2D), bond-breaking events
are well separated in time [8], which can be characterized
as a zigzag, ice-skating kind of motion between the two
lines of atoms. When a bond breaks, the forward part- -
ner moves ahead, approximately along the former bond
direction, while the rearward partner swings back to its
final equilibrium position (see Fig. 1). This led us to
speculate that the steady-state velocity of a brittle crack
could be well approximated by a single-particle Einstein
cell model, where the mobile crack-tip atom (the EIS in
Fig. 1) moves in a field of six immobile neighbors (the
sixth, with whom the bond has just been broken, is asFIG. 1. Initial atomic coordinates for crack propagation in a
sumed to be beyond the range of interaction). The bonc{_rlangular-lattlce strip, four close-packed lines wide; the outer

breaking event launches the EIS aporoximately alond th wo lines of atoms are fixed, while the inner two are mobile.
9 Pp y g ﬁleavy lines indicate equilibrium (nearest-neighbor) bonds of

bonding direction. This compressive, nonlinear event retengthr, = 1; heavy dashed lines are slightly stretched, nearly
sults in a shearing motion along the transverse pair ofertical bonds; light lines are bonds elastically stretched to
close-packed lines at:60° to the propagation direction, length r ~ 1 + 3e/4 by the uniaxial straine in the x

and gives rise to the local vibrational excitations that builgdirection; the light dashed line is a just-broken bond with

. - neighbor No. 6. The EIS atom is indicated by the large open
up around the crack tip and move coherently with it [1'8]'circle: it moves initially approximately in the direction of the

For sufficiently large strains, the EIS reaches a poinkrrow, stretching the bond with neighbor No. 1 until breakage,
that stretches the next bond to breaking after a timehen heads toward its final equilibrium position (small circle).
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which can be solved given the pair potential Eq. (3) by flattening it out @ty = 1 — In(1 — /x)/«
¢(ro;) = ¢(lrp — r;]) and the initial conditions. in the attractive region (beyond the minimum of the
This equation is not trivial to solve, even for harmonic Morse potential); the cohesive energy is thgr2a?,
potentials, but can be solved numerically. We firstfor y < 1. The ASB force jumps discontinuously at
assume the initial EIS coordinates = a/2, y =0 this point from a negative value to zero—hence the
and velocities x =y = 0 (the initial velocities of term “snapping bond.” For small displacements about
steady-state crack-tip atoms in full MD simulations arer = 1, Eq. (3) is approximately harmonid; — 1)2/2.
observed to be indeed very small). Wiilg = 1, the  The HSB potential cuts off at the same energy as the
six immobile neighbors are assumed to be located aASB, but atrr‘]?lax =1+ \/Y/a < rmax. We find that
(=a/2,1/2), (a/2,1), 3a/2,1/2), B3a/2,—1/2), (a/2 + the range and maximum attractive force of the potential
ape, —1/2), and (—a/2 — ape, —1/2), where ay = are the essential parameters that govern the crack
V3/2, a = ag(1 + €), ande is the uniaxial strain in the velocity.
transverse direction to crack propagation. (See Fig. 1.)  Our choice of snapping-bond potentials makes precise
We can obtain a crude estimate fag.,x by imagin- the definition of the distance beyond which a bond is con-
ing that the EIS starts at the turning point of its motionsidered “broken,” an ambiguous concept for completely
in the final harmonic equilibrium well. The bulk Einstein continuous potentials. Since our goal is to compare this
model is characterized by a frequency ®f = +/3w,,  EIS model with a fully dynamical system, a well-defined
wherew, is the fundamental frequency given bywi =  breaking point for both is a distinct advantage. The fully
¢"'(rg). Hence, if the timer,e, is one-half the period dynamical systems we compare with are rather restric-
(from one turning point to the other at bond breaking),tive, namely, close-packed lines of atoms of widith=
then veaek = V3 rowo/27. Since the triangular-lattice 4, 8, 16, and 64, with the outer two clamped, and the inner
shear-wave speed, = +/3/8 row (which is very close free to move; moreover, only nearest-neighbor interactions
to the Rayleigh, or surface wave speed [W).c/cs =  are considered. (Strips were typically 290n length;
V2/7 = 0.45, independent of the anharmonicity of the steady-state propagation is attained well within 10% of that
potential. Since the effective frequency of a stretched anlength.)
harmonic bond decreases (actually to zero at the inflection For this thin-strip, fixed-grip geometry, the critical
point), the crack velocity in the anharmonic case should bé&riffith strain e for initiating forward crack motion can
lower. be computed by equating the potential energy in two
To go beyond this estimate, we investigated two kindgransverse sections of the strip of heigh/2: one far
of attractive snapping-bond potentials: harmonic (HSB)oehind the crack with all bonds in equilibrium, except for
and anharmonic (ASB), the latter based on the Morsé¢he one broken bond, and the other far in front, with all
potential bonds equally stretched. The Griffith criterion is obtained

