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Fluctuation-Dominated Kinetics under Stirring
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We investigate the effects of stirring on the kinetics of theA 1 B ! 0 reaction under stoichiometrical
conditions in 2D. We consider both a steady eddy-lattice flow and a random flow mimicking
turbulence. In both situations complex decay patterns are detected. Only an intermediate stage of
the reaction is dominated by mixing. The long-time behavior shows fluctuation-dominated kinetics,
cstd ~ t21y2, governed by effective diffusion. For the case of an eddy-lattice flow a very slow
intermediate regime emerges,cstd ~ t21y4, which is associated with the closed topology of flow lines.
[S0031-9007(96)02254-5]
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Chemical processes often depend on stirring to homo
enize the reactants [1–3]. In fact, due to the sensitivity
the reactions on the mixing procedure,qualitatively dif-
ferent kinetic patterns show up [3]. This is especially im
portant for reactions leading to segregation. In the prese
Letter we consider the kinetics of theA 1 B ! 0 reaction
under stoichiometrical conditions, taking place under tw
dimensional model flows.

As is by now well known, under diffusion the averag
concentrationcstd of (stoichiometric) reactants follows
d dimensions a power lawcstd , sDtd2dy4 (whered #

4) [4–10], which is slower than the classical kinetic
form cstd ~ t21. The classical form is obeyed when the
concentrations are homogeneous at all times, which c
be achieved through efficient procedures such as mixi
by dilatational flow [11], tossing [12], or unbounded
shear flow [13–15]. In general realistic mixing flows
especially in two dimensions, are less effective [1]. W
display this here by considering two flow patterns, on
related to Rayleigh-Bénard convection [16] (a steady tw
dimensional lattice of eddies), the other one being
random flow, which mimics turbulent stirring. A variety
of—rather unexpected—kinetic regimes appears.

We describe the system in terms of reaction-diffusion
advection equations for the local densitiescA,Bsr, td,
having

≠cA

≠t
1 v ? ===cA ­ DDcA 2 kcAcB (1)

and
≠cB

≠t
1 v ? ===cB ­ DDcB 2 kcAcB . (2)

This is the standard approximate scheme [17–19] whe
k denotes the local reaction rate coefficient andD the
molecular diffusivity. The scheme is qualitatively cor
rect in higher dimensions for the reactants passively tran
ported by the flow. The continuous-medium approac
Eqs. (1) and (2), is valid then on length scales much larg
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than the mean interparticle distance and supposes that
velocity does not change considerably on these scales.
our numerical work here, which parallels Ref. [9], we use
D ­ DA ­ DB ­ 0.1 and k ­ 10 and monitorcstd, the
mean concentrationcstd ­ kcAsr, tdl ­ kcBsr, tdl. The
initial conditions correspond to random distributions of re
actants withcs0d ­ 1. The incompressible velocity field
v is given through the stream functionhsx, yd via

vsrd ­ s2≠hy≠y, ≠hy≠xd . (3)

The stationary eddy-lattice flow is modeled using

hsx, yd ­ s2Lu0ynpd cossnpxyLd cossnpyyLd , (4)

while for the “synthetic” time-dependent turbulent flow
we takehsx, y, td to be a Gaussian random process in
space and time, whose correlation functions are chosen
reproduce closely the realistic properties of turbulent flows
This pragmatic point of view allows us to display the role
of generic effects of turbulence on chemical reactions
In what follows a Kraichnan’s energy spectrumEskd ~

k3 exps2k2yk2
0 d is used. The random functionhsx, y, td

is built up from its Fourier harmonics, each one of them
satisfying its own Langevin equation. A detailed accoun
of the numerical procedure is given in Refs. [20–22].

Figure 1 displays on double-logarithmic scales th
cstd behavior for the eddy-lattice flow. The parameter
in Fig. 1(a) are chosen such as to include (howeve
fleetingly) all possible decay regimes. Each of thes
regimes can be shown in more detail through a judiciou
choice of parameters in each particular case; as, e.g.,
Figs. 1(b) and 1(c). The spatial organization of reactan
is shown in Fig. 2. After a fluctuation-dominated initial
stage, Fig. 2, upper left, the reaction enters a regim
which is determined by mixing along flow lines. For
intense flows this regime tends to follow ac ~ t21 law.
© 1997 The American Physical Society 741
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FIG. 1. (a) Plot ofcstd vs t for the eddy-lattice flow with
u0 ­ 2, L ­ 300, and n ­ 30, obtained as an average ove
three realizations. The roman figures I and II denote t
initial stages of the reaction and the mixing along the flo
lines, whereas III corresponds to the slow diffusion acro
the flow lines, after which the transient regime IV and th
asymptotic c ~ t21y2-regime V follow. (b) Plot of cstd for
u0 ­ 10, L ­ 150, and n ­ 2 to render the crossover from
II to III ( c ~ t21y4-regime) clear. (c) Plot ofcstd for u0 ­ 2,
L ­ 300, andn ­ 60 to exhibit regime V,c ~ t21y2. Note the
different scales.

