VOLUME 78, NUMBER 4 PHYSICAL REVIEW LETTERS 27 ANUARY 1997

Interaction-Induced Oscillations of the Tunneling Density of States
in a Nonquantizing Magnetic Field
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We study tunneling into an interacting disordered two-dimensional electron gas in a nonquantizing
magnetic field, which does not cause the standard de Haas—van Alphen oscillations. Interaction induces
a new type of oscillation in the tunneling density of states with the characteristic period of cyclotron
quantumZw,.. [S0031-9007(96)02182-5]

PACS numbers: 73.40.Gk, 71.10.Pm

It is well known that a strong magnetic field modifies to the zero magnetic field case. Furthermore, we will show
the single-particle density of states (DOS) of noninteractthat it exhibits peaks as a function of energy with the
ing electrons due to the Landau quantization. In a twodistance between peaks equal to the cyclotron quantum,
dimensional electron gas, the quantization leads to a pedlkv.. The further a peak is away from the Fermi level, the
structure in the DOS, which is revealed in tunneling ex-smaller and wider itis. The shape of thth peak in DOS,
periments as peaks in the dependence of the tunneling — nfiw.| < hw./2, is given by:
conductance on applied bias, see, e.g., Ref. [1]. The form 2 _
and the width of these peaks are determined [2] by the dis- Sv(e) _ h(wery)” 1 f<62—”ﬁ“’0> .
order. Experiments [1,3,4] show also suppression of the hn?/7y
conductance at zero bias. This suppression is a manifestathere
tion of interaction between electrons and has been studied o /2
theoretically both for disordered [5] and for clean [6] two- flx) = 1 [M } , 2
dimensional conductors in the quantizing magnetic field. V2

In a weak magnetic field the distance between the Lanenergy e is measured from the Fermi level, and=
dau levels,fiw,, is smaller than their disorder-induced m/7h? is the free-electron density of statea (s the
width. In such “classical” magnetic field, the Landau electron mass). The peaks overlap strongly &oe
quantization peaks in DOS disappear, while the aforemetkw../w 7, and the oscillatory structure is washed out.
tioned interaction correction to tunneling DOS survives Sensitivity of tunneling DOS to the classical magnetic
and in the limit of zero field evolves into a singular at thefield comes from the fact that, as we will show, the
Fermi energy negative logarithmical correction predictednteraction correction to tunneling DOS is associated
originally by Altshuler, Aronov, and Lee [7]. with the self-crossing of classical electron trajectories.

The question arises whether or not in such “classiWe denote the probability for an electron to complete
cal,” w.7; < 1, limit the magnetic field influences the a loop of self-crossing trajectory over timeas K(z).
spatially averaged density of electron states measured ifhe interaction correction to DOSiv(e), turns out to
tunneling experiments (herg, is the electron quantum be related to the Fourier transform of this probability,
lifetime). For the noninteracting system, the effect of thedv(e) = K(e) = [, dte 'K (¢). The strong enough,
weak magnetic field on DOS is exponentially small [2], .7 >> 1, magnetic field curves the electron trajectories,
« exd —27/(w.7,)], and can be neglected. The goal of significantly affects the return probability, and, in turn,
the present paper is to show that, contrary to the nonintemffects the tunneling DOS.
acting case, in thénteractingelectron gas the “classical”  For long time scales > 7, the functionkK (¢) can be
magnetic field does produce a significant effect on tunnelfound from the diffusion equation. It gives(¢) = (Dr)~!
ing DOS. This effect becomes pronounced if the disordefor the two-dimensional caseD(is the diffusion coeffi-
potential is weak enough and smooth, with the correlatiortient). The Fourier transformk(e), is proportional to
length much larger than the Fermi wavelength and the anin(e), which leads to a predicted by Altshuler, Aronov,
plitude much smaller than the Fermi energy. In such and Lee [7] logarithmic correction to DOS at small ener-
potential, electrons experience small-angle scattering, argles, e < /7, with the renormalized by the magnetic
their transport relaxation time,, is much larger tham,.  field diffusion coefficient [8].