d(r) = (1 — e—a(r—l))2/2a2. 3) from

Here We scale the distance by and the energy by (w — D(r) = ¢(r) = x/2a>, ()]
mriwd; a is the repulsive parameter (the familiar

Lennard-Jones 6-12 potential is closely approximateavhere r; is the elastically stretched bond? = a® +

by a = 6; most materials can be represented byl/4) and r, is the broken bond across the gap of the
4=a=6). The ASB potential is obtained from relaxed crack. The Griffith criteriogs is thus

|
it - [ - (- ) -1 ass

€G =
{ VA S }}1/2 1, HSB.
I

An intriguing aspect of the EIS model is the straightfor- (a = 6, y = %). The EIS model agrees to within 10% of
ward emergence of the lattice-trapping phenomenon [10fhe velocity with the MD results—remarkable for such a
unless the strain exceeds a value well abeyethe dis- simple model.
tance between the EIS and its neighbor No. 1 will not reach However, the lattice-trapping strain is underestimated
rmax- The strain must therefore exceed by a barrier by 13% for the anharmonic and 12% for the harmonic
amount of overstrain that is a characteristic of the atomsystem, which is most clearly due to neglected correla-
istic nature of the crack tip, and which can only be evalu+tions with farther neighbors in the EIS model. For the
ated atomistically. In Fig. 2, we show our results for theanharmonic system, the onset of crack motion for the
crack-tip velocity (in units o), as a function of the strain, fully dynamical w = 4 strip occurs at a crack velocity
for the EIS model and for the fully dynamical = 4 strip  of about 30% of the shear-wave speed, while for the
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harmonic system, the crack starts at about 50% of the 1 T T T T T T
shear-wave speed. Under further loading, the crack-tip B weeeEISHSB |
velocity increases roughly linearly with strain but with a . 08r . EISASB |
higher slope for the harmonic than for the anharmonic N u e _f__ﬁfgg 7
system. 3 01 g 7

To compare our EIS results to MD simulations and ex- 3 B o 7
periments we rescaled the wider system strains by the 041 i ]
Griffith strain (e ~ 1//w) and found good agreement, S i |
except for slight, but systematic increases in the lattice i i B
trapping strain with size for harmonic potentials. We can 0 N T e ,
understand this by noting that wide anharmonic systems, 0.08 0.09 0.1 0.11 012 0.13 0.4 0.15 0.16
where stretched bonds weaken, are more compliant and strain

tend to have local strains near the crack tip that are clos§fic o crack velocity (in units of shear-wave speedl as

to those in the narrow strips. On the other hand, harmonig function of strain for the anharmonic snapping-bond (ASB)
bonds do not weaken with stretching, so that the globahnd harmonic snapping-bond (HSB) potentials. Results for the
strains is spread more democratically across the systerf!S model are shown for Morse paramedter= 6 and cohesive
We emphasize that, even in wide systems where the globgpnd-strengthy = 3, along withw = 4 strip MD simulations
strain can be arbitrarily small, the fact that local strains neafc!osed circles for ASB and open for HSB).

