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Fluctuation-Dominated Kinetics under Stirring
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We investigate the effects of stirring on the kinetics of the- B — 0 reaction under stoichiometrical
conditions in 2D. We consider both a steady eddy-lattice flow and a random flow mimicking
turbulence. In both situations complex decay patterns are detected. Only an intermediate stage of
the reaction is dominated by mixing. The long-time behavior shows fluctuation-dominated kinetics,
c(r) = 17172, governed by effective diffusion. For the case of an eddy-lattice flow a very slow
intermediate regime emergasy) « +~'/4, which is associated with the closed topology of flow lines.
[S0031-9007(96)02254-5]

PACS numbers: 82.20.—w, 05.40.+j, 47.70.—n

Chemical processes often depend on stirring to homoghan the mean interparticle distance and supposes that the
enize the reactants [1-3]. In fact, due to the sensitivity olvelocity does not change considerably on these scales. In
the reactions on the mixing proceduigjalitatively dif-  our numerical work here, which parallels Ref. [9], we use
ferent kinetic patterns show up [3]. This is especially im-D = D4 = Dg = 0.1 andk = 10 and monitorc(z), the
portant for reactions leading to segregation. In the presemhean concentratiorc(z) = {(c4(r,?)) = {cp(r,1)). The
Letter we consider the kinetics of tie+ B — 0 reaction initial conditions correspond to random distributions of re-
under stoichiometrical conditions, taking place under two-actants withc(0) = 1. The incompressible velocity field

dimensional model flows. v is given through the stream functiof(x, y) via
As is by now well known, under diffusion the average
concentrationc(z) of (stoichiometric) reactants follows v(r) = (—dn/dy,dn/dx). 3

d dimensions a power law(r) ~ (D)~ 4/* (whered =
4) [4-10], which is slower than the classical kinetics The stationary eddy-lattice flow is modeled using
form c(r) « t~!. The classical form is obeyed when the
concentrations are homogeneous at all times, which can 7(x,y) = 2Luo/nm)cognmx/L)cosnmy/L), (4)
be achieved through efficient procedures such as mixing
by dilatational flow [11], tossing [12], or unbounded while for the “synthetic” time-dependent turbulent flow
shear flow [13—-15]. In general realistic mixing flows, we take n(x,y,?) to be a Gaussian random process in
especially in two dimensions, are less effective [1]. Wespace and time, whose correlation functions are chosen to
display this here by considering two flow patterns, onereproduce closely the realistic properties of turbulent flows.
related to Rayleigh-Bénard convection [16] (a steady twoThis pragmatic point of view allows us to display the role
dimensional lattice of eddies), the other one being af generic effects of turbulence on chemical reactions.
random flow, which mimics turbulent stirring. A variety In what follows a Kraichnan's energy spectrufitk) o
of—rather unexpected—kinetic regimes appears. k3 exp(—k2/k3) is used. The random function(x, y, t)

We describe the system in terms of reaction-diffusion-s built up from its Fourier harmonics, each one of them
advection equations for the local densitiegs(r,7),  satisfying its own Langevin equation. A detailed account

having of the numerical procedure is given in Refs. [20-22].
dca ) . _ Figure 1 displays on double-logarithmic scales the
5 TV Vea=DAca = keacs () ¢(t) behavior for the eddy-lattice flow. The parameters
and in Fig. 1(a) are chosen such as to include (however
dcg ) _ _ fleetingly) all possible decay regimes. Each of these
at v Vep = DAcg — keacy. ) regimes can be shown in more detail through a judicious

This is the standard approximate scheme [17-19] wherghoice of parameters in each particular case; as, e.g., in
k denotes the local reaction rate coefficient andthe  Figs. 1(b) and 1(c). The spatial organization of reactants
molecular diffusivity. The scheme is qualitatively cor- is shown in Fig. 2. After a fluctuation-dominated initial
rect in higher dimensions for the reactants passively transstage, Fig. 2, upper left, the reaction enters a regime
ported by the flow. The continuous-medium approachwhich is determined by mixing along flow lines. For
Egs. (1) and (2), is valid then on length scales much largeiqtense flows this regime tends to followcas ¢! law.
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(6] FIG. 2. Mosaic of patterns showing the spatial organization
of reactants, where the grey scale represetand cp; the
maximum ofA is white and ofB black. Upper left: snapshot
at + = 24 of a simulation run withuy = 10, L = 150, and

-2
10 : n = 2 (regime Il). Upper right: as before but now at= 60
(regime 111). Middle left: snapshot at = 300 for uy, = 10,

L =150, and n = 6, showing regime IV. Middle right:
t snapshot at = 800 of a simulation run with the parameters
. . of Fig. 1(a) (regime V). Lower left: a situation under turbulent
FIG. 1. (a) Plot ofc(r) vs ¢ for the eddy-lattice flow with 6, 3¢, — 90 and with the parameters of Fig. 3. Lower right:

up =2, L =300, and n = 30, obtained as an average OVer ghatia| organization of reactants in a cylindrical shear flow with
three realizations. The roman figures | and Il denote thea = 0.16 andL = 150 atz = 100.

