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Initial Stages of Bose-Einstein Condensation
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We present the quantum theory for the nucleation of Bose-Einstein condensation in a dilute ato
Bose gas. This quantum theory has the important advantage that both the kinetic and coh
stages of the nucleation process can be described in a unified way by a single Fokker-Pl
equation. [S0031-9007(96)02280-6]
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In two previous papers we have developed the sem
classical theory for the nucleation of Bose-Einstein con
densation in a weakly interacting Bose gas [1]. At tha
time the main reason for studying this nucleation prob
lem was to determine whether and on what time sca
Bose-Einstein condensation might be observed in ongoi
experiments with magnetically trapped atomic hydroge
[2], and for that purpose the semiclassical theory was su
ficiently accurate. However, now that Bose-Einstein con
densation has actually been achieved, although in atom
87Rb [3], 7Li [4] , and 23Na [5] vapors instead of an
atomic hydrogen gas, it appears feasible that experime
tal studies of the dynamics of Bose-Einstein condensatio
can be performed in such detail that a more elaborate th
ory is required to fully understand the outcome of thes
future experiments. Indeed, the first steps toward this go
have already been made recently [6]. As a result of the
exciting developments, we aim in this paper to prese
such a more detailed theory and to describe the physic
picture that emerges from it.

In the semiclassical theory the formation of the conden
sate proceeds in three subsequent stages. In the first st
the gas is quenched into the critical region of the phas
transition, for example, by means of evaporative cooling
This quenching of the gas is a kinetic process and can
accurately described by the quantum Boltzmann equatio
However, it is well known that such a kinetic equation
cannot describe the buildup of coherence in the gas a
therefore does not lead to a macroscopic occupation of t
one-particle ground state [7]. Put differently, incoheren
collision processes do not lead to Bose-Einstein conde
sation. To achieve that, a second stage is needed in wh
the gas first develops the instability toward Bose-Einste
condensation and then coherently populates the grou
state by a depletion of the low-lying excited states. Afte
this coherent stage the gas has acquired a highly noneq
librium energy distribution, and must come to equilibrium
in a third and final stage. This last stage is again of
kinetic nature and can be studied by the appropriate qua
tum Boltzmann equation for the Bogoliubov quasiparticle
of the Bose condensed gas.

Although the semiclassical theory gives important in
sight into the physics of the nucleation of Bose-Einstei
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condensation and the various time scales involved, it
not completely satisfying physically because of the fo
lowing two reasons. First, it makes a sharp distinctio
between kinetic and coherent processes, which in pr
ciple of course take place simultaneously. Second, t
coherent stage of the evolution is described by a tim
dependent nonlinear Schrödinger equation for the co
plex order parameterfs $x, td ; kcs $x, tdl, which formally
has the property that if the order parameter is zero in
tially it will always remain zero. Therefore, to obtain a
nonzero value of the order parameter the semiclassi
theory actually makes use of the fact that there are qu
tum fluctuations infs$x, td without taking these explicitly
into account. The resolution of both of these fundame
tal problems is theoretically challenging since it require
a description of the condensate that goes beyond the us
Bogoliubov (or mean-field) approach. As we will show
now, it can nevertheless be achieved by considering
full quantum theory.

To arrive at the quantum theory of the order parame
fs$x, td, it is, in contrast to the semiclassical approac
not sufficient to derive the equation of motion for th
expectation value of the (Heisenberg) operatorcs $x, td
that annihilates an atom at position$x and at time t.
Instead we need to find an equation that determines
evolution of the full probability distributionPffp, f; tg,
so that we are able to consider also the fluctuatio
in fs$x, td. This is most easily achieved as follows
Introducing the initial density matrixrst0d of the at
that time still uncondensed gas and the coherent sta
jfs$xd, tl ­ exph

R
d $xfs$xdcys$x, tdjj0l, where j0l denotes

the vacuum state, the probability distributionPffp, f; tg
of interest equals

Pffp, f; tg ­ Tr

(
rst0d

jf, tl kf, tj
kf, tjf, tl

)
. (1)

Moreover, using an expansion ofrst0d in terms of the
above coherent states, the latter can be rewritten as
functional integral

Pffp, f; tg ­
Z

dffp
0 gdff0grfjf0j

2; t0g

3
jkf, tjf0, t0lj2

kf, tjf, tl
. (2)
© 1997 The American Physical Society
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Sincekf, tjf, tl ­ exph
R

d $xjfs$xdj2j is, in fact, indepen-
dent of time, our task is essentially reduced to the det
mination of the probabilityjkf, tjf0, t0lj2.

