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Interaction-Induced Oscillations of the Tunneling Density of States
in a Nonquantizing Magnetic Field
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We study tunneling into an interacting disordered two-dimensional electron gas in a nonquan
magnetic field, which does not cause the standard de Haas–van Alphen oscillations. Interaction in
a new type of oscillation in the tunneling density of states with the characteristic period of cyclo
quantumh̄vc. [S0031-9007(96)02182-5]

PACS numbers: 73.40.Gk, 71.10.Pm
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It is well known that a strong magnetic field modifie
the single-particle density of states (DOS) of noninterac
ing electrons due to the Landau quantization. In a tw
dimensional electron gas, the quantization leads to a p
structure in the DOS, which is revealed in tunneling e
periments as peaks in the dependence of the tunne
conductance on applied bias, see, e.g., Ref. [1]. The fo
and the width of these peaks are determined [2] by the d
order. Experiments [1,3,4] show also suppression of t
conductance at zero bias. This suppression is a manife
tion of interaction between electrons and has been stud
theoretically both for disordered [5] and for clean [6] two
dimensional conductors in the quantizing magnetic field

In a weak magnetic field the distance between the La
dau levels,h̄vc, is smaller than their disorder-induced
width. In such “classical” magnetic field, the Landa
quantization peaks in DOS disappear, while the aforeme
tioned interaction correction to tunneling DOS survive
and in the limit of zero field evolves into a singular at th
Fermi energy negative logarithmical correction predicte
originally by Altshuler, Aronov, and Lee [7].

The question arises whether or not in such “class
cal,” vcts ø 1, limit the magnetic field influences the
spatially averaged density of electron states measured
tunneling experiments (herets is the electron quantum
lifetime). For the noninteracting system, the effect of th
weak magnetic field on DOS is exponentially small [2
~ expf22pysvctsdg, and can be neglected. The goal o
the present paper is to show that, contrary to the nonint
acting case, in theinteractingelectron gas the “classical”
magnetic field does produce a significant effect on tunn
ing DOS. This effect becomes pronounced if the disord
potential is weak enough and smooth, with the correlati
length much larger than the Fermi wavelength and the a
plitude much smaller than the Fermi energy. In such
potential, electrons experience small-angle scattering, a
their transport relaxation timettr , is much larger thants.
Thus there exists a range of magnetic fields in which La
dau quantization is suppressed (vcts ø 1), while classi-
cal electron trajectories are strongly affected by the fie
(vcttr ¿ 1). In this regime interaction correction to the
tunneling DOS,dnsed, is strongly enhanced with respec
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to the zero magnetic field case. Furthermore, we will sho
that it exhibits peaks as a function of energy with th
distance between peaks equal to the cyclotron quantu
h̄vc. The further a peak is away from the Fermi level, th
smaller and wider it is. The shape of thenth peak in DOS,
je 2 nh̄vcj & h̄vcy2, is given by:

dnsed
n

­
h̄svcttr d2

8peFttr

1
n

f

√
e 2 nh̄vc

h̄n2yttr

!
, (1)

where

fsxd ­
1

p
2

"
1 1

p
x2 1 1

x2 1 1

#1y2

, (2)

energy e is measured from the Fermi level, andn ­
myp h̄2 is the free-electron density of states (m is the
electron mass). The peaks overlap strongly fore *

h̄vc
p

vcttr , and the oscillatory structure is washed out.
Sensitivity of tunneling DOS to the classical magneti

field comes from the fact that, as we will show, the
interaction correction to tunneling DOS is associate
with the self-crossing of classical electron trajectorie
We denote the probability for an electron to complet
a loop of self-crossing trajectory over timet as Kstd.
The interaction correction to DOS,dnsed, turns out to
be related to the Fourier transform of this probability
dnsed ~ Ksed ­

R`

0 dte2ietKstd. The strong enough,
vcttr ¿ 1, magnetic field curves the electron trajectories
significantly affects the return probability, and, in turn
affects the tunneling DOS.

For long time scalest ¿ ttr , the functionKstd can be
found from the diffusion equation. It givesKstd ~ sDtd21

for the two-dimensional case (D is the diffusion coeffi-
cient). The Fourier transform,Ksed, is proportional to
lnsed, which leads to a predicted by Altshuler, Aronov
and Lee [7] logarithmic correction to DOS at small ener
gies, e ø h̄yttr , with the renormalized by the magnetic
field diffusion coefficient [8].