initial stages of the reaction and the mixing along the flow
lines, whereas Ill corresponds to the slow diffusion across
the flow lines, after which the transient regime IV and the
asymptoticc « t~!/2-regime V follow. (b) Plot ofc(r) for  leads to a fast (Qquasiexponential) decay. Later the spatial

up = 10, L = 150, and n = 2 to render the crossover from structure evolves as in Fig. 2, middle right, and the decay
Il'to 1l (¢ o r~'/%-regime) clear. (c) Plot of(r) for uy =2, jg ¢ « =172, j.e., two-dimensional fluctuation-dominated;
L = 300, andn = 60 to exhibit regime V¢ « t~!/2, Note the :
. see Fig. 1(c).
different scales. .
The turbulent flow shows three consecutive types of

behavior (Fig. 3). After an initial stage, the kinetics
At longer times a crossover towards a much slowerfollows the classicat(r) « ¢! law due to mixing. Later
kinetics, of one-dimensional type, :~!/* takes place, on the decay crosses over to a fluctuation-dominated
as can be clearly seen in Fig. 1(b). The slower kinetics isegime,c(r) = r~'/2, governed by an effective (turbulent)
associated with the equilibration of concentrations acrosdiffusion. The spatial organization of reactants for this
closed flow lines, e.g., the concentric rings pattern oftase is shown in Fig. 2, lower left. For the sake of
Fig. 2, upper right. After this stage the reaction insidecomparison Fig. 3 also showsr) for two nonadvected
each individual eddy has practically finished; one is leftsystems(v = 0), one with a diffusion coefficient equal
with a quasiperiodic structure, Fig. 2, middle left, whichto D and the other with an effective coefficient’, due
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FIG. 3. Same as Fig. 1 but now for synthetic turbulent flowFIG. 4. Same as Fig. 1 but now for shear flow on the surface
in a system withl. = 300. The flow has the velocity intensity of a cylinder witha = 0.16 andL = 150. The slopes shown

ug = 1.243, a correlation length of, = 1.7, and a correlation correspond to stages I, Il, and Il of Fig. 1. The results are
time 7o = 2. The dashed line corresponds to a nonadvecte@verages over five realizations.
reactive system witlD = 0.1, the dotted one to a nonadvected

reactive system witlb* = 1.529. All the results presented are

averages over five realizations. The straight lines have slo 2

-1 angd —1/2, respectively. 9 PFor (¢2(1)) to

oo

@y =29 [T ¢
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to turbulent diffusion (calculated for the advected scalar 7L V2Dt 1=
[21,22]). The mixing stage interpolates between the short- 3 R
time and the long-time regimes, which are governedby xexp —2Di\ 1 + ——= |5 n7 . (5)
andD", respectively. _ Moreover, for fast reactions
Common to both types of flow are the following three 2012
regimes: an initial diffusion-controlled regime (small scale c(t) = (lq(r, 1)[}/2 < {g~(1)) (6)

clustering), a fast (“classical”) regime due to mixing holds. Equations (5) and (6) reproduce all three regimes
at intermediate scales, and a long-time, again diffusionseen in simulations and displayed in Fig. 4. For short
controlled asymptotic behavior (large scale clustering). times,r < (6L%/72D«?)"/?, one can replace the summa-
We return now to the theoretical explanation of thetion in Eq. (5) by an integration, obtaining th(g (1)) =
intermediate slowing down in the case of an eddy lattice2¢(0)+/3/7Dt(a2> + 12)1/2. Using this form one has
As already mentioned, this slowing down of the reactionthat for very short timesy < o !, the decay follows
(which leads to the~'/* decay pattern) is related to the the two-dimensional diffusion-controlled kinetic pattern
closed geometry of the flow lines. Thus the concentration(r) « 1~1/2, while for > a~! it follows the classical
fluctuationsalong the flow lines are smoothed out by ¢(r) « 1/ behavior. Forr > (6L%/72D«a?)'/? only the
mixing, while in the directionperpendicularto the flow first term in Eq. (5) is relevant, so thatr) o (g2(¢))!/2 o«
lines the equilibration is due only to the much slower;~'/# holds. This last regime is due to a one-dimensional
process of molecular diffusion. Since for eddy-latticediffusion across flow lines. These three regimes in Fig. 4
flow no exact solution of the diffusion equation is known, correspond to the stages I to Ill in Fig. 1.
we look for simpler flows which display the property In summary, in the case of time-independent eddy-
of interest, namely, closed flow lines. Such a model idattice flows, the overall kinetics is complex, show-
provided by the shear flow on a cylindrical surface, withing different power laws. Especially interesting are the
the axis of the cylinder pointing in the direction and mixing-dominated intermediate stages, which show first
x being the coordinate along the circular cross sectiom quickc « +~! decay and then a slow « t~/* decay.
(0=x<L). The flow isv = (ay,0). The numerical For reactions in a random flow which models turbulent
results for this flow are given in Fig. 4. stirring, three stages are seen: The mixing stage inter-
From Egs. (1) and (2) the difference in local concen-polates between the short-time behavior governed by the
trations,qa(r,t) = ca(r,1) — cp(r, 1), is governed by the molecular diffusion coefficienD and the long-time be-
equation3Z + v - Vg = DAq [3]. The solution of this havior, determined by an effective diffusion coefficient
equation can be expressed through its Green’s functio®@*. For both flows considered here, stirring dasst
G(r,r’,t), which for the flow considered can be built up, imply mixing on very large scales, and is incapable to
using a reflection argument, along the lines of Ref. [23].overcome segregation; the long-time behavior is hence
The calculations parallel those of Refs. [3,9,10] and leadliffusion controlled.
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