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Helical Plasma Confinement Devices with Good Confinement Properties

John R. Cary and Svetlana G. Shasharina
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The criterion of approximate omnigeneity (i.e., having bounce-averaged drift lying within the
magnetic surfaces) is much easier to satisfy than quasihelicity, the condition thatB, the magnitude
of the magnetic field, is a function of only a single linear combination of the toroidal angles. Simple
criteria for omnigeneity are presented and used to construct exactly omnigenous forms forB that are
far from quasihelical. Though this construction gives a nonanalytic functionB, close to the constructed
systems there exist other systems with analyticB. These results indicate that finding helical plasma
confinement systems with minimal neoclassical transport is much easier than previously believed.
[S0031-9007(96)02275-2]

PACS numbers: 52.55.Dy, 52.25.Dg, 52.55.Hc, 52.65.Cc
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Stellarators having good transport properties would
ideal plasma confinement devices, as with externally ge
erated rotational transform, they could be run in stea
state without complicated current drive schemes, and s
larators are not susceptible to disruptions. Unfortunate
stellarators as originally proposed had large particle lo
rates due to the fact that they contained trajectories (tho
locally trapped in a helical magnetic well) that directl
drift out of the machine. This has led to research (e.
Ref. [1]) geared towards finding configurations lackin
such particles. Nearly a decade ago, Nuhrenberg and Z
[2] proposed that stellarators be quasihelical (termed qu
sisymmetric in recent work [3]), which means that th
magnetic strengthB is a function of only a single linear
combination of the toroidal angles in Boozer [4] coord
nates. They were able to find large-aspect-ratio qua
helical systems. Subsequently many researchers be
asking whether smaller aspect ratio systems, which wo
be more compact, exist. This was answered by the wo
of Garren and Boozer [5], who found that the conditio
of quasihelicity cannot be satisfied beyond a certain o
der in an expansion in the distance from the magne
axis. Thus, at this stage it would seem that small-aspe
ratio stellarators having good transport properties wou
not exist.

In this Letter we show that there remains hope for fin
ing stellarator confinement systems with good transport
low aspect ratio. (Many of the details of our discussio
have been relegated to a longer article [6].) We pro
that omnigenous systems [7], those for which the boun
averaged drift remains within a flux surface, form a larg
class than quasihelical systems. In this proof we find
precise condition for omnigeneity—that the contours
magnetic strengthjBj on a magnetic surface have consta
angular separation in Boozer coordinates. However, t
situation is more complicated upon closer examinatio
as we show (1) that omnigenous systems for which t
magnetic strength is an analytic function must be qua
helical, yet (2) that one can have systems with analy
magnetic strength functions that are far from quasihelic
74 0031-9007y97y78(4)y674(4)$10.00
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while very nearly omnigenous. This last result indicat
that in a practical sense even analytic omnigenous syste
form a larger class than quasihelical systems. Finally,
propose simple design criteria for systems with good co
finement properties towards the end of this Letter.

Our results are related to those of Ref. [3]. In Ref. [3
it was noted that in isometric systems, those for whi
the magnetic contours within a surface are separa
by constant distance along a magnetic field line, t
trajectories are omnigenous. Our condition of consta
angular separation turns out to be the same. Thus,
our above results, that most closely related to Ref.
is to show that isometry is not only sufficient, bu
also necessary. This means that there is now a pre
condition for omnigenous systems.

Our results are most easily arrived at in Boozer coo
dinates, whichsc, u, wd are a special form of flux vari-
ables (in which magnetic field lines are linear in th
angles) in that the covariant angular components of
magnetic field are constant. Because they are flux co
dinates, the magnetic field has the Clebsch representat
B ­ =c 3 =u 1 iscd=w 3 =c. This implies that the
vector potential has the form,A ­ c=u 1 Awscd=w,
wherei ­ 2dAwydc. As noted by Boozer, these angle
can be further specified by requiring that the angular c
variant components of the magnetic field be flux fun
tions,B ­ Bcsc , u, wd=c 1 Buscd=u 1 Bwscd=w.