At short time scales,t ø ttr , electrons move ballisti-
cally along the cyclotron orbits. Provided thatvcttr ¿
1, during the timet electron may return to the initial point
many times. Thus, at these short time scales the magne
field significantly increases the return probabilityKstd.
© 1997 The American Physical Society 709
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Multiple periodic returns of the electron produce peaks
the probability Fourier transformKsed at energies, which
are multiples of the cyclotron quantum. Tunneling de
sity of states oscillates with the same period, which
reflected by Eq. (1).

Now we derive the expression for the interaction corre
tion to DOS valid for arbitrary energies. We will puth̄ ­ 1
in all intermediate formulas. In an ideal pure samp
the electron density does not depend on coordinat
nesrd ­ n0. Due to the sharp Fermi edge, scattering
the electron forming the Fermi sea on impurities results
an interference pattern in electron density. This patte
is commonly referred to as the Friedel oscillation [9
In general, one can express the density profile of non
teracting electrons in terms of the exact retarded Gre
function, GR

e sr, r0d ­
P

l c
p
l sr0dclsrdyse 2 el 1 i0d , of

an electron in the random potential:

nesrd ­ 2
2
p

Z 0

2eF

de ImGR
e sr, rd . (3)

Single electron wave functionclsrd satisfies the
Schrödinger equation for noninteracting electron
Ĥ0cl ­ sel 1 EFdcl , where Ĥ0 ­ 2sh̄2y2md=2 1 Ursrd,
EF is the Fermi energy, andUr srd is the random potential.
In the presence of interactionV sr 2 r0d between electrons,
the Friedel oscillation produces an additional term in th
Hamiltonian, ĤHF , which can be presented (see, e.g
Ref. [9]) as a sum of Hartree,VH , and exchange,VF ,
terms:

HHFsr, r0d ­ VHsrd dsr 2 r0d 2 VFsr, r0d (4)

VHsrd ­
Z

V sr 2 r00ddnesr00ddr00 , (5)

VFsr, r0d ­
1
2

V sr 2 r0ddrsr, r0d. (6)

Here drsr, r0d is the perturbation of the density matrix
rsr, r0d ­ 2s2ypd

R
de ImGR

e sr, r0d, by the random po-
tential. Only the electrons with the same spin participa
in the exchange interaction, which is reflected by the fac
1y2 in Eq. (6). The Hartree-Fock energy (5)–(6) oscillate
as a function of coordinate in the same manner asdnesrd
does.

The local DOS is related to the retarded Green functi
of electron, nse, rd ­ 2s2ypd ImGR

e sr, rd. Scattering
of electron on the Hartree-Fock potential, Eqs. (5)–(6
induces a correction toGR

e sr, rd, which, in the Born
approximation, can be expressed as:

dGR
e sr, rd ­

Z
GR

e sr, r0dVHsr0dGR
e sr0, rddr0

2
Z

GR
e sr, r0dVFsr0, r00dGR

e sr00, rddr0dr00.

(7)

We will be interested in the spatially averaged density
states,dnsed ­ s1yS d

R
dnse, rddr, whereS is the area

of the system. For simplicity we will start with the cas
710
n

-
s

-

e
s,
f

in
rn
.
n-
en

,

e
.,

e
r

s

n

),

f

of the finite-range interaction potential and will calculat
the Hartree contribution to the averaged DOS. Makin
use of Eqs. (3), (5), and (7), and exploiting the identitR

GR
e sr0, rd GR

e sr, r00ddr ­ ≠GR
e sr0, r00dy≠e, we obtain:

dnHsed ­
2

p2S
Re

Z 0

2eF

de1

Z
dr0dr00V sr0 2 r00d

3
≠GR

e sr0, r0d
≠e

fGR
e1

sr00, r00d 2 GA
e1

sr00, r00dg ,

(8)

whereGA
e sr, r0d ­ fGR

e sr0, rdgp. We are interested in the
correction to the density of states averaged over the re
zations of the disorder potential. Average of the produ
of two retarded Green functionsGR

e sr0, r0dGR
e1

sr00, r00d
does not contain contributions associated with the electr
trajectories longer thanlF . Thus, this product does not
produce DOS energy dependence at small, as compa
to EF , energies, and can be neglected. On the contra
averaged productGRGA is determined by long electron
trajectories. Furthermore, it can be expressed [10]
terms of the classical probability densityD :

kGR
e1

sr1, r2dGA
e2

sr3, r4dl ­ pn
Z df1

2p

Z df2

2p

3eip1sr12r4deip2sr32r2dD se1 2 e2; r1, f1; r2, f2d ;

D sv; 1; 2d ­
Z `

0
dteivtD st; 1; 2d . (9)

Herepi ­ pFscosfi, sinfid, andD st; 1; 2d is the proba-
bility density for electron which starts at momentt ­ 0
in point r1 with the direction of momentumf1 to arrive
at momentt to the pointr2 with momentum directionf2.

