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Coherence Resonance in a Noise-Driven Excitable System
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We study the dynamics of the excitable Fitz Hugh—Nagumo system under external noisy driving.
Noise activates the system producing a sequence of pulses. The coherence of these noise-induced
oscillations is shown to be maximal for a certain noise amplitude. This new effect of coherence
resonance is explained by different noise dependencies of the activation and the excursion times.
A simple one-dimensional model based on the Langevin dynamics is proposed for the quantitative
description of this phenomenon. [S0031-9007(97)02349-1]

PACS numbers: 05.40.+j, 05.20.-y

The response of dynamical systems to noise has aHere ¢ < 1 is a small parameter allowing one to sepa-
tracted large attention recently. There are many exampleste all motions in the fast (only changes) and slow
demonstrating that noise can lead to more order in théy =~ x — x3/3) ones. The parametargoverns the char-
dynamics. To be mentioned here are the effects of noisecter of solutions: Fdu| > 1 the only attractor is a stable
induced order in chaotic dynamics [1], synchronization byfixed point, and forla| < 1 a limit cycle appears. This
external noise [2], and stochastic resonance [3—5]. Alsogycle consists of two pieces of slow motion connected
noise has been shown to play a stabilizing role in ensemwith fast jumps. Foilla| slightly larger than one the sys-
bles of coupled oscillators and maps [6]. Especially intertem is excitable; i.e., small but finite deviations from the
esting is the phenomenon of stochastic resonance, whidixed point produce large pulses. Indeed, if the perturba-
appears when a nonlinear system is simultaneously drivetion brings the system to the border of the slow branch
by noise and a periodic signal. At a certain noise am-on which the stable fixed point lies, the jump to another
plitude the periodic response is maximal; this has beeslow branch happens and the system returns to the stable
confirmed by numerous experimental studies (cf. [7,8]). fixed point only after a large excursion. This highly non-

In this paper we study the effect of noise on thelinear response to perturbations makes the dynamics of the
autonomous excitable oscillator—the famous Fitz Hugh-forced Fitz Hugh—Nagumo system nontrivial. Finally, the
Nagumo system. We demonstrate that a characteristigarameteD governs the amplitude of the noisy external
correlation time of the noise-excited oscillations has &orce ¢ which we assume to be Gaussian delta-correlated
maximum for a certain noise amplitude, and presentvith zero mean{&(¢)é(t')) = 6(¢r — ') [17].

a theory of this effect. Contrary to the usual setup We integrate system (1), (2) numerically using Euler's
of stochastic resonance, no external periodic driving isnethod [18] for the parametees= 0.01, a = 1.05, and

assumed, so the coherence appears as a nonlinear respodigierent noise amplitudes. The results reported in Fig. 1
to purely noisy excitation. The phenomenon considered ishow that for both small and large noise amplitudes, the
also different from stochastic resonance without periodimoise-excited oscillations appear to be rather irregular,
force reported recently in Ref. [9], where the effect ofwhile for moderate noise relatively coherent oscillations
noise on a limit cycle at a bifurcation point was studied. are observed. This phenomenon, which we calierence

The Fitz Hugh—Nagumo model is a simple but represenresonance,resembles the well-known stochastic reso-
tative example of excitable systems that occur in differenhance [3-5]. The stochastic resonance appears if both
fields of application ranging from kinetics of chemical re- periodic and noisy forces drive a nonlinear system, with
actions and solid-state physics to biological processes [10fhe periodic response having a maximum at some noise
Originally it was suggested for the description of nerveamplitude. In our case there is, however, no periodic
pulses [11]; it was also widely used for modeling of spi-force (cf. [9,19]) and no discrete component appears in
ral waves in a two-dimensional excitable medium. Differ-the spectrum, but at some noise amplitude the regularity
ent aspects of the dynamics of this and similar excitablef the process is, nevertheless, maximal.
models in the presence of noise have been discussed inTo characterize this ordering quantitatively, we com-

Refs. [12—-16]. The equations of motion are pute the normalized autocorrelation function
dx X (F@Oy + 1)
—=x—- = -y, 1 = y=y — :
e TXT T Y 1) C(7) Gy VY . @3
dy One can see from Fig. 2 that the correlations are indeed
a F +ta+ D). (2 much more pronounced for the moderate noise. To
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FIG. 1. The dynamics of the Fitz Hugh—Nagumo systempig 2. The autocorrelation function of the regimes presented

[Egs. (1), (2)] for a = 1.05, ¢ = 0.01, and different noise
From bottom to to® = 0.02, D = 0.07, and

amplitudes:

in Fig. 1.

D = 0.25. The mean durations of pulses &e4, and 3.5,

respectively. The activation and the excursion times for one

pulse are depicted. Physically, the appearance of coherence resonance is

deeply related to the excitable nature of the Fitz Hugh—
Nagumo system. The system has two characteristic times:

describe this effect with a single quantity, we calculatee gctivation timer
a

the characteristic correlation time as follows [20]:

Te 2]0 C*(t)drt. 4) 10
The dependence of this quantity on the noise amplitude i
presented in Fig. 3; it has a clear maximum at the nois
amplitudeD,.s = 0.06. While the correlation time can be
readily obtained numerically, for the convenience of the
theoretical consideration we introduce another quantitoc
(which can be interpreted, in the context of stochastic 10
resonance terminology, as noise-to-signal ratio). Becaus

the process Fig. 1 can be viewed as a sequence
pulses having durations,, we look at the normalized
fluctuations of pulse durations

_ VVar(z,)

p = <tp ) (5) 10~

0

and the excursion time,.

