Comment on "Moving Glass Phase of Driven Lattices"

In a recent Letter [1] Giamarchi and Le Doussal (GL) showed that when a periodic lattice is rapidly driven through a quenched random potential, the effect of disorder persists on large length scales, resulting in a moving Bragg glass (MBG) phase. The MBG was characterized by a finite transverse critical current and an array of static elastic channels.

They use a continuum displacement field $\mathbf{u}(\mathbf{r}, \mathbf{t})$, whose motion (neglecting thermal fluctuations) in the laboratory frame obeys $\eta \partial_t u_{\alpha} + \eta \mathbf{v} \cdot \nabla u_{\alpha} = c_{11} \partial_{\alpha} \nabla \cdot \mathbf{u} + c_{66} \nabla^2 u_{\alpha} + F_{\alpha}^p + F_{\alpha} - \eta v_{\alpha}$, where F_{α} is the external driving force. As in [1], we choose $F_{\alpha} = F \delta_{\alpha,x}$ and denote by y the d-1 transverse directions. GL observe that the pinning force F_{α}^p splits into *static* and *dynamic* parts $F_{\alpha}^p = F_{\alpha}^{\text{stat}} + F_{\alpha}^{\text{dyn}}$, with $F_{\alpha}^{\text{stat}}(\mathbf{r}, \mathbf{u}) = \rho_0 V(r) \times \sum_{\mathbf{K}\cdot\mathbf{v}=0} iK_{\alpha}e^{i\mathbf{K}\cdot(\mathbf{r}-\mathbf{u})} - \rho_0 \nabla_{\alpha}V(r)$ and $F_{\alpha}^{\text{dyn}}(\mathbf{r}, \mathbf{u}, t) = \rho_0 V(r) \sum_{\mathbf{K}\cdot\mathbf{v}\neq0} iK_{\alpha}e^{i\mathbf{K}\cdot(\mathbf{r}-\mathbf{v}t-\mathbf{u})}$. GL argue that in the sliding state at sufficiently large velocity \mathbf{F}^{stat} gives the most important contribution to the roughness of the phonon field \mathbf{u} , with only small corrections coming from \mathbf{F}^{dyn} . Since \mathbf{F}^{stat} is along y and depends only on u_y , they assume $u_x = 0$ and obtain a decoupled equation for the transverse displacement u_y . Analysis of this equation then predicts the moving glass phase with the aforementioned properties.

In this Comment we show that the model of Ref. [1] neglects important fluctuations that can destroy the periodicity in the direction of motion. Following recent work by Chen et al. [2] for driven charge density waves, it can be shown [3] that the longitudinal dynamic force F_{x}^{dyn} does not average to zero in a coarse-grained model, but generates an effective random static drag force $f_d(\mathbf{r})$. This arises physically from spatial variations in the impurity density, and can be obtained by using a variant of the high-velocity expansion or by coarse-graining methods. To leading order in 1/F its correlations are $\langle f_d(\mathbf{r}) f_d(\mathbf{0}) \rangle = \Delta_d \delta(\mathbf{r})$, where $\Delta_d \sim \Delta^2 / F$, and Δ is the variance of the quenched random potential $V(\mathbf{r})$. The crucial difference from Ref. [1] is that in contrast to \mathbf{F}^{dyn} , the effective static drag force $f_d(\mathbf{r})$ is strictly **u** independent, as guaranteed by the precise time-translational invariance of the system coarse grained on the time scale $\sim 1/v$.

In the presence of f_d , we now reexamine both the elasticity and the relevance of longitudinal dislocations (i.e., those with Burgers vectors along *x*). An improved elastic description begins with the equation

$$\eta \partial_t u_{\alpha} + \eta \mathbf{v} \cdot \nabla u_{\alpha} = c_{11} \partial_{\alpha} \nabla \cdot \mathbf{u} + c_{66} \nabla^2 u_{\alpha} + \delta_{\alpha y} F_y^{\text{stat}}(u_y) + \delta_{\alpha x} f_d(\mathbf{r}).$$
(1)

A simple calculation leads to a transverse correlator $B_y(\mathbf{r}) = \langle [u_y(\mathbf{r}) - u_y(\mathbf{0})]^2 \rangle$ that is (for d > 1)

asymptotically identical to that found by GL, which exhibits highly anisotropic logarithmic scaling for d = 3. In contrast, the u_x roughness is dominated by f_d , and $B_x(\mathbf{r}) = \langle [u_x(\mathbf{r}) - u_x(\mathbf{0})]^2 \rangle$ grows algebraically, $\sim (\Delta_d / \Delta_d)$ c_{66}^2) r^{4-d} for d < 4 and $x < c_{66}/\eta v$, crossing over for $x > c_{66}/\eta v$ (and d < 3) to $B_x(\mathbf{r}) \sim (\Delta_d/c_{66}\eta v) \times$ $y^{3-d}H(c_{66}x/\eta vy^2)$, with H(0) = const and $H(z \gg$ 1) ~ $z^{(3-d)/2}$. We stress that because of **u** independence of f_d this power-law scaling for $B_x(\mathbf{r})$ holds out to arbitrary length scales, in contrast to that for $B_{\nu}(\mathbf{r})$ valid only in the Larkin regime as discussed by GL [1]. Thus even within the elastic description translational correlations along x are short ranged (stretched exponential). Stability with respect to dislocations is more delicate. Nevertheless arguments analogous of those of Ref. [4] suggest that dislocation unbinding will occur for d < 3, converting the longitudinal spatial correlations to the pure exponential (liquidlike) form. We stress that this situation corresponds not to $u_x = 0$, as assumed in Ref. [1], but rather to $\langle u_x^2 \rangle = \infty$ (indeed, u_x is *multivalued*).

We therefore argue that for intermediate velocities (for $d \leq 3$) the vortices organize into a stack of *liquid* channels, i.e., a moving *smectic*. This is in agreement with structure functions and real-space images from recent simulations [5]. The model for this nonequilibrium smectic state will be the subject of a future publication [3]. An interesting possibility is that at *very* large velocities nonequilibrium KPZ-type nonlinearities (as in Ref. [2] might lead to a further transition to a more longitudinally ordered state, with rather different underlying physics from the MBG.

M. C. M., L. R., and L. B. were supported by the National Science Foundation, Grants No. DMR-9419257, No. DMR-9625111, and No. PHY94-07194, respectively.

Leon Balents,¹ M. Cristina Marchetti,² and Leo Radzihovsky³ ¹Institute for Theoretical Physics University of California Santa Barbara, California 93106-4030 ²Physics Department Syracuse University, Syracuse, New York 13244 ³Physics Department

University of Colorado, Boulder, Colorado 80309

Received 30 July 1996 [S0031-9007(96)02171-0] PACS numbers: 74.60.Ge

- [1] T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. **76**, 3408 (1996).
- [2] L.W. Chen *et al.*, Phys. Rev. B (to be published).
- [3] M.C. Marchetti and Leo Radzihovsky (unpublished).
- [4] L. Balents and M. P. A. Fisher, Phys. Rev. Lett. 75, 4270 (1995).
- [5] K. Moon et al., Phys. Rev. Lett. 77, 2778 (1996).