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Helical Plasma Confinement Devices with Good Confinement Properties
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The criterion of approximate omnigeneity (i.e., having bounce-averaged drift lying within the
magnetic surfaces) is much easier to satisfy than quasihelicity, the conditiorB tihe magnitude
of the magnetic field, is a function of only a single linear combination of the toroidal angles. Simple
criteria for omnigeneity are presented and used to construct exactly omnigenous forfhshitr are
far from quasihelical. Though this construction gives a nonanalytic fun@&ijariose to the constructed
systems there exist other systems with analyic These results indicate that finding helical plasma
confinement systems with minimal neoclassical transport is much easier than previously believed.
[S0031-9007(96)02275-2]

PACS numbers: 52.55.Dy, 52.25.Dg, 52.55.Hc, 52.65.Cc

Stellarators having good transport properties would bevhile very nearly omnigenous. This last result indicates
ideal plasma confinement devices, as with externally gerthat in a practical sense even analytic omnigenous systems
erated rotational transform, they could be run in steadyorm a larger class than quasihelical systems. Finally, we
state without complicated current drive schemes, and stepropose simple design criteria for systems with good con-
larators are not susceptible to disruptions. Unfortunatelyfinement properties towards the end of this Letter.
stellarators as originally proposed had large particle loss Our results are related to those of Ref. [3]. In Ref. [3]
rates due to the fact that they contained trajectories (thode was noted that in isometric systems, those for which
locally trapped in a helical magnetic well) that directly the magnetic contours within a surface are separated
drift out of the machine. This has led to research (e.g.by constant distance along a magnetic field line, the
Ref. [1]) geared towards finding configurations lackingtrajectories are omnigenous. Our condition of constant
such particles. Nearly a decade ago, Nuhrenberg and Zillangular separation turns out to be the same. Thus, of
[2] proposed that stellarators be quasihelical (termed quasur above results, that most closely related to Ref. [3]
sisymmetric in recent work [3]), which means that theis to show that isometry is not only sufficient, but
magnetic strengttB is a function of only a single linear also necessary. This means that there is now a precise
combination of the toroidal angles in Boozer [4] coordi- condition for omnigenous systems.
nates. They were able to find large-aspect-ratio quasi- Our results are most easily arrived at in Boozer coor-
helical systems. Subsequently many researchers begdmates, which(i, 8, ¢) are a special form of flux vari-
asking whether smaller aspect ratio systems, which wouldbles (in which magnetic field lines are linear in the
be more compact, exist. This was answered by the workngles) in that the covariant angular components of the
of Garren and Boozer [5], who found that the conditionmagnetic field are constant. Because they are flux coor-
of quasihelicity cannot be satisfied beyond a certain ordinates, the magnetic field has the Clebsch representation,
der in an expansion in the distance from the magneti® = Vi X VO + «)Ve X V. This implies that the
axis. Thus, at this stage it would seem that small-aspecisector potential has the formA = V6 + A, (¢)Ve,
ratio stellarators having good transport properties wouldvhere: = —dA,/dy. As noted by Boozer, these angles
not exist. can be further specified by requiring that the angular co-

In this Letter we show that there remains hope for find-variant components of the magnetic field be flux func-
ing stellarator confinement systems with good transport aions,B = B (¢, 6, ¢)Viy + By()VO + B, ()Ve.
low aspect ratio. (Many of the details of our discussion In these coordinates, Littlejohn’s guiding-center La-
have been relegated to a longer article [6].) We provegrangian [8] has the form
that omnigenous systems [7], those for which the bounce _ y ;
averaged drift remains within a flux surface, form a larger Lee = (muBy/B)s + (eyr/c + muBo/B)0
class than quasihelical systems. In this proof we find a + (eAg/c + muB,/B)¢ — h, (1)
precise condition for omnigeneity—that the contours ofwhere
magnetic streng_thBl on a magnetic s_urface have constant PRV - uB + e® 2
angular separation in Boozer coordinates. However, the 2
situation is more complicated upon closer examinationis the Hamiltonian,u is the parallel velocity, angw =
as we show (1) that omnigenous systems for which th«%mvi/B is the magnetic moment. The Euler-Lagrange
magnetic strength is an analytic function must be quasiequations for this Lagrangian give the guiding-center
helical, yet (2) that one can have systems with analytiequations of motion. This is a phase-space Lagrangian,
magnetic strength functions that are far from quasihelicalhich is to say that the resulting equations of motion are
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first-order differential equations, and there is no furtheiwhere the velocity = /2(E — uB — e®)/m is deter-
transformation to a Hamiltonian. Indeed, Darboux’s theo-mined by energy conservation, and the loop integral is
rem guarantees the existence of a transformation from thalong a field line between reflection poin#s,= uB, is
physical guiding-center variabléX, u) to local canonical constant on a magnetic surface. An immediate conse-
variables. (Canonical formulations of guiding-center dy-quence of the condition that is constant on a magnetic
namics were developed [9] independently of the guidingsurface is the fact that the local minima of the magnetic
center Lagrangian.) field along field lines in a given surface have the same
As already noted, quasihelical systems are those foralue of B. This is the principle behind the improved
which |B| is a function of only a single linear combination confinement for the systems in Ref. [1]. One can also
of the angles, say = N¢ — €6, whereN is the toroidal show that the magnetic maxima and the action of particles
mode number and’ is the poloidal mode number of at the trapped-passing boundary have the same value on a
the dominant Fourier component of the magnetic fieldsurface, and, hence, that transition orbits [10], which are
strength. One can think of this helical andleas roughly  chaotic due to separatrix crossing [11], are absent in om-
constant if one were to remain under a given coil in anigenous systems.
helical coil system. [From near-axis analysis it follows We can write the bounce action in the form
that¢ = 1: Only ¢ = 1 and{ = 2 helical(N # 0) fields
produce nonzero rotational transform at the magnetic Jo =2\2m(By + B )f
axis. On axis the pressure gradient vanishesB soust
have nonvanishing gradient in order to balance magnetic
curvature in the equatiorj, X B = kB> — %VLBZ = 0.
Hence,¢ = 1 fields must be present. Thus, if only a
single helicity is present, it must be= 1 andN # 0.]  Where
For such systems, it is useful to transform the Lagrangian
(1) to the angle$6, ¢). This gives F(, B, ¢o)