In these coordinates, Littlejohn’s guiding-center La
grangian [8] has the form

Lgc ­ smuBcyBd Ùc 1 secyc 1 muBuyBd Ùu

1 seAwyc 1 muBwyBd Ùw 2 h , (1)

where

h ­
1
2 mu2 1 mB 1 eF (2)

is the Hamiltonian,u is the parallel velocity, andm ­
1
2 my

2
'yB is the magnetic moment. The Euler-Lagrang

equations for this Lagrangian give the guiding-cent
equations of motion. This is a phase-space Lagrangi
which is to say that the resulting equations of motion a
© 1997 The American Physical Society
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first-order differential equations, and there is no furth
transformation to a Hamiltonian. Indeed, Darboux’s th
rem guarantees the existence of a transformation from
physical guiding-center variablessX, ud to local canonical
variables. (Canonical formulations of guiding-center d
namics were developed [9] independently of the guidi
center Lagrangian.)

As already noted, quasihelical systems are those
which jBj is a function of only a single linear combinatio
of the angles, sayß ; Nw 2 ,u, whereN is the toroidal
mode number and, is the poloidal mode number o
the dominant Fourier component of the magnetic fi
strength. One can think of this helical anglez as roughly
constant if one were to remain under a given coil in
helical coil system. [From near-axis analysis it follow
that, ­ 1: Only , ­ 1 and, ­ 2 helicalsN fi 0d fields
produce nonzero rotational transform at the magn
axis. On axis the pressure gradient vanishes, soB must
have nonvanishing gradient in order to balance magn
curvature in the equation,j 3 B ­ kB2 2

1
2 ='B2 ­ 0.

Hence, , ­ 1 fields must be present. Thus, if only
single helicity is present, it must be, ­ 1 and N fi 0.]
For such systems, it is useful to transform the Lagrang
(1) to the anglessu, z d. This gives

Lgc ­

µ
muBc

B

∂
Ùc 1

∑
e
c

µ
c 1

Aw

N

∂
1

mu
B

µ
Bu 1

Bw

N

∂∏
Ùu

1

µ
e
c

Aw

N
1

mu
B

Bw

N

∂
Ùz 2 h .

(3)

The last important fact is that the covariant compon
Bc contains the same helicities asB in MHD equilibrium
[4]. In the present case this implies that the Lagrang
(3) is independent ofu. Hence, from the Euler-Lagrang
equations it follows that

Ph ;
≠Lgc

≠ Ùu
­

e
c

µ
c 1

Aw

N

∂
1

mu
B

µ
Bu 1

Bw

N

∂
(4)

is an invariant of the motion. Analogous to the axisy
metric case, the existence of the invariant (4) guaran
orbits with good properties. Energy conservation guar
tees that the variation of the parallel velocity and, hen
the final term in Eq. (4) is bounded. Thus, the variat
of c 1 AwyN is small, and so orbits remain confined
the vicinity of a flux surface.

A less restrictive way to achieve systems with go
trajectories is to require omnigeneity [7], the prope
whereby the bounce-averaged cross-flux-surface drift v
ishes. As the bounce-averaged drift conserves the bo
(or longitudinal) action through lowest order in the e
pansion in the drift frequency relative to the bounce f
quency, this implies that the bounce action is constant
surface. Thus, we need to find systems where the bo
action, or zeroth-order bounce adiabatic invariant,

J0 ­
I

mub̂ ? dr ­ msiBu 1 Bwd
I

sudwyBd , (5)
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where the velocityu ­
p

2sE 2 mB 2 eFdym is deter-
mined by energy conservation, and the loop integral
along a field line between reflection points,E ­ mB, is
constant on a magnetic surface. An immediate cons
quence of the condition thatJ is constant on a magnetic
surface is the fact that the local minima of the magnet
field along field lines in a given surface have the sam
value of B. This is the principle behind the improved
confinement for the systems in Ref. [1]. One can als
show that the magnetic maxima and the action of particle
at the trapped-passing boundary have the same value o
surface, and, hence, that transition orbits [10], which a
chaotic due to separatrix crossing [11], are absent in om
nigenous systems.