This we achieve by writingkf, tjf0, t0l as a “path”
integral over all field evolutions fromt0 to t. Similarly,
we also write kf, tjf0, t0lp ­ kf0, t0jf, tl as a “path”
integral over fields, but these can now be seen as evolv
backwards in time fromt to t0. Performing then also the
integrations overf0s$xd in Eq. (2), we see that we are led
in a natural way to the Keldysh formalism developed
e

n

r-

ng

n

Ref. [1], because we have to perform a functional integr
over all field configurationscs $x, td that evolve fromt0 to
t and back tot0, i.e., along the Keldysh contourC. Using
the results obtained there, we conclude that the probabil
distribution forfs$xd is given by

Pffp, f; tg ­
Z

dfcpgdfcg exp

Ω
i
h̄

Sfcp, cg
æ

, (3)

where the effective actionSfcp, cg in the integrand
becomes
Sfcp, cg ­
X

$k

hfp
$k
c$kstd 1 c

p
$k
stdf$k 2 jf$kj2j

1
Z

C
dt

Z
C

dt0

(X
$k

c
p
$k
std

∑µ
ih̄

≠

≠t
2 js $kd

∂
dst, t0d 2 h̄Ss $k; t, t0d

∏
c$kst0d

2
1

2V

X
$k,$k0, $K

V s $k, $k0, $K; t, t0dcp
$Ky21$k

stdcp
$Ky22$k

stdc $Ky22$k0st0dc $Ky21$k0st0d

)
, (4)
-
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is
introducing the notationjs$kd ­ h̄2 $k2y2m 2 m0 ; es $kd 2

m0 for the kinetic energy of an atom with momentum̄h $k
and massm relative to the chemical potentialm0 at t0,
dst, t0d for the d function on the Keldysh contour defined
by

R
C dt0dst, t0d ­ 1, andV for the volume of the system.

We arrive at this result by making use of the so
called ladder or many-bodyT -matrix approximation.
Physically, this means that we include all two-bod
scattering processes in the gas, but neglect three
more) particle processes. This is justified for a weak
interacting Bose gas because of the smallness of the
parameterna3, wheren is the density anda the two-body
e

u

or

as

scattering length of the atoms in the gas. Furthermo
in the same approximation the self-energy obeys
Hartree–Fock-like expression

h̄Ss $k; t, t0d ­ 2i
Z d $k0

s2pd3
V s $k 2 $k0, $k 2 $k0, $k 1 $k0; t, t0d

3 Gs $k0; t0, td , (5)

and the effective interaction between the atoms
V s $k, $k0, $K; t, t0d ­ fTs $k, $k0, $K; t, t0d 1 Ts2$k, $k0, $K; t, t0dgy2
in terms of the many-bodyT -matrix that is determined by
the Lippman-Schwinger equation
Ts $k, $k0, $K; t, t0d ­ V s $k 2 $k0ddst, t0d 1
i
h̄

Z
C

dt00
Z d $k00

s2pd3
V s $k 2 $k00dGs $Ky2 1 k00; t, t00dGsKy2 2 $k00; t, t00d

3 T s $k00, $k0, $K; t00, t0d , (6)
e
lie

he
-

his
e
ble
with V s $k 2 $k0d the Fourier transform of the inter-
atomic potential, Gs $x, t; $x0, t0d ; 2iTrhrst0dTC 3

fcs $x, tdcys$x0, t0dgj the one-particle Green’s function and
TC the time-ordening operator along the Keldysh contou