The

This quantity, reported in Fig. 3, shows a minimMum i 3 correlation timer, (solid line) and the noise-to-signal
at Drs. Below we develop a theoretical approach toratio R [Eq. (5), dashed line] vs noise amplitude for the Fitz

calculatingR,, .

776

Hugh—Nagumo system with = 1.05, ¢ = 0.01.
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activation time is the time needed to excite the system L[ v Uw) — Uu)
from the stable fixed point = —a, y = a/3 — a;while  (p(Y0)) = 2D fvo dv f_m du exp(Z D2 )

the excursion time is the time needed to return from the 0 v

excited state to the fixed point. The pulse duratipns <,12)(y0)> = 4D*2f dvf du (t,(u))

the sum of these times, = ¢, + .. The crucial point Yo —oo

is that these times and their fluctuations have a different U(w) — Uw)

dependence on the noise amplitude. The activation time X ex;(Z T)

decreases rapidly with the noise amplitude according to

the Kramers formulé,,) ~ expconstx D~2)[21,22]. It  Except for extremely simplified models, the resulting for-
can be also shown that for small noise War = (t,)* mulas are very tedious. We were able to get closed ana-

[23]. Thus for small noise, wherg > r, and the period is lytical results for a simple model of the phase motion with

dominated by the activation timg =~ #,, the fluctuations ~ a piece-wise linear potential(y) = —Ay if y < —1 and
of the pulse durations are relatively large;, =~ R, = 1. Uly)=A + B+ Byif0>y > —1 (the minimum of
For large noise the contribution of the activation timéo  the potential aty = —1 determines the position of the

the period is negligible, here the excursion time dominatestable fixed point), although these formulas are still too
t, = t.. If the motion in the excited state is nearly cumbersome to be presented in this short Letter. From
uniform, {z.) weakly depends on the noise amplitude, butthese analytic expressions we calculate the ratiwhich

its variance can be estimated as ¥ar~ D*(t,) [24], so  characterizes the coherence of the oscillations, and plot it
the fluctuations grow with the noise amplitude. In thisin Fig. 4. Two asymptotics in accordance with the quali-
regimeR, =~ R, ~ D{(t,)"/2. The coherence resonance, tative arguments above are clearly seen: For small noise
i.e., a minimum in the dependen&D), appears if the R = 1 what corresponds to the Poissonian statistics of the
threshold of excitation is small and the excursion timeactivation times for small noise; for large noige~ D.

is large. In this case the minimum corresponds to alhe sharpness of the coherence resonance depends on the
sufficiently large noise amplitude so that< ., but not ~model parametera, B, yo. In agreement with the quali-
very large so that fluctuations of the excursion time ardative consideration above, the minimum is deeper for
smallR,(Dyes) < 1. larger excursion times (large values|gf|). We empha-

To make these arguments guantitative, we suggest ize that the phase dynamics equation (6) provides a gen-
simple analytical model of the coherence resonance. Noteral description of the coherence resonance (with details
first that due to the smallness of the parametén the  of a particular system coming through the potentiednd
Fitz Hugh—Nagumo model the motion is restricted to theboundary conditions), provided the excited state is regular
“nearly limit” cycle in the phase space, consisting of two(noncha_lqtlc); otherwise the one-dimensional description is
lines of slow motion and two straight lines of fast motion. not suff|C|ent_. _
On each line of slow motion the variahleis a function In conclusion, we have demonstrated that the dynami-
of y. Thus along the lines of slow motion the dynamicscal regimes appearing in noise-driven excitable systems
can be represented with the one-dimensional Langevigan be rather nontrivial. The coherence of noise-excited
equation

dy dU 10" ¢ ——— :
i = gy TPEW (6) _
with noisy term¢ and a nonlinear potentidl ( y) having
a single minimum (a stable fixed point). The fast motion
can be modeled in this approach as a jump (reinjection) @
the variabley, if the excitation threshold is arrived [25].
Thus we can consider Eq. (6) as defined on the half lingc 10°
—oo < y < 0, with reinjection ofy from the threshold
y = 0 to the pointy = yo. The sequence of pulses is
in this interpretation a sequence of walks fromto 0,
with reinjections. Because each walk is described by th
Langevin equation (6), we can apply the method of the
Fokker—Planck equation to find statistical characteristict

T

-1

1 1

of pulse durations,. These durations are nothing else 10 TR S,
but first passage times for the random process (1) startin D

at y = yo, with the absorbing boundary = 0. The
equations for the moments of these times are well know
[22,26]. The solutions for the first two moments have thegescribed in text) ford = B = 1 and y, = —5 (solid line),
form: yo = —20 (dashed line) ang, = —50 (dot-dashed line).

FIG. 4. The relative first passage time fluctuations vs noise
IAmplitude in the one-dimensional phase dynamics model
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