Thus there exists a range of magnetic fields in which Lan- At short time scales; < 7., electrons move ballisti-
dau quantization is suppressad.f; < 1), while classi- cally along the cyclotron orbits. Provided that 7, >

cal electron trajectories are strongly affected by the fieldl, during the time electron may return to the initial point
(w7 > 1). In this regime interaction correction to the many times. Thus, at these short time scales the magnetic
tunneling DOS,6v(e), is strongly enhanced with respect field significantly increases the return probabilik(r).
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Multiple periodic returns of the electron produce peaks inof the finite-range interaction potential and will calculate
the probability Fourier transformk (e) at energies, which the Hartree contribution to the averaged DOS. Making
are multiples of the cyclotron quantum. Tunneling den-use of Egs. (3), (5), and (7), and exploiting the identity,
sity of states oscillates with the same period, which is/ G¥(x',r) GR(r,r")dr = 9GR(x',x")/d€, we obtain:

reflected by Eq. (2). 0
Now we derive the expression for the interaction correc- §p,(e) = Re[ de f dr'dr"v(r' — ")

tion to DOS valid for arbitrary energies. We will pat= 1 LN

in all intermediate formulas. In an ideal pure sample y aGE(!, 1) [GRG" 1" — G (e x")]
the electron density does not depend on coordinates, 9e a\sr a LTI
n.(r) = nyg. Due to the sharp Fermi edge, scattering of (8)

the electron forming the Fermi sea on impurities results in 4 < . . _

an interference pattern in electron density. This patterivhere GZ(r,r') =[G (r',r)]". We are interested in the
is commonly referred to as the Friedel oscillation [9]. correction to the density of states averaged over the reali-
In general, one can express the density profile of noninZations of the disorder potential. Average of the product

teracting electrons in terms of the exact retarded Greefif two retarded Green functiong’(’,r)Gf (", r")
function, GR(r,r') = X, 4/ (), (r)/(e — € + i0) , of does not contain contributions associated with the electron

an electron in the random potential: trajectories longer thany. Thus, this product does not
5y [0 produce DOS energy dependence at small, as compared
ne(r) = —— [ de ImGE(r,r). (3) to Er, energies, and can be neglected. On the contrary,

T J e averaged producg® G4 is determined by long electron

Single electron wave functiony;(r) satisfies the trajectories. Furthermore, it can be expressed [10] in
Schrédinger equation for noninteracting electronsterms of the classical probability densily:
Hoy = (e, + Ep)yy, where Hy=—(i?/2m)V? + U,(r),
Er is the Fermi energy, antd, (r) is the random potential. (GX(r),r,)GA (r3,14)) = WV[ @] ¢z
In the presence of interactidn(r — r’) between electrons, 1 ’ 2 2
the Eried_el oscillation _produces an additional term in the = x P11 251D (e — €51y, 131, 2);
Hamiltonian, Hyr, which can be presented (see, e.g., "
Ref. [9]) as a sum of Hartree/y, and exchangeVr, D(w;1;2) = [ die'®'D(1;1;2). (9)
terms: 0

Hyr(r,r') = Vy(r) 8@ — r') — Vp(r,x')  (4) Herep;=pp(cose;,sing;), andD(z; 1;2) is the proba-

bility density for electron which starts at moment= 0

_ o N in pointr; with the direction of momentung, to arrive
Vi (r) = f Ve = r)dn.(x")dr", (5 at moment to the pointr, with momentum direction,.
1 Equation (9) is valid as long as the sizhs — r4l

Vi(r,r') = > V(e — r)ép(r,r'). (6) and|r, — r3| of spatial domains defining the ends of a

N i , . trajectory are small enough, so that electron propagation
Here fﬁp(r,r) is the perturlzatlor) of the density matrix, j5 these two domains can be described by plane waves.
p(r.r')=—(2/m) [de ImGE(r.x'), by the random po- 11,5 formula (9) is valid iferr, > 1 (semiclassical
tential. Only the electrons with the same spin parﬂmpateregime)’ and for the arguments sufficiently close to each
in the exchange interaction, which is reflected by the factopq, pairwise; in general, the conditidn — ryl, [r» —
1/2in Eq. (6). The Hartree-Fock energy (5)—(6) oscillates ’ . '