To extract the equation of motion forPffp, f; tg from
Eq. (3), we want to express the functional integral ov
the fieldscs $x, t1d andcs $x, t2d, which, respectively, live
on the forward and backward branch of the Keldys
contour, as a functional integral over fields that are d
fined on the real axis. This is convenient, because
this manner we can from the result immediately rea
off the appropriate “Schrödinger” equation for the proba
bility distribution. We achieve this goal in the follow-
ing way: First, we perform the variable transformatio
cs $x, t6d ­ fs$x, td 6 xs $x, tdy2 in Eq. (3). Substituting
this transformation into the effective actionSfcp, cg, it
turns out to be convenient to decompose the vario
functions Fst, t0d on the Keldysh contour into their re-
r.

r

h
-

in
d
-

s

tarded, advanced, and Keldysh componentsFs6dst, t0d and
FK st, t0d, respectively [8]. Second, we notice that for th
ultracold atomic gases of interest the thermal de Brog
wavelengthL ­ s2p h̄2ymkBT d1y2 is so large compared
to the scattering lengtha that we are allowed to make
a Markovian approximation to the many-bodyT -matix
and hence to the self-energȳhSs $k; t, t0d; i.e., we can
useFs6d,K st, t0d . Fs6d,K stddst 2 t0d for these quantities.
Third, we expand the action up to quadratic order in t
field xs $x, td, which physically describes the quantum fluc
tuations in the order parameterkcs $x, tdl that are neglected
in the semiclassical theory, and then integrate out t
field. It is important to note that the cubic terms in th
action should indeed be neglected here to avoid a dou
counting of the effects of the interaction [1].

After performing the integration overxs $x, td, we
clearly arrive at an expression forPffp, f; tg as a
functional integral overfs$x, td. Using, for example, the
769
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methods of canonical quantization, we are now in a po
tion to derive the “Schrödinger” equation that is solved
this functional integral. Carrying out the above procedu
requires some straightforward but tedious algebra a
t
e
a

e
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e
d

ultimately leads to the central result of the present pap
i.e., a Fokker-Planck equation describing both the kine
and the coherent stages of the condensation process
reads [9]
ih̄
≠

≠t
P ­ 2

X
$k

≠

≠f$k

(
js $kdf$k 1 h̄Ss1ds$k; tdf$k 1

1
V

X
$k0,$k00

V s1ds$k, $k0, $k00dfp
$k01$k002$k

f$k00f$k0

)
P

1
X

$k

≠

≠f
p
$k

(
js $kdfp

$k
1 h̄Ss2ds $k; tdfp

$k
1

1
V

X
$k0 ,$k00

V s2ds $k, $k0, $k00dfp
$k0

f
p
$k00

f$k01$k002$k

)
P

2
1
2

X
$k,$k0

≠2

≠f
p
$k
≠f$k0

(
h̄SK s $k; tdd$k,$k0 1

2
V

X
$k00

V K s $k, $k0, $k00dfp
$k01$k002$k

f$k00

)
P , (7)
al
ery

art

ply
where V s6d,Ks $k, $k0, $k00d is a shorthand notation for
V s6d,Ks $k 2 s $k0 1 $k00dy2, s $k0 2 $k00dy2, $k0 1 $k00; es $k0d 1

es $k00dd and implicitly also depends onPffp, f; tg, be-
cause it depends on the average occupation numb
Ns $k; td ; Trfrst0dcy

$k
stdc$kstdg. The same is, in fact, true

for the various self-energies as we will see now in mo
detail.