We can write the bounce action in the form

J0 ­ 2
p

2m siBu 1 Bwd
Z sE2eFdym

Bmin

dB
B

3

q
sE 2 mB 2 eFd

X
6

Ç
dw

dB

Ç
, (6)

where

Fsc , B, w0d ;
X
6

Ç
dw

dB

Ç
(7)

is the sum of the change in toroidal angle with respect
magnetic strength at the two points having the same val
of B on a given magnetic surface and on a given fiel
line, labeled byw0 ; u 2 iw. We have shown [6] that
the integral transform in Eq. (6) is invertible. Thus, ifJ
is independent of the field linesw0d, then so isF. From
this it follows that the angular separation,

Dw ­ 2
Z B

Bmin

dB0 FsB0d , (8)

of any two contours of the same value ofB is constant on
a magnetic surface.

Equation (8) is a central result from which many
consequences follow. First, it can be shown that th
contour of the maxima is straight in Boozer coordinate
provided the rotational transform is irrational. Second
one can construct omnigenous functionsB that depend
nontrivially on u in addition to z by the following
procedure. We introduce the new coordinateh such that
the magnetic field has the form

ByB0 ­ 1 1 ´r cosshd . (9)

This is generally possible since for every value ofu,
B varies from the same maximum value to the sam
minimum value as one moves inz . Next, we assume that
we know the transformation to the left of the minimum
for all the field lines and along one field line through the
origin su ­ 0, z ­ 0d for one full period. That is

z ­ h 1 gsu, hd for 0 # h # p ,

z ­ qhu for 0 # z # 2p .
(10)
675
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Here, qh ; dßydu ­ Nyi 2 1 gives the rate of change
of the helical angle with respect to the poloidal angle
one moves along a field line. The functiongsu, hd is
chosen to vanish ath ­ 0 so that the curve of maximum
is at z ­ 0 and z ­ 2p. From the knowledge of the
transformation along the one field line segment, we c
determine the angular differenceDz sBd. One simply
finds the two points having the given value of magnet
strength along the one segment and takes the differe
to calculateDz sBd ­ Dz shd. Finally, we determine the
transformation forh . p by requiring the condition for
omnigeneity,

z ­ 2p 2 h 1 gsssu 2 Dz shdyqh, 2p 2 hddd
1 Dz shd for h . p . (11)

This equation is interpreted as follows. To findz to
the right of the minimum, one applies the transformatio
equation to the corresponding pointfu 2 Dz shdyqh,
z 2 Dz shdg and the corresponding values2p 2 hd of
the new angle. Equation (11) gives the transformatio
explicitly everywhere on the torus. It is straightforwar
to verify that this transformation hasz ­ 2p at h ­ 2p.
Thus, the solution is periodic. Finally, the transformatio
is one to one for sufficiently smallg, as are all near-
identity transformations.

Unfortunately, the above construction leads to nonan
lytic transformations ifg has nontrivial dependence onu.
We define the functionGsu, hd to give the transformation
for all values ofh by the formula

z ­ h 1 Gsu, hd . (12)

Thus, G ­ g for 0 , h , p, and G follows from
Eq. (11) for p , h , 2p. One can show from differ-
entiation of Eq. (12) thatG and all of its derivatives are
constant on the contour of maxima. From this and ana
ticity it follows that G is independent ofu. Thus, ana-
lytic, omnigenous magnetic fields are quasihelical.

These results appear pessimistic. We expect the m
netic field strength to be an analytic function. Yet, if it is
the magnetic field must be quasihelical. This would see
to eliminate the possibility of having systems with goo
transport that are far from quasihelical. However, anal
ticity is a fragile concept. Two functions, one analytic an
one not analytic, can be arbitrarily close in value ever
where. Hence, one must ask the different question: C
we find functions that are analytic, yet close everywhe
to a nonanalytic function that is far from quasihelical?
so, then it is possible to have magnetic fields that are ve
far from quasihelical, yet very nearly omnigenous.

To test this idea, we used the above construction
obtain an omnigenousB. We chose´r ­ 0.25, qh ­
8.809, and the transformation

gsu, hd ­ fa0 1 as sinsud 1 ac cossudg sinshy2d ,
(13)

with parametersa0 ­ 0.1, as ­ 0.8, andac ­ 0.05. This
transformation is not periodic. We chose this form i
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FIG. 1. Contours of the omnigenous magnetic field strengt

order to havegsu, pd nonzero while having vanishing
gsu, 0d. The fact thatg is not periodic does not matter, a
the magnetic field does not depend ong for h . p .

