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Initial Stages of Bose-Einstein Condensation
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We present the quantum theory for the nucleation of Bose-Einstein condensation in a dilute atomic
Bose gas. This quantum theory has the important advantage that both the kinetic and coherent
stages of the nucleation process can be described in a unified way by a single Fokker-Planck
equation. [S0031-9007(96)02280-6]

PACS numbers: 03.75.Fi, 32.80.Pj, 67.40.—w

In two previous papers we have developed the semieondensation and the various time scales involved, it is
classical theory for the nucleation of Bose-Einstein connot completely satisfying physically because of the fol-
densation in a weakly interacting Bose gas [1]. At thatlowing two reasons. First, it makes a sharp distinction
time the main reason for studying this nucleation prob-between kinetic and coherent processes, which in prin-
lem was to determine whether and on what time scaleiple of course take place simultaneously. Second, the
Bose-Einstein condensation might be observed in ongoingoherent stage of the evolution is described by a time-
experiments with magnetically trapped atomic hydrogerdependent nonlinear Schrédinger equation for the com-
[2], and for that purpose the semiclassical theory was sufplex order parametep (x, r) = (¥ (x, t)), which formally
ficiently accurate. However, now that Bose-Einstein conhas the property that if the order parameter is zero ini-
densation has actually been achieved, although in atomitally it will always remain zero. Therefore, to obtain a
8Rb [3], Li [4] , and **Na [5] vapors instead of an nonzero value of the order parameter the semiclassical
atomic hydrogen gas, it appears feasible that experimeriheory actually makes use of the fact that there are quan-
tal studies of the dynamics of Bose-Einstein condensatiotum fluctuations ing (x, r) without taking these explicitly
can be performed in such detail that a more elaborate théato account. The resolution of both of these fundamen-
ory is required to fully understand the outcome of thesdal problems is theoretically challenging since it requires
future experiments. Indeed, the first steps toward this goa description of the condensate that goes beyond the usual
have already been made recently [6]. As a result of thesBogoliubov (or mean-field) approach. As we will show
exciting developments, we aim in this paper to presenhow, it can nevertheless be achieved by considering the
such a more detailed theory and to describe the physicélll quantum theory.
picture that emerges from it. To arrive at the quantum theory of the order parameter

In the semiclassical theory the formation of the conden< (X, 1), it is, in contrast to the semiclassical approach,
sate proceeds in three subsequent stages. In the first staget sufficient to derive the equation of motion for the
the gas is quenched into the critical region of the phasexpectation value of the (Heisenberg) operag(x, )
transition, for example, by means of evaporative coolingthat annihilates an atom at positioh and at timez.
This quenching of the gas is a kinetic process and can biastead we need to find an equation that determines the
accurately described by the quantum Boltzmann equatiorevolution of the full probability distributionP[¢*, ¢; 1],
However, it is well known that such a kinetic equationso that we are able to consider also the fluctuations
cannot describe the buildup of coherence in the gas and ¢(x,7). This is most easily achieved as follows.
therefore does not lead to a macroscopic occupation of thietroducing the initial density matrixp(zy) of the at
one-particle ground state [7]. Put differently, incoherentthat time still uncondensed gas and the coherent states
collision processes do not lead to Bose-Einstein conden¢ (), 1) = exp{ [ dx ¢ (X)y T (%, 1)}|0), where|0) denotes
sation. To achieve that, a second stage is needed in whithe vacuum state, the probability distributi®i¢™, ¢; ¢]
the gas first develops the instability toward Bose-Einsteirof interest equals
condensation and then coherently populates the ground By |, 1){c,1|
state by a depletion of the low-lying excited states. After Pl ¢:1] = Tr[p(t‘)) (b, 1], 1) ] 1)
this coherent stage the gas has acquired a highly noneqL|\i/I

librium enerav distribution. and must come t ilibrium loreover, using an expansion @f(zy) in terms of the
ibrium energy distribution, and must come to equilibrium oy, o sherent states, the latter can be rewritten as the
in a third and final stage. This last stage is again of

L . > Junctional integral
kinetic nature and can be studied by the appropriate quan- 9

tum Boltzmann equation for the Bogoliubov quasiparticles P[p*, ¢;t] = ] dldld[dolplldol*; o)
of the Bose condensed gas.

