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Coherence Resonance in a Noise-Driven Excitable System
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We study the dynamics of the excitable Fitz Hugh–Nagumo system under external noisy driving.
Noise activates the system producing a sequence of pulses. The coherence of these noise-induced
oscillations is shown to be maximal for a certain noise amplitude. This new effect of coherence
resonance is explained by different noise dependencies of the activation and the excursion times.
A simple one-dimensional model based on the Langevin dynamics is proposed for the quantitative
description of this phenomenon. [S0031-9007(97)02349-1]

PACS numbers: 05.40.+ j, 05.20.–y
p
t
is
b
ls

e
h
v
m

.

h
is

e
u

p
d
d
o
.
e

e
1
v

r
b
d

a-

ed
-
e
a-

ch
er
able
-
the
e

al
ted

’s

. 1
he
ar,
s

o-
oth
ith
ise
ic
in

rity

-

ed
To
The response of dynamical systems to noise has
tracted large attention recently. There are many exam
demonstrating that noise can lead to more order in
dynamics. To be mentioned here are the effects of no
induced order in chaotic dynamics [1], synchronization
external noise [2], and stochastic resonance [3–5]. A
noise has been shown to play a stabilizing role in ense
bles of coupled oscillators and maps [6]. Especially int
esting is the phenomenon of stochastic resonance, w
appears when a nonlinear system is simultaneously dri
by noise and a periodic signal. At a certain noise a
plitude the periodic response is maximal; this has be
confirmed by numerous experimental studies (cf. [7,8])

In this paper we study the effect of noise on th
autonomous excitable oscillator—the famous Fitz Hug
Nagumo system. We demonstrate that a character
correlation time of the noise-excited oscillations has
maximum for a certain noise amplitude, and pres
a theory of this effect. Contrary to the usual set
of stochastic resonance, no external periodic driving
assumed, so the coherence appears as a nonlinear res
to purely noisy excitation. The phenomenon considere
also different from stochastic resonance without perio
force reported recently in Ref. [9], where the effect
noise on a limit cycle at a bifurcation point was studied

The Fitz Hugh–Nagumo model is a simple but repres
tative example of excitable systems that occur in differe
fields of application ranging from kinetics of chemical r
actions and solid-state physics to biological processes [
Originally it was suggested for the description of ner
pulses [11]; it was also widely used for modeling of sp
ral waves in a two-dimensional excitable medium. Diffe
ent aspects of the dynamics of this and similar excita
models in the presence of noise have been discusse
Refs. [12–16]. The equations of motion are

´
dx
dt

­ x 2
x3

3
2 y , (1)

dy
dt

­ x 1 a 1 Djstd . (2)
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Here ´ ø 1 is a small parameter allowing one to sep
rate all motions in the fast (onlyx changes) and slow
s y ø x 2 x3y3d ones. The parametera governs the char-
acter of solutions: Forjaj . 1 the only attractor is a stable
fixed point, and forjaj , 1 a limit cycle appears. This
cycle consists of two pieces of slow motion connect
with fast jumps. Forjaj slightly larger than one the sys
tem is excitable; i.e., small but finite deviations from th
fixed point produce large pulses. Indeed, if the perturb
tion brings the system to the border of the slow bran
on which the stable fixed point lies, the jump to anoth
slow branch happens and the system returns to the st
fixed point only after a large excursion. This highly non
linear response to perturbations makes the dynamics of
forced Fitz Hugh–Nagumo system nontrivial. Finally, th
parameterD governs the amplitude of the noisy extern
force j which we assume to be Gaussian delta-correla
with zero mean:kjstdjst0dl ­ dst 2 t0d [17].