The contours of the magnetic field strength are show
in Fig. 1. That this field is not quasihelical is evidence
by the fact that the contours are not lines of consta
z . As noted, this magnetic field strength is not analyti
Indeed, its second derivative is not continuous. This c
be seen in the fact that the contours nearz ­ 0 and
z ­ 2p are not symmetric about that line. Examinatio
of this figure with a ruler shows that the contours hav
constant separation, as per Eq. (8), which implies thatDz

is also constant.
To obtain an analytic magnetic field strength that

close to that shown in Fig. 2 we carried out the followin
operations. We Fourier analyzed the magnetic field, ke
only up to the first two harmonics [up to cossz 6 2u 6

2z d], and transformed back. As the Fourier series is finit
this magnetic strength is analytic. In Fig. 2 we sho
the contours for this magnetic field. Some differenc

FIG. 2. Contours of the nearly omnigenous, analytic magne
field, the magnetic field obtained by truncating the Fouri
series of the omnigenous field through the first two harmon
in each angle.



VOLUME 78, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 27 JANUARY 1997

t
a
u

w

v

i

f

a

i

s

h

s

e

h
l

s

,

l,
are notable. For example, the curve of maxima is
longer straight, and the fact that there is a contour with
topology of a circle indicates that the minima no longer
have the same value, although they do not vary by m
(about 2%).

To test the omnigeneity of these configurations,
integrated several trajectories in the analytic, nearly o
nigenous magnetic field found above. The poloidal cro
section of the trajectory of a typical locally trapped pa
ticle is shown in Fig. 3. [The coordinates arex ­
r cossud and y ­ r sinsud, where r ­

p
cycedge, and

B0 is the value of the magnetic field on axis. We ha
taken ´r ­ drr with dr ­ 0.25.] We have set the di-
mensionless parameters to beEymV

2
0a2 ­ 2 3 1023 and

mB0ymV
2
0a2 ­ 1.81 3 1023, whereE is the energy,V0

is the gyrofrequency on axis, anda is the minor radius.
(These are the numbers for a 17 keV proton in a mach
with 1 T magnetic field and minor radius of 30 cm.) Th
figure shows that the trajectory has remained, on avera
close to its initial flux surface. (In the typical stellarato
fields such a trajectory would intersect the wall.) One c
see that this system is not quasihelical by the fact that
oscillation width varies with poloidal angle.

These results show that it is possible to have a magn
field strength that is analytic, nearly omnigenous, but
from quasihelical. For such fields the wells are distorte
but the particles stay near a particular flux surface. Th
the large neoclassical losses associated with trajecto
that directly drift out of the plasma will not be presen
Because our requirements for the magnetic strength
less restrictive than those for quasihelicity, there is ho
of finding systems with good confinement properties
smaller aspect ratios.

Ultimately one would like to set certain limited criteri
for the design of a stellarator, as one does not exp
to obtain perfectly omnigenous systems. The condit

FIG. 3. Poloidal cross section of the trajectory of a typic
locally trapped particle in the nearly omnigenous magne
field.
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proposed in Ref. [1] is that of constant magnetic minima,
so that the deeply trapped particles are omnigenous. A
noted above, the conditions of constant magnetic maxima
and constant separatrix action of a surface ensure bot
omnigeneity of the marginally trapped particles and elimi-
nation of the chaotic transition particles. With all three
conditions, the two extremes of locally trapped particles
are omnigenous, and there are no chaotic trajectories. (A
shown in Ref. [1], having only constant magnetic maxima
may do little to reduce transport.) We suggest these as
starting design criteria, though naturally one will have to
check such systems to ensure that the trajectories of th
intermediately trapped particles do not make excessive
drift excursions.

We have noted that such systems should have muc
better neoclassical confinement properties than the usua
helical confinement systems. Moreover, these system
should have better confinement than toroidal systems with
equal magnetic field variation; the variation of the flux
surface label is smaller than that in a tokamak by the ratio,
Nyi 2 1, of connection lengths. Indeed, this leads to
the interesting speculation that transport due to ballooning
mode turbulence, which increases with connection length
will also be small in omnigenous helical systems.

It remains a significant area of research to find systems
satisfying the criteria we have laid out. Such an under-
taking will require the use of the large vacuum and equi-
librium computer applications in use at major labs around
the world. We suggest that if such studies are successfu
one may end up with very good toroidal plasma confine-
ment systems.
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