Although the semiclassical theory gives important in- Kb, tlgpo. o) 2
sight into the physics of the nucleation of Bose-Einstein (D, tlp,t) (2)
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Since(e,t|p, 1) = expf [ dx|¢ (¥)|?} is, in fact, indepen- Ref. [1], because we have to perform a functional integral

dent of time, our task is essentially reduced to the deterever all field configurationg(x, ) that evolve fromy, to

mination of the probability({¢, t| by, 10)|>. t and back tay, i.e., along the Keldysh contodt. Using
This we achieve by writing ¢, t|¢o, ) as a “path” the results obtained there, we conclude that the probability

integral over all field evolutions from to ¢. Similarly,  distribution for ¢ (x) is given by

we also write (@, t|do, t0)* = {Po,t0|l¢p,t) as a “path” ;

integral over fields, but these can now be seen as evolving P[¢™, ¢;t] = f dl1d[] exm’—S[gb*, t,//]}, (3)

backwards in time from to 7y. Performing then also the h

integrations ovekpy(x) in Eq. (2), we see that we are led where the effective actiorS[«*, ] in the integrand

in a natural way to the Keldysh formalism developed |inbecomes

Sy ] = 2Aeiun() + v (05 — 1’}
k
+ fc dt ]C dt’[z ¢£‘(z)[<iﬁ% - §(7¢)>5(l,t') — n3(k;t, z’)}ﬁ(z’)

Z VKKt OO0 (O (b (1) ] (4)

121212

introducing the notatior&(fc)zﬁzly/Zm - ,uose(lz) - ! scattering length of the atoms in the gas. Furthermore,
wo for the kinetic energy of an atom with momentuma  in the same approximation the self-energy obeys the
and massn relative to the chemical potential, at o,  Hartree—Fock-like expression

8(t,t') for the § function on the Keldysh contour defined

by [ di'8(t,1') = 1, andV for the volume of the system. ;¥ (.7, 1) = 2i dk’ Vik — Kk — K,k + k51,1
We arrive at this result by making use of the so- Q2m)3
called ladder or many-bodyr'-matrix approximation. X Gkt 1), (5)

Physically, this means that we include all two-body

scattering processes in the gas, but neglect three (and the effective interaction between the atoms is
more) particle processes. This is justified for a WeakIyV(k K K;t,t"y=[T(k,k',K;t,t')+ T(—k K, K;t, ]/2
interacting Bose gas because of the smallness of the gasterms of the many-body-matrix that is determined by
parametena®, wheren is the density and the two-body | the Lippman-Schwinger equation

. .. ‘ k"
TkE. K1) = Vk — k)8 z’+if t"f
G Rant) = ViE = E0800) + 4 | ar' | 5o

X T(" k', K: 1", 1), (6)

Vik — kKMGK /2 + K";1,t")G(K/2 — k"5t,¢")