Equation (9) is valid as long as the sizesjr1 2 r4j

and jr2 2 r3j of spatial domains defining the ends of
trajectory are small enough, so that electron propagat
in these two domains can be described by plane wav
Thus formula (9) is valid ifeFttr ¿ 1 (semiclassical
regime), and for the arguments sufficiently close to ea
other pairwise; in general, the conditionjr1 2 r4j, jr2 2

r3j ø yFts must be satisfied; however, in the specia
case of Eq. (8), we need the product of Green functio
with r1 ­ r3 and r2 ­ r4, and this condition can be
eased. Indeed, the integral over the angular variables
Eq. (9) is dominated by the close to each other mome
p1 and p2, and therefore a weaker requirement,jr1 2

r4j, jr2 2 r3j ø ltr , Rc, should be satisfied. HereRc ­
yFyvc is the cyclotron radius,ltr ­ yFttr is the electron
transport relaxation length, andyF andpF are the Fermi
velocity and momentum, respectively. Further derivatio
of the Hartree correction requires substitution of Eq. (9
with argumentsr1 ­ r2 ­ r0 and r3 ­ r4 ­ r00, into
Eq. (8) and integration over the difference betweenr0

andr00. These coordinates are coupled by the interacti
potentialV sr0 2 r00d. Hence, performing the integration
we can exploit Eq. (9) only if the range of the interactio
potentiald is sufficiently short,d ø ltr , Rc.
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For a macroscopically homogeneous sample, class
probability D depends only on difference of its coord
natesr ­ r2 2 r1. Using this fact and Eqs. (8) and (9
we find:
dnHsed

n
­ 2

2
p

Re
Z `

e

dv
Z df1df2

s2pd2

≠D sv; r ­ 0; f1, f2d
≠v

3 V s2pF j sinfsf1 2 f2dy2gjd , (10)

whereV sqd is a Fourier transform of the interaction pote
tial. Formula (10) can be easily generalized for the cas
the long range Coulomb potentialV sqd ­ 2pe2ykq (here
k is the dielectric constant). For such a potential,V sqd in
Eq. (10) should be replaced (see, e.g., Ref. [7]) by
screened potentialVscr sqd ­ 2pe2yfksq 1 2yaBdg with
aB ­ h̄2kyme2 being the effective Bohr radius. Note th
the range of screened Coulomb potential,Vscr srd, is of the
order of the effective Bohr radius, and, therefore, mu
smaller thanltr and Rc. Integration over the frequenc
in Eq. (10) immediately gives the resulting expression
the Hartree contribution:

dnHsed
n

­
2
p

Re
Z df1df2

s2pd2 D se; r ­ 0; f1, f2d

3 Vscr s2pF j sinfsf1 2 f2dy2gjd . (11)

The exchange correction to DOS can be obtained
a similar way as Eq. (11). The difference is, howev
that in the exchange counterpart of Eq. (10), one sho
put the retarded screened potentialVscr sv, qd instead
of V sqd. The retardation of the interaction potenti
makes immediate integration over frequencies, that le
Eq. (11), no longer possible. The resulting expression
the exchange correction has the form:

dnFsed
n

­
1
p

Re
Z `

e

dv
Z dq

s2pd2
Vscr sv, qd

≠Dsv; qd
≠v

,

(12)

where Vscr sv, qd ­ V sqdyf1 1 V sqdPsq, vdg, with Psq,
vd ­ nf1 1 ivDsv; qdg being the polarization operato
and

Dsv; qd ­
Z df1

2p

Z df2

2p
dr e2iqr D sv; r; f1, f2d .

(13)

Equations (11) and (12) express the interaction corr
tion to tunneling DOS in terms of classical probabili
densityD se; r; f1, f2d and are valid at energiese & EF .
Function D se; r; f1, f2d can be found from the Boltz
mann equation describing the scattering of electrons
impurities. In the special casets ø ttr we are interested
in, scattering on small angles dominates the collision
tegral. With account for this simplification, the transpo
equation takes the Fokker–Planck form:

s2iv 1
p2

me

≠

≠r
1 vc

≠

≠f2
2

1
ttr

≠2

≠f
2
2

dD sv; r; f1, f2d

­ 2pdsf1 2 f2d dsrd . (14)

Equation (14) describes electron motion along the
clotron orbit accompanied by angular diffusion caused
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scattering on a random potential. Analysis of Eq. (14
yields:

D sv; q; f1, f2d ­
X
n

Dnsv; q; f1, f2d , (15)

Dnsv; q; f1, f2d

­
einsf22f1deiRcqfsp12p2dypF 3zg

2isv 2 nvcd 1 R2
cq2y2ttr 1 n2yttr

, (16)

wherez is a unit vector parallel to the magnetic field. The
solution (15)–(16) is valid forqRc ø v2

cttr ysjvj 1 vcd.
The obtained solution of transport equation together wi
Eqs. (11) and (12) enables us to calculate the interacti
correction to DOS in the classical magnetic field.