In the above Fokker-Planck equation the nonline
terms proportional toV s6d,Ks $k, $k0, $k00d should be regarded
as giving corrections to the linear terms proportional
the self-energies̄hSs6d,K s $k; td due to the condensate. Th
effects of the above condensate particles have alre
been included correctly in the linear terms and shou
not be accounted for twice. Therefore, in the norm
state of the gas we must use the linearized version
Eq. (7). Restricting ourself to this case first, we se
that the real part of̄hSs6ds $k; td, which we callSs $k; td in
the following, describes the change in the instantaneo
energy levels of the gas due to the interactions. Inde
ers

re

ar

o
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ld
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the instantaneous energy levels obeyh̄vs$k; td ­ es $kd 1

Ss $k; td. From our experience with the semiclassic
theory, we know that the self-energies change on a v
short time scale ofOsh̄ykBTcd for conditions near the
critical temperatureTc. However, the change of the
occupation numbers, as derived from the imaginary p
Rs $k; td of h̄Ss1ds $k; td, occurs only on a much longer time
scale ofOssLcyad2h̄ykBTcd determined by the mean free
path of the atoms. As a result it is very accurate to ap
an adiabatic approximation and use

Ss $k; td . 2nT s1ds$0, $0; 0d 2 2
Z d $k0

s2pd3

Z d $k00

s2pd3

3 jV s1ds$0, $k0, $k00dj2Ns $k0; tdNs $k00; td

3
1 2 cossh̄ $k0 ? $k00st 2 t0dymd

h̄2 $k0 ? $k00ym
, (8)

whereT s1ds$0, $0; 0d ­ 4pah̄2ym is the two-bodyT matrix
at zero momenta and energy, and
Rs $k; td ­ 2 2p
Z d $k0

s2pd3

Z d $k00

s2pd3
jV s1ds$k, $k0, $k00dj2dssses $k0d 1 es $k00d 2 es $k0 1 $k00 2 $kd 2 es $kdddd

3 hf1 1 Ns $k0; tdg f1 1 Ns $k00; tdgNs $k0 1 $k00 2 $k; td 2 Ns $k0; tdNs $k00; td f1 1 Ns $k0 1 $k00 2 $k; tdgj , (9)

as also expected from a Fermi’s Golden Rule calculation of≠Ns $k; tdy≠t. Moreover, in the same approximation

h̄SK s $k; td ­ 2 4pi
Z d $k0

s2pd3

Z d $k00

s2pd3
jV s1ds $k, $k0, $k00dj2dssses $k0d 1 es $k00d 2 es $k0 1 $k00 2 $kd 2 es $kdddd

3 hf1 1 Ns $k0; tdg f1 1 Ns $k00; tdgNs $k0 1 $k00 2 $k; td 1 Ns $k0; tdNs $k00; td f1 1 Ns $k0 1 $k00 2 $k; tdgj . (10)
ch

t

e
n
t

Notice that in equilibrium the above relations imply tha
h̄SK s $kd ­ 2if1 1 2Ns $kdgRs $kd, which is just the famous
fluctuation-dissipation theorem.

In the normal state the Fokker-Planck equation
Eq. (7) thus combines the kinetic evolution of the occ
pation numbers due to the quantum Boltzmann equat
with the coherent evolution of the energy levels give
by h̄vs $k; td . es $kd 1 Ss$0; td. In particular, the solution
of the Fokker-Planck equation in the limitt ! ` is due
to the fluctuation-dissipation theorem correctly given b
Pffp, f; `g ­

Q
$k as $kd exph2as $kdjf$kj2j, with as $kd ­
t

in
u-
ion
n

y

1yfNs $kd 1 1y2g, Ns $kd the Bose distribution evaluated
at es $kd 1 Ss$0; `d 2 m0 and Ss$0; `d determined self-
consistently by Eq. (8). In equilibrium, Bose-Einstein
condensation therefore occurs at a temperature su
that Ss$0; `d ­ m0. From the semiclassical analysis we
know that this can be fulfilled only in the case tha
a . 0, and then leads to a critical temperatureTc for
the interacting gas that is higher than that for th
noninteracting gas. Interestingly, the same conclusio
was recently also reached by a completely differen
calculation [10].
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Returning to the nonequilibrium problem of inter
est, we see that if the gas is quenched sufficiently
into the critical region, the effective chemical potentia
mclstd ; m0 2 Ss$0; td will become positive during the
kinetic evolution of the gas toward equilibrium. At tha
time, say att ­ t1, the gas is unstable against the fo
mation of a condensate. To determine how the conde
sate actually grows after the instability has occurred, w
must return to our full nonlinear Fokker-Planck equa
tion and discuss the coherent stage that now follow
Neglecting, therefore, the kinetic, i.e., imaginary, term
in the right-hand side of Eq. (7) and making use o
the fact that in the coherent stage of the evolution, w
are mainly interested in momentāhk , h̄