with V(lz — /?) the Fourier transform of the interl tarded, advanced, and Keldysh componéits(z, r') and
atomic  potential, G(x,#;x',t") = —iTr{p(ty)Tc X FX(t,1'), respectively [8]. Second, we notice that for the
[y (X, )yt (', )]} the one-particle Green’s function and ultracold atomic gases of interest the thermal de Broglie
T¢ the time-ordening operator along the Keldysh contourwavelengthA = (27h2/mkgT)'/? is so large compared
To extract the equation of motion f@t{¢*, ¢;¢] from  to the scattering lengtla that we are allowed to make
Eq. (3), we want to express the functional integral overa Markovian approximation to the many-bodymatix
the fieldsy(x, 1) and(x, -), which, respectively, live and hence to the self- energj/E(k t,t'); i.e., we can
on the forward and backward branch of the KeldyshuseF ™)X (¢, ') = F&)K(1)8(r — +') for these quantities.
contour, as a functional integral over fields that are deThird, we expand the action up to quadratic order in the
fined on the real axis. This is convenient, because ifield y(x, ), which physically describes the quantum fluc-
this manner we can from the result immediately readuations in the order paramet@#(x, 7)) that are neglected
off the appropriate “Schrodinger” equation for the proba-in the semiclassical theory, and then integrate out this
bility distribution. We achieve this goal in the follow- field. It is important to note that the cubic terms in the
ing way: First, we perform the variable transformationaction should indeed be neglected here to avoid a double
U(x,t=) = ¢(x,1) = x(*,1)/2 in Eq. (3). Substituting counting of the effects of the interaction [1].
this transformation into the effective actigdfy*, ], it After performing the integration overy(x,r), we
turns out to be convenient to decompose the variouslearly arrive at an expression foP[¢*, ¢;7] as a
functions F(z,¢) on the Keldysh contour into their re- functional integral ovep(x,t). Using, for example, the
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methods of canonical quantization, we are now in a posiultimately leads to the central result of the present paper,
tion to derive the “Schrédinger” equation that is solved byi.e., a Fokker-Planck equation describing both the kinetic
this functional integral. Carrying out the above procedureand the coherent stages of the condensation process. It
requires some straightforward but tedious algebra ?ndeads [9]

ih%P = - Z ad)k{g(kwk + i (kN + — Z VO K Ko ¢k,,¢k,}

k! k//

7 * 1 =L L LINAE
+ Z ‘f(k)qb + AX O (k)7 + v > VO Kk )¢,;,¢,;,,¢;r+;:~_;]P

]—;/J:H

[\)l»— 1

92 > 2 I .
Z —a¢fa¢~,{ﬁy(k;t)5’;’z' i ZVK(k,k/,k//)gb,;,H;,,,;(;’),;,,}P, (7)
k,k' k k k"

where ﬁV(i)’f(l;,lﬁc’»,lﬁc”) is a shorthand notation for the instantaneous energy levels otmy(l;;t) = eué) +

V(f)”((k — k" + KN/2, (k' — kK"N/2, k" + k" e(k) + S(k;t). From our experience with the semiclassical

e(k')) and implicitly also depends o®[¢*, ¢;t], be- theory, we know that the self-energies change on a very

cause it depends on the average occupation numbessort time scale ofO(/i/kgT.) for conditions near the

N(k 1) = Tr[p(t0)¢ (t)¢;(1)]. The same is, in fact, true critical temperatureT.. However, the change of the

for the various self-energies as we will see now in moredccupation numbers, as derived from the imaginary part

detalil. R(k t) of EEH)(k t), occurs only on a much longer time
In the above Fokker-Planck equation the nonlineasscale ofO((A./a)*ii/kpT.) determined by the mean free

terms proportional td/(t),K(f{,;}/’ /2//) should be regarded Path of the atoms. As a result it is very accurate to apply

as giving corrections to the linear terms proportional todn adiabatic approximation and use

the self-energies S *) X (k; 1) due to the condensate. The R - dk' dK"

effects of th% above condensate particles have already S(*:7) = 2nT(0,0;0) = 2 Qmp ) 2n)

been included correctly in the linear terms and should

. . (A 2 LINRA(L - 7.
not be accounted for twice. Therefore, in the normal X VN0, k ’ﬁk )lﬁN(k SON (K75 1)
state of the gas we must use the linearized version of 1 — coghrk’ - k"(t — ty)/m)
Eq. (7). Restricting ourself to this case first, we see X F2R . Im ’ (8)

that the real part ofi3* (l; t), which we caIIS(l; t)in
the following, describes the change in the instantaneoushere7* (0 0; 0) = 4mah?/m is the two-bodyl" matrix
energy levels of the gas due to the interactions. Indele(at zero momenta and energy, and

dk' dk"
@m)? ) @)
X AL+ NE D[+ NESOINGK + K = kst) = NRSONE [0+ NE + K = k0T (9)

as also expected from a Fermi's Golden Rule calculatiomfc; t)/at. Moreover, in the same approximation
dk' dk"
@m)3 ) @2n)
X {[1 + N(K;0)][1 + NK";)INK' + K" — k1) + NK;ONE" ;0 [1 + NE' + k" — k0. (10)