At longer times a crossover towards a much slow
kinetics, of one-dimensional type,c ~ t21y4 takes place,
as can be clearly seen in Fig. 1(b). The slower kinetics
associated with the equilibration of concentrations acro
closed flow lines, e.g., the concentric rings pattern
Fig. 2, upper right. After this stage the reaction insid
each individual eddy has practically finished; one is le
with a quasiperiodic structure, Fig. 2, middle left, whic
742
r
he
w
ss
e

er

is
ss
of
e
ft
h

FIG. 2. Mosaic of patterns showing the spatial organizatio
of reactants, where the grey scale representscA and cB; the
maximum ofA is white and ofB black. Upper left: snapshot
at t ­ 24 of a simulation run withu0 ­ 10, L ­ 150, and
n ­ 2 (regime II). Upper right: as before but now att ­ 60
(regime III). Middle left: snapshot att ­ 300 for u0 ­ 10,
L ­ 150, and n ­ 6, showing regime IV. Middle right:
snapshot att ­ 800 of a simulation run with the parameters
of Fig. 1(a) (regime V). Lower left: a situation under turbulen
flow at t ­ 90 and with the parameters of Fig. 3. Lower right:
spatial organization of reactants in a cylindrical shear flow wit
a ­ 0.16 andL ­ 150 at t ­ 100.

leads to a fast (quasiexponential) decay. Later the spa
structure evolves as in Fig. 2, middle right, and the deca
is c ~ t21y2, i.e., two-dimensional fluctuation-dominated
see Fig. 1(c).

The turbulent flow shows three consecutive types
behavior (Fig. 3). After an initial stage, the kinetics
follows the classicalcstd ~ t21 law due to mixing. Later
on the decay crosses over to a fluctuation-dominat
regime,cstd ~ t21y2, governed by an effective (turbulent)
diffusion. The spatial organization of reactants for thi
case is shown in Fig. 2, lower left. For the sake o
comparison Fig. 3 also showscstd for two nonadvected
systemssv ­ 0d, one with a diffusion coefficient equal
to D and the other with an effective coefficientDp, due
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FIG. 3. Same as Fig. 1 but now for synthetic turbulent flo
in a system withL ­ 300. The flow has the velocity intensity
u2

0 ­ 1.243, a correlation length ofl0 ­ 1.7, and a correlation
time t0 ­ 2. The dashed line corresponds to a nonadvec
reactive system withD ­ 0.1, the dotted one to a nonadvecte
reactive system withDp ­ 1.529. All the results presented are
averages over five realizations. The straight lines have slo
21 and21y2, respectively.

to turbulent diffusion (calculated for the advected sca
[21,22]). The mixing stage interpolates between the sho
time and the long-time regimes, which are governed byD
andDp, respectively.

Common to both types of flow are the following thre
regimes: an initial diffusion-controlled regime (small sca
clustering), a fast (“classical”) regime due to mixin
at intermediate scales, and a long-time, again diffusio
controlled asymptotic behavior (large scale clustering).

We return now to the theoretical explanation of th
intermediate slowing down in the case of an eddy lattic
As already mentioned, this slowing down of the reactio
(which leads to thet21y4 decay pattern) is related to the
closed geometry of the flow lines. Thus the concentrati
fluctuationsalong the flow lines are smoothed out by
mixing, while in the directionperpendicularto the flow
lines the equilibration is due only to the much slowe
process of molecular diffusion. Since for eddy-lattic
flow no exact solution of the diffusion equation is known
we look for simpler flows which display the propert
of interest, namely, closed flow lines. Such a model
provided by the shear flow on a cylindrical surface, wi
the axis of the cylinder pointing in they direction and
x being the coordinate along the circular cross secti
s0 # x , Ld. The flow is v ­ say, 0d. The numerical
results for this flow are given in Fig. 4.

From Eqs. (1) and (2) the difference in local conce
trations,qsr, td ; cAsr, td 2 cBsr, td, is governed by the
equation≠q

≠t 1 v ? ===q ­ DDq [3]. The solution of this
equation can be expressed through its Green’s funct
Gsr, r0, td, which for the flow considered can be built up
using a reflection argument, along the lines of Ref. [23
The calculations parallel those of Refs. [3,9,10] and le
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FIG. 4. Same as Fig. 1 but now for shear flow on the surfac
of a cylinder witha ­ 0.16 andL ­ 150. The slopes shown
correspond to stages I, II, and III of Fig. 1. The results ar
averages over five realizations.

for kq2stdl to

kq2stdl ­
2cs0d
pL

r
p

2Dt

X̀
n­0

3 exp

∑
22Dt

µ
1 1

a2t2

12

∂
p2

L2
n2

∏
. (5)

Moreover, for fast reactions

cstd ­ kjqsr, tdjly2 ~ kq2stdl1y2 (6)

holds. Equations (5) and (6) reproduce all three regim
seen in simulations and displayed in Fig. 4. For sho
times,t , s6L2yp2Da2d1y3, one can replace the summa
tion in Eq. (5) by an integration, obtaining thuskq2stdl ­
2cs0d

p
3ypDtsa2t2 1 12d1y2. Using this form one has

that for very short times,t , a21, the decay follows
the two-dimensional diffusion-controlled kinetic pattern
cstd ~ t21y2, while for t . a21 it follows the classical
cstd ~ 1yt behavior. Fort . s6L2yp2Da2d1y3 only the
first term in Eq. (5) is relevant, so thatcstd ~ kq2stdl1y2 ~

t21y4 holds. This last regime is due to a one-dimension
diffusion across flow lines. These three regimes in Fig.
correspond to the stages I to III in Fig. 1.

In summary, in the case of time-independent edd
lattice flows, the overall kinetics is complex, show
ing different power laws. Especially interesting are th
mixing-dominated intermediate stages, which show fir
a quickc ~ t21 decay and then a slowc ~ t21y4 decay.
For reactions in a random flow which models turbulen
stirring, three stages are seen: The mixing stage inte
polates between the short-time behavior governed by t
molecular diffusion coefficientD and the long-time be-
havior, determined by an effective diffusion coefficien
Dp. For both flows considered here, stirring doesnot
imply mixing on very large scales, and is incapable t
overcome segregation; the long-time behavior is hen
diffusion controlled.
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