p
na, we can

easily show that a solution to the Fokker-Planck equ
tion is Pffp, f; tg ­

R
dffp

1 gdff1gPfjf1j
2; t1gdfjfj2 2

jfclj
2g, wherePfjf1j

2; t1g is the probability distribution
after the kinetic stage andfcls $x, td is the solution of the
nonlinear Schrödinger equation

ih̄
≠fcl

≠t
­

(
2

h̄2=2

2m
2 mclstd 1 T s1ds$0, $0, $0; 0djfclj

2

)
3 fcl

with the initial conditionfcls $x, t1d ­ f1s$xd.
Clearly, with this approximate solution to the Fokker

Planck equation, we have essentially rederived the se
classical theory of the coherent stage. It is interesting
note that in contrast with the quantum theory for the tur
ing on of a laser [11], this coherent stage of the evolution
important. The reason for this is that in the case of a las
there is only one mode for the photon field, and the no
linear Schrödinger equation then only affects the phase
this mode, with the result thatPffp, f; tg ­ Pfjfj2; t1g.
However, in a Bose gas we are dealing with many mod
and the nonlinear Schrödinger equation actually leads
the building up of population in the one-particle groun
state due to a depopulation of the lowest excited states.
troducing the phasexcl of

R
d $xfcl, the latter picture arises

roughly speaking because the instantaneous energie
the excited states arēhvs $k; td ­ fses $kd 1 h̄ Ùxcl 2 mcl 1

2ncT s1dd2 2 sncT s1dd2g1y2, which are imaginary for low
momenta since the time derivativēh Ùxclstd , mclstd 2

ncstdT s1ds$0, $0, $0; 0d as the population of the lowest ex
cited states decreases in favor of the condensate den
ncstd [12].

Having formed a small condensate density in this wa
the gas then has to evolve toward an equilibrium betwe
the condensate and the noncondensed part of the
For this the imaginary or kinetic terms in the right
hand side of Eq. (7) are responsible. Indeed, using
explicit expressions forV s6d,K s $k, $k0, $k00d following from
Eq. (6), we find that in lowest order the presence of th
condensate has the effect of replacingNs $k0 1 $k00 2 $k; td
by Ns $k0 1 $k00 2 $k; td 1 Vncstd s2pd3ds$k0 1 $k00 2 $kd in
ar
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n-
e
-
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the normal state expressions forRs $k; td and h̄SK s $k; td.
The kinetic equations for the superfluid state of the ga
are therefore essentially the same as those recently studi
by Semikoz and Tkachev [13]. Although these do not
properly take into account the coherence effects at low
momentah̄k , h̄

p
na, they are sufficiently accurate for

our purposes because for the quantum gases of intere
we always have thath̄yL ¿ h̄

p
na near the critical

temperature.
This completes our discussion of the quantum theory

for the formation of a condensate in a weakly interact-
ing Bose gas. Summarizing, we have derived a Fokker
Planck equation for the probability distribution of the
order parameterkcs $x, tdl, which gives a desciption of both
the kinetic and coherent stages of Bose-Einstein condens
tion. This Fokker-Planck equation implies that the order
parameter obeys a dissipative nonlinear Schrödinger equ
tion with a Langevin noise termhs $x, td, which in a good
approximation has a Gaussian probability distribution tha
fulfills the fluctuation-dissipation theorem. We have also
discussed the qualitative behavior of the solutions to th
Fokker-Planck equation. Finally, we believe that the gen
eral formalism presented here can also be used for the stu
of an atomlaser.
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