At small frequencies,v ø h̄yttr , the n ­ 0 term
in Eq. (16) contains a part independent on initia
f2, and final, f1, directions of the electron mo-
mentum. This part dominates in Eq. (15), so tha
D sv; q; f1, f2d ø 1ys2iv 1 R2

cq2y2ttr d. This limit
corresponds to the diffusion regime studied in Refs. [7,8
Comparing Eqs. (12) and (11), one sees that in th
diffusion regime the exchange correction to DOS con
tains the interaction potential,Vscr sv, kd, at very small,
kRc & 1, momentum transfers, while for the Hartree
correction the potential at large,k & pF , momentum
transfers is important. Provided that the interactio
potential decreases rapidly with the increase ofk, one
concludes [7] that in the diffusion regime,e ø h̄yttr ,
the exchange contribution to DOS, Eq. (12), dominate
over the Hartree one. The resulting expression for th
interaction correction to DOS in this regime yields:

dnsed
n

­ 2
h̄svcttrd2

8peFttr
ln

"
jejttr

h̄

#
ln

"
jejttr a

4
B

h̄R4
c

#
. (17)

Equation (17) corresponds to the Altshuler–Aronov
Lee [7] result with the renormalized by magnetic field
diffusion coefficientD ­ R2

cy2ttr .
At larger frequencies,v ¿ h̄yttr , the probability

D sv; q; f1, f2d describes quasiballistic motion of the
electron along the cyclotron orbit. After the period
2pyvc the electron approaches the vicinity of the initia
point with a momentum only slightly deflected with
respect to the initial direction. According to Eq. (11)
that means that in the quasiballistic limit the Hartre
contribution to DOS contains interaction potential a
small momentum transfers. Thus, in contrast to the d
fusion regime, there is no special reason why the Hartr
contribution should be smaller than the exchange on
Furthermore, the Hartree correction appears to domina
over the exchange one. Indeed, when comparing t
magnitudes of the Hartree and the exchange correcti
to DOS, one should take into account differences
the way screening influences the two corrections. Th
Hartree correction contains a screened interaction pote
tial at zero frequency. On the other hand, expressio
for the exchange correction, Eq. (12), contains inte
gration over frequencies. The polarization operato
711
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Psv, qd, exhibits singularities at the same frequencie
as the return probability, which causes suppression
the interaction potentialVscr sv, qd, and, in turn, sup-
pression of the exchange contribution at energies clo
to multiples of the cyclotron quantum. As a resul
it is the Hartree contribution [11] that determines th
peak structure of the interaction correction to tunnelin
DOS. Calculation of this correction, which consist
in substituting Eqs. (15)–(16) and expression forVscr
into Eq. (11) and straightforward integration, gives th
resulting expressions (1) and (2). Peak structure
tunneling DOS is well pronounced forn &

p
vcttr .

For larger n the width of the peaks becomes compa
rable with h̄vc, and the oscillating structure of DOS
disappears.

The resulting energy dependence of the tunneling DO
of the interacting electron gas in a classical magnetic fie
obtained by numerical integration of Eqs. (11) and (1
with account for Eq. (15), is shown in Fig. 1.

The range of magnetic fieldsB, where the oscillations
of the density of statesnsed are caused by the interac
tion effects, is confined by the condition1yttr ø vc ø

1yts, and depends on the sample quality. In a high m
bility sample with the typical values [12] of relaxation
times, ts ø 10 ps andttr ø 300 ps, this range is1023 &

B & 5 ? 1022 T. Correspondingly, the typical numberN
of observable peaks,N &

p
ttryts, for these samples is

N ø 6.

FIG. 1. Energy dependence of the exchange (dashed),
Hartree (dotted), and the total (solid) interaction correctio
to tunneling DOS in a classical magnetic field. Energye is
measured from the Fermi level. The curves are calculated
vcttr ­ 40.
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To conclude, we have shown that classical (vcts ø 1)
magnetic field affects strongly the tunneling density o
states of interacting electron gas. The tunneling DOS
found to be an oscillating function of energy with the
characteristic period̄hvc.
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