We integrate system (1), (2) numerically using Euler
method [18] for the parameterś­ 0.01, a ­ 1.05, and
different noise amplitudes. The results reported in Fig
show that for both small and large noise amplitudes, t
noise-excited oscillations appear to be rather irregul
while for moderate noise relatively coherent oscillation
are observed. This phenomenon, which we callcoherence
resonance,resembles the well-known stochastic res
nance [3–5]. The stochastic resonance appears if b
periodic and noisy forces drive a nonlinear system, w
the periodic response having a maximum at some no
amplitude. In our case there is, however, no period
force (cf. [9,19]) and no discrete component appears
the spectrum, but at some noise amplitude the regula
of the process is, nevertheless, maximal.

To characterize this ordering quantitatively, we com
pute the normalized autocorrelation function

Cstd ­
k ỹstdỹst 1 tdl

k ỹ2l
, ỹ ­ y 2 k yl . (3)

One can see from Fig. 2 that the correlations are inde
much more pronounced for the moderate noise.
© 1997 The American Physical Society 775
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FIG. 1. The dynamics of the Fitz Hugh–Nagumo syste
[Eqs. (1), (2)] for a ­ 1.05, ´ ­ 0.01, and different noise
amplitudes: From bottom to topD ­ 0.02, D ­ 0.07, and
D ­ 0.25. The mean durations of pulses are7, 4, and 3.5,
respectively. The activation and the excursion times for o
pulse are depicted.

describe this effect with a single quantity, we calcula
the characteristic correlation time as follows [20]:

tc ­
Z `

0
C2std dt . (4)

The dependence of this quantity on the noise amplitud
presented in Fig. 3; it has a clear maximum at the no
amplitudeDres ø 0.06. While the correlation time can b
readily obtained numerically, for the convenience of t
theoretical consideration we introduce another quan
(which can be interpreted, in the context of stochas
resonance terminology, as noise-to-signal ratio). Beca
the process Fig. 1 can be viewed as a sequence
pulses having durationstp, we look at the normalized
fluctuations of pulse durations

Rp ­

p
Var stpd

ktpl
. (5)

This quantity, reported in Fig. 3, shows a minimu
at Dres. Below we develop a theoretical approach
calculatingRp .
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FIG. 2. The autocorrelation function of the regimes presente
in Fig. 1.

Physically, the appearance of coherence resonance
deeply related to the excitable nature of the Fitz Hugh
Nagumo system. The system has two characteristic time
the activation timeta and the excursion timete. The

FIG. 3. Correlation timetc (solid line) and the noise-to-signal
ratio R [Eq. (5), dashed line] vs noise amplitude for the Fitz
Hugh–Nagumo system witha ­ 1.05, ´ ­ 0.01.
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activation time is the time needed to excite the syste
from the stable fixed pointx ­ 2a, y ­ a3y3 2 a; while
the excursion time is the time needed to return from th
excited state to the fixed point. The pulse durationtp is
the sum of these timestp ­ ta 1 te. The crucial point
is that these times and their fluctuations have a differe
dependence on the noise amplitude. The activation tim
decreases rapidly with the noise amplitude according
the Kramers formulaktal , expsconst3 D22d [21,22]. It
can be also shown that for small noise Varstad ø ktal2

[23]. Thus for small noise, whereta ¿ te and the period is
dominated by the activation timetp ø ta, the fluctuations
of the pulse durations are relatively large:Rp ø Ra ø 1.
For large noise the contribution of the activation timeta to
the period is negligible, here the excursion time dominat
tp ø te. If the motion in the excited state is nearly
uniform, ktel weakly depends on the noise amplitude, bu
its variance can be estimated as Varsted , D2ktel [24], so
the fluctuations grow with the noise amplitude. In thi
regimeRp ø Re , Dktel21y2. The coherence resonance
i.e., a minimum in the dependenceRsDd, appears if the
threshold of excitation is small and the excursion tim
is large. In this case the minimum corresponds to
sufficiently large noise amplitude so thatta ø te, but not
very large so that fluctuations of the excursion time a
smallResDresd , 1.