_ ; ' r;| < vp7, must be satisfied; however, in the special
as a function of coordinate in the same mannebasr)  case of Eq. (8), we need the product of Green functions

does. . . with r{ = r; and r, = r4, and this condition can be
The local DOS is Eelated to the r(i}arded Green function,zseq. Indeed, the integral over the angular variables in
of electron, v(e,r) = —(2/7) InG. (r,r). Scattering g4 (9) is dominated by the close to each other momenta

of electron on the Hartree-Fock potential, Eqgs. (5)—(6)
induces a correction tagX(r,r), which, in the Born
approximation, can be expressed as:

p: and p, and therefore a weaker requiremeht, —
rs], I, — r3| < Iy, R., should be satisfied. HerR. =
vr/w, is the cyclotron radiud,, = vg7 is the electron

transport relaxation length, ang- and pr are the Fermi
R — R / / R ../ !/ 1
8Ge (r,r) = / Ge (r, ) Va(r)Ge (', r)dr velocity and momentum, respectively. Further derivation
of the Hartree correction requires substitution of Eq. (9),
—f GE(e, v )Vr(x' v )GE (", r)dr'dr". with argumentsr; =r, =r’ and r; = ry = r”, into

Eqg. (8) and integration over the difference betwaén
) andr”. These coordinates are coupled by the interaction
We will be interested in the spatially averaged density ofpotential V(r’ — r”). Hence, performing the integration
states,sv(e) = (1/S) [ Sv(e,r)dr, whereS is the area we can exploit Eq. (9) only if the range of the interaction
of the system. For simplicity we will start with the case potentiald is sufficiently shortd < I, R...

710



VOLUME 78, NUMBER 4 PHYSICAL REVIEW LETTERS 27 ANUARY 1997

For a macroscopically homogeneous sample, classicakattering on a random potential. Analysis of Eq. (14)
probability D depends only on difference of its coordi- yields:
natesr = r, — r;. Using this fact and Egs. (8) and (9),

we find: D(w:q: p1.42) = D Di(w:q: 1. b)), (15)
5VH(6 __Rf fd¢1d¢2 3D (0;r =0; b1, ¢2) "
Q) Yw Du(w;q; ¢1, ¢2). |

X V2prlsin(é, — ¢2)/21), (10) _ ein(h2=1) piRcql(p1—p2)/ prXz] (16)

whereV (g) is a Fourier transform of the interaction poten- —i(w = nw) + R2q*/21 + n?/7y

tial. Formula (10) can be easily generalized for the case ofvherez is a unit vector parallel to the magnetic field. The
the long range Coulomb potentiélg) = 27e?/kq (here  solution (15)—(16) is valid fogR. < w27 /(lw| + w,).

k is the dielectric constant). For such a potentisly) in ~ The obtained solution of transport equation together with
Eg. (10) should be replaced (see, e.g., Ref. [7]) by thégs. (11) and (12) enables us to calculate the interaction
screened potentiaV..(q) = 27e?/[k(qg + 2/ap)] with  correction to DOS in the classical magnetic field.

ap = h’k/me* being the effective Bohr radius. Note that At small frequencies,w < /i/1,, the n = 0 term
the range of screened Coulomb potential,(r), is of the in Eq. (16) contains a part independent on initial,
order of the effective Bohr radius, and, therefore, muchy,, and final, ¢, directions of the electron mo-
smaller thanl/,, and R.. Integration over the frequency mentum. This part dominates in Eq. (15), so that
in Eq. (10) immediately gives the resulting expression forD (w; q; ¢1, ¢2) = 1/(—iw + R*q*/27). This limit

the Hartree contribution: corresponds to the diffusion regime studied in Refs. [7,8].
Svy(e) 2 d¢ide, Comparing Egs. (12) and (11), one sees that in the
—, — ke 2m)? —5 2 D(esr = 0561, ¢2) diffusion regime the exchange correction to DOS con-