the crack tip are large (of order 10%, as in the narrow-

strip case) is a significant reason for the success of the Eli§ associated with two instabilities; the first is a wake
model. of large-amplitude surface (Rayleigh) waves behind the

We find that crack velocities in anharmonic systemscrack tip; at somewhat higher strains, the crack begins
are essentially independent of the anharmonicity paramo jump from the central channel to one of the side
eter, at least over the rande= o = 6; in fact, the curves channels next to the fixed-grip atoms (see Fig. 1). We
for « = 4 and 5 practically overlap. As the cohesive have observed this zigzag propagation by plus or minus
strengthy decreases fron% down to% (along with the  one channel in much wider systems, where, at even higher
range of the potential), crack velocities in anharmonic sysstrains, dislocations are emitted, followed immediately by
tems show a slight increase-10%) in ultimate slope branching. Dynamical instabilities such as these divert
and greater variability in the jump-off lattice-trapping energy from brittle bond breaking, causing the crack-tip
strain. (In the limit y — 0, of course, the harmonic velocity to drop rather than rise. Dislocation emission and
limit is approached [7].) In general, velocities in anhar-real crack branching are, of course, forbidden processes
monic systems are lower than in harmonic ones, show leds the artificially narrow 4-wide strip, and are completely
variation with strain, and exhibit relatively lower lattice absent in the one-particle EIS model.
trapping (when the strain is scaled by). Similar trends Finally, the hysteresis under unloading and healing
are exhibited in the full MD simulations, including those up of the crack can be obtained from the EIS. To
using full, continuous (rather than discontinuous snappingeo this, we simply detect when the 6-neighbor model
bond) potentials [1,2,7,8], and those for systems mucheconnects the bond between the EIS atom and neighbor
wider thanw = 4. Again, the principal differences are No. 6, rather than opening up the crack in the forward
in the lattice-trapping strains. We can therefore concludelirection. This occurs soon belogy; for the anharmonic
that the EIS approximates very well the crack-tip atomicpotential (namely, 0.94;), but substantially lower for
motion, just as our intuition from larger-scale MD simula- the harmonic potential (0.83). Crack propagation and
tions had suggested. crack healing are thus quite asymmetric processes.

Our minimal EIS model indeed confirms speculations In conclusion, the Einstein ice-skater model of brittle
about the correlation of the limiting steady-state crack-tipcrack propagation is able to predict quantitatively the
velocity and anharmonicity [2,7,8]. The more “realistic” steady-state crack velocity under loading, including lattice
anharmonic interactions give steady-state crack-tip velodrapping, as well as hysteresis upon unloading and crack
ities that never exceed 0.4 of the Rayleigh speed, in exhealing. The maximum velocity achieved in full MD
cellent agreement with experimental observations [3,4]simulations as a function of strain is principally limited
With the EIS model, the origin of this low speed canby the anharmonicity in the attractive region of the pair
clearly be attributed to the smaller attractive force on thepotential, which is captured by the EIS; however, it is
crack-tip atom at the point of bond breaking, as compare@lso affected by instabilities that involve collective motion
to the harmonic (or linear elastic) analysis. (energy buildup, dislocation emission, and branching),

Under loading, the thin-strip MD crack-tip velocity in which is inaccessible to the one-particle EIS model.
Fig. 2 jumps sharply at the lattice-trapping strain to aNevertheless, this simple EIS model allows us to explain,
slowly rising linear regime, and then once again risedn quite satisfactory quantitative fashion, the effect of
sharply at a strain 06.15 = 1.3e;. Close examination nonlinear motion of the crack-tip atom on the limiting
of atomic configurations revealed that this second riserack velocity.
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