To make these arguments quantitative, we sugges
simple analytical model of the coherence resonance. N
first that due to the smallness of the parameter´ in the
Fitz Hugh–Nagumo model the motion is restricted to th
“nearly limit” cycle in the phase space, consisting of tw
lines of slow motion and two straight lines of fast motion
On each line of slow motion the variablex is a function
of y. Thus along the lines of slow motion the dynamic
can be represented with the one-dimensional Lange
equation

dy
dt

­ 2
dU
dy

1 Djstd (6)

with noisy termj and a nonlinear potentialUs yd having
a single minimum (a stable fixed point). The fast motio
can be modeled in this approach as a jump (reinjection)
the variabley, if the excitation threshold is arrived [25].
Thus we can consider Eq. (6) as defined on the half li
2` , y , 0, with reinjection of y from the threshold
y ­ 0 to the pointy ­ y0. The sequence of pulses is
in this interpretation a sequence of walks fromy0 to 0,
with reinjections. Because each walk is described by t
Langevin equation (6), we can apply the method of th
Fokker–Planck equation to find statistical characteristi
of pulse durationstp . These durations are nothing els
but first passage times for the random process (1) start
at y ­ y0, with the absorbing boundaryy ­ 0. The
equations for the moments of these times are well know
[22,26]. The solutions for the first two moments have th
form:
m

e

nt
e

to

es

t

s
,

e
a

re

t a
ote

e
o
.

s
vin

n
of

ne

he
e

cs
e
ing

n
e

ktps y0dl ­ 2D22
Z 0

y0

dy
Z y

2`

du exp

µ
2

Usyd 2 Usud
D2

∂
,

kt2
ps y0dl ­ 4D22

Z 0

y0

dy
Z y

2`
du ktpsudl

3 exp

µ
2

Usyd 2 Usud
D2

∂
.

Except for extremely simplified models, the resulting for-
mulas are very tedious. We were able to get closed an
lytical results for a simple model of the phase motion with
a piece-wise linear potentialUs yd ­ 2Ay if y , 21 and
Us yd ­ A 1 B 1 By if 0 . y . 21 (the minimum of
the potential aty ­ 21 determines the position of the
stable fixed point), although these formulas are still too
cumbersome to be presented in this short Letter. From
these analytic expressions we calculate the ratioR which
characterizes the coherence of the oscillations, and plot
in Fig. 4. Two asymptotics in accordance with the quali-
tative arguments above are clearly seen: For small nois
R ø 1 what corresponds to the Poissonian statistics of th
activation times for small noise; for large noiseR , D.
The sharpness of the coherence resonance depends on
model parametersA, B, y0. In agreement with the quali-
tative consideration above, the minimum is deeper fo
larger excursion times (large values ofjy0j). We empha-
size that the phase dynamics equation (6) provides a ge
eral description of the coherence resonance (with detai
of a particular system coming through the potentialU and
boundary conditions), provided the excited state is regula
(nonchaotic); otherwise the one-dimensional description i
not sufficient.

In conclusion, we have demonstrated that the dynam
cal regimes appearing in noise-driven excitable system
can be rather nontrivial. The coherence of noise-excite

FIG. 4. The relative first passage time fluctuations vs nois
amplitude in the one-dimensional phase dynamics mode
(described in text) forA ­ B ­ 1 and y0 ­ 25 (solid line),
y0 ­ 220 (dashed line) andy0 ­ 250 (dot-dashed line).
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oscillations is maximal for a certain noise amplitude. Thi
maximum is explained by the interplay between differ
ent statistical properties of the activation and excursio
times. We have also proposed a simplified description
this phenomenon, based on the one-dimensional Lange
phase dynamics. The phenomenon described may
of particular importance in neurophysiology, where larg
ensembles of neurons may become ordered due to int
action with a noisy environment. We hope that exper
mental observation of this effect is possible with standa
equipment used in studies of stochastic resonance [8].
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