tains the interaction potential.(w, k), at very small,
X Veer2prlsin(¢r — ¢2)/2]). (1) kR, < 1, momentum transfers, while for the Hartree
The exchange correction to DOS can be obtained ircorrection the potential at large&k < pr, momentum
a similar way as Eq. (11). The difference is, howevertransfers is important. Provided that the interaction
that in the exchange counterpart of Eq. (10), one shoulg@otential decreases rapidly with the increasekpfone
put the retarded screened potentidl,(w,q) instead concludes [7] that in the diffusion regime, < i/,
of V(g). The retardation of the interaction potential the exchange contribution to DOS, Eq. (12), dominates
makes immediate integration over frequencies, that led tover the Hartree one. The resulting expression for the
Eqg. (11), no longer possible. The resulting expression fointeraction correction to DOS in this regime yields:

the exchange correction has the form: Sv(e) _ _ﬁ(wcTtr)z . le| e N lelrpa’ a7
2erle) _R ] fZ > Vier(@0,q) —/—— ( ,q) v 8merty h RG]

. @7) (12) Equation (17) corresponds to the Altshuler—Aronov—
where Ve, (0, q) = V(g)/[1 + V(g)Tl(g, )], with TI(q, Lee [7] result with the renormalized by magnetic field

- . ) ; ol diffusion coefficientd = R2/27,,.
:rzd_ v[1+iwA(w; )] being the polarization operator, At larger frequencies,w > /7., the probability

D(w;q; ¢1,¢p2) describes quasiballistic motion of the

Alw;q) = ] %[ @dre’iqrﬂ(a};r;¢1,¢2). electron along the cyclotron orbit. After the period

™ 27 /w,. the electron approaches the vicinity of the initial

(13)  point with a momentum only slightly deflected with

Equations (11) and (12) express the interaction correcespect to the initial direction. According to Eq. (11),
tion to tunneling DOS in terms of classical probability that means that in the quasiballistic limit the Hartree
densityD (e;r; ¢1, ¢2) and are valid at energies< Er. contribution to DOS contains interaction potential at
Function D (e;r; ¢, ¢>) can be found from the Boltz- small momentum transfers. Thus, in contrast to the dif-
mann equation describing the scattering of electrons ofusion regime, there is no special reason why the Hartree
impurities. In the special casg < 7, we are interested contribution should be smaller than the exchange one.
in, scattering on small angles dominates the collision infurthermore, the Hartree correction appears to dominate
tegral. With account for this simplification, the transportover the exchange one. Indeed, when comparing the

equation takes the Fokker— Planck form: magnitudes of the Hartree and the exchange correction
P2 0 9 1 to DOS, one should take into account differences in
(miw + m_e ar + wca¢2 e a¢22)D(w r;$1, ¢) the way screening influences the two corrections. The

Hartree correction contains a screened interaction poten-

=276(d1 — ¢2)8(r). (14)  tial at zero frequency. On the other hand, expression

Equation (14) describes electron motion along the cyfor the exchange correction, Eq. (12), contains inte-
clotron orbit accompanied by angular diffusion caused bygration over frequencies. The polarization operator,

711



VOLUME 78, NUMBER 4 PHYSICAL REVIEW LETTERS 27 ANUARY 1997

II(w, g), exhibits singularities at the same frequencies To conclude, we have shown that classieal £, < 1)

as the return probability, which causes suppression afagnetic field affects strongly the tunneling density of
the interaction potentiaVy.(w,q), and, in turn, sup- states of interacting electron gas. The tunneling DOS is
pression of the exchange contribution at energies closund to be an oscillating function of energy with the
to multiples of the cyclotron quantum. As a result, characteristic periodw..

it is the Hartree contribution [11] that determines the Discussions with R.C. Ashoori and H.B. Chan are
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FIG. 1. Energy dependence of the exchange (dashed), til:ell]
Hartree (dotted), and the total (solid) interaction correction

to tunneling DOS in a classical magnetic field. Enekgys
measured from the Fermi level. The curves are calculated f
w.Ty = 40.
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