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Comment on “Moving Glass Phase of Driven
Lattices”

In a recent Letter [1] Giamarchi and Le Douss
(GL) showed that when a periodic lattice is rapid
driven through a quenched random potential, the eff
of disorder persists on large length scales, resulting
a moving Bragg glass (MBG) phase. The MBG w
characterized by a finite transverse critical current and
array of static elastic channels.

They use a continuum displacement fieldusr, td, whose
motion (neglecting thermal fluctuations) in the labor
tory frame obeysh≠tua 1 hv ? ,ua  c11≠a, ? u 1

c66,2ua 1 Fp
a

1 Fa 2 hya , whereFa is the external
driving force. As in [1], we chooseFa  Fda,x and
denote byy thed 2 1 transverse directions. GL observ
that the pinning forceFp

a
splits into static and dynamic

parts Fp
a

 Fstat
a 1 Fdyn

a
, with Fstat

a sr, ud  r0V srd 3P
K?v0 iKaeiK?sr2ud 2 r0,aV srd and Fdyn

a
sr, u, td 

r0V srd
P

K?vfi0 iKaeiK?sr2vt2ud. GL argue that in the
sliding state at sufficiently large velocityFstat gives
the most important contribution to the roughness of t
phonon fieldu, with only small corrections coming from
Fdyn. SinceFstat is alongy and depends only onuy , they
assumeux  0 and obtain a decoupled equation for th
transverse displacementuy. Analysis of this equation
then predicts the moving glass phase with the aforem
tioned properties.

In this Comment we show that the model of Ref. [
neglects important fluctuations that can destroy the
riodicity in the direction of motion. Following recen
work by Chenet al. [2] for driven charge density waves
it can be shown [3] that the longitudinaldynamic force
Fdyn

x doesnot average to zero in a coarse-grained mod
but generates an effective random static drag forcefdsrd.
This arises physically from spatial variations in the im
purity density, and can be obtained by using a va
ant of the high-velocity expansion or by coarse-graini
methods. To leading order in1yF its correlations are
k fdsrdfds0dl  Dddsrd, whereDd , D2yF, andD is the
variance of the quenched random potentialV srd. The cru-
cial difference from Ref. [1] is that in contrast toFdyn, the
effective static drag forcefdsrd is strictly u independent,
as guaranteed by the precise time-translational invaria
of the system coarse grained on the time scale,1yy.

In the presence offd, we now reexamine both the
elasticity and the relevance of longitudinal dislocatio
(i.e., those with Burgers vectors alongx). An improved
elastic description begins with the equation

h≠tua 1 hv ? ,ua  c11≠a, ? u 1 c66,2ua

1 dayFstat
y suyd 1 daxfdsrd . (1)

A simple calculation leads to a transverse corre
tor Bysrd  kfuysrd 2 uys0dg2l that is (for d . 1)
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asymptotically identical to that found by GL, which
exhibits highly anisotropic logarithmic scaling ford  3.
In contrast, theux roughness is dominated byfd , and
Bxsrd  kfuxsrd 2 uxs0dg2l grows algebraically,,sDdy
c2

66dr42d for d , 4 and x , c66yhy, crossing over for
x . c66yhy (and d , 3) to Bxsrd , sDdyc66hyd 3

y32dHsc66xyhyy2d, with Hs0d  const and Hsz ¿
1d , zs32ddy2. We stress that because ofu independence
of fd this power-law scaling forBxsrd holds out to
arbitrary length scales, in contrast to that forBysrd valid
only in the Larkin regime as discussed by GL [1]. Thus
even within the elastic description translational correla
tions along x are short ranged (stretched exponential
Stability with respect to dislocations is more delicate
Nevertheless arguments analogous of those of Ref. [
suggest that dislocation unbinding will occur ford , 3,
converting the longitudinal spatial correlations to the pur
exponential (liquidlike) form. We stress that this situation
corresponds not toux  0, as assumed in Ref. [1], but
rather toku2

xl  ` (indeed,ux is multivalued).
We therefore argue that for intermediate velocitie

(for d # 3) the vortices organize into a stack ofliquid
channels, i.e., a movingsmectic. This is in agreement
with structure functions and real-space images from
recent simulations [5]. The model for this nonequilibrium
smectic state will be the subject of a future publication [3]
An interesting possibility is that atvery large velocities
nonequilibrium KPZ-type nonlinearities (as in Ref. [2]
might lead to a further transition to a more longitudinally
ordered state, with rather different underlying physic
from the MBG.
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