R(k;t) = — 27 VO (&, & D8 (e(R) + e(k) — ek’ + k" — k) — e(k))

RSX (ki) = — 4ari VO, kL K Po(e(k) + e(k”) — ek’ + k" — k) — e(k))

Notice that in equilibrium the above relations imply that 1/[N(k) + 1/2], N(k) the Bose distribution evaluated
ASK(k) = 2i[1 + 2N(k)]R(k) which is just the famous at e(k) + S(0; ) — mo and S(0;%) determined self-
fluctuation-dissipation theorem. consistently by Eq. (8). In equilibrium, Bose-Einstein
In the normal state the Fokker-Planck equation incondensation therefore occurs at a temperature such
Eq. (7) thus combines the kinetic evolution of the occu-that §(0; ) = wo. From the semiclassical analysis we
pation numbers due to the quantum Boltzmann equatioRnow that this can be fulfilled only in the case that
with the coherent evolution of the energy levels giveng > 0, and then leads to a critical temperatufg for
by fiw(k; 1) = e(k) + S(0;7). In particular, the solution the interacting gas that is higher than that for the
of the Fokker-Planck equation in the limit— < is due noninteracting gas. Interestingly, the same conclusion
to the fluctuation- d|SS|pat|on theorem correctly glven bywas recently also reached by a completely different
P[¢*, ¢:] = [T; a(k) exp{—a(k)|p;[?}, with (k) =  calculation [10].
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Returning to the nonequilibrium problem of inter- the normal state expressions fﬁl(lz;t) and EEK(/;;I).
est, we see that if the gas is quenched sufficiently farhe kinetic equations for the superfluid state of the gas
into the critical rggion, the effective chemical potential are therefore essentially the same as those recently studied
weir(t) = uo — S(0;7) will become positive during the by Semikoz and Tkachev [13]. Although these do not
kinetic evolution of the gas toward equilibrium. At that properly take into account the coherence effects at low
time, say atr = ¢;, the gas is unstable against the for-momenta/ik < fi\/na, they are sufficiently accurate for
mation of a condensate. To determine how the conderpur purposes because for the quantum gases of interest
sate actually grows after the instability has occurred, wave always have thati/A > fi\/na near the critical
must return to our full nonlinear Fokker-Planck equa-temperature.
tion and discuss the coherent stage that now follows. This completes our discussion of the quantum theory
Neglecting, therefore, the kinetic, i.e., imaginary, termsfor the formation of a condensate in a weakly interact-
in the right-hand side of Eq. (7) and making use ofing Bose gas. Summarizing, we have derived a Fokker-
the fact that in the coherent stage of the evolution, wePlanck equation for the probability distribution of the
are mainly interested in momentak < /i\/na, we can  order paramete (X, t)), which gives a desciption of both
easily show that a solution to the Fokker-Planck equathe kinetic and coherent stages of Bose-Einstein condensa-
tion is P[¢*, ¢:t] = [d[$ild[d1]P[1d11%:1118[|p]|> —  tion. This Fokker-Planck equation implies that the order
|71, where P[|¢,|%;11] is the probability distribution parameter obeys a dissipative nonlinear Schrodinger equa-
after the kinetic stage and.(%, r) is the solution of the tion with a Langevin noise termy(x, r), which in a good

nonlinear Schrodinger equation approximation has a Gaussian probability distribution that
) F2V2 L fulfills the fluctuation-dissipation theorem. We have also
i<l =1 — we(t) + T(”(O, 0,0;0)| ¢l discussed the qualitative behavior of the solutions to the
ot Zm Fokker-Planck equation. Finally, we believe that the gen-
X P eral formalism presented here can also be used for the study
with the initial conditiong./(%, 1) = ¢ (%). of an atomlaser.
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