(E—e®)/u dB

Biin

(6)

de
dB

muBy B,\1: . . . .
Ly = < >¢// [ <¢// + ) + —<Be + —)}0 is the sum of the change in toroidal angle with respect to
B B N magnetic strength at the two points having the same value
N (i Ap | mu B_>§ . of B on a given magnetic surface and on a given field
¢ N B N line, labeled byyy = 6 — t«¢. We have shown [6] that
(3) the integral transform in Eq. (6) is invertible. Thus,Jif

The last important fact is that the covariant componenﬁi;ngefgﬁgx:%g{ tt}?: ;Ir?gljilg?%gg’atrg?ignso IS From

By contains the same helicities &n MHD equilibrium

[4]. In the present case this implies that the Lagrangian B

(3) is independent of. Hence, from the Euler-Lagrange Ap = 2[ dB'F(B), (8)
equations it follows that Bin

L e A, mu B, of any two contours of the same value®fs constant on
P,=—= —<¢// + —> + —<B9 + —) (4) a magnetic surface.

90 ¢ N B N Equation (8) is a central result from which many
is an invariant of the motion. Analogous to the axisym-consequences follow. First, it can be shown that the
metric case, the existence of the invariant (4) guaranteezontour of the maxima is straight in Boozer coordinates
orbits with good properties. Energy conservation guaranprovided the rotational transform is irrational. Second,
tees that the variation of the parallel velocity and, hencepne can construct omnigenous functioBsthat depend
the final term in Eqg. (4) is bounded. Thus, the variationnontrivially on 6 in addition to { by the following
of 4 + A,/N is small, and so orbits remain confined to procedure. We introduce the new coordingtsuch that
the vicinity of a flux surface. the magnetic field has the form

A less restrictive way to achieve systems with good
trajectories is to require omnigeneity [7], the property B/Bo =1 + &, codn). ©)
whereby the bounce-averaged cross-flux-surface drift varfhis is generally possible since for every value tf
ishes. As the bounce-averaged drift conserves the boungg varies from the same maximum value to the same
(or longitudinal) action through lowest order in the eX- minimum value as one moves ih Next, we assume that
pansion in the drift frequency relative to the bounce fre-we know the transformation to the left of the minimum

quency, this implies that the bounce action is constant on for all the field lines and along one field line through the
surface. Thus, we need to find systems where the bounggigin (9 = 0,/ = 0) for one full period. That is

action, or zeroth-order bounce adiabatic invariant,

(7)

{=mn+gOmn) for0=n=m,
Jo = fmub - dr = m(tBy + Bgo)f(udgo/B), (5) £ =qnb for0 = ¢ = 27, (10)
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Here, g, = ds/df = N/« — 1 gives the rate of change 10T / Wi
of the helical angle with respect to the poloidal angle as -
one moves along a field line. The functignig, n) is 08l
chosen to vanish aj = 0 so that the curve of maximum I
isat{ =0 and ¢ = 2. From the knowledge of the -
transformation along the one field line segment, we can 06y
determine the angular differenc&Z(B). One simply s |
finds the two points having the given value of magnetic 04
strength along the one segment and takes the difference I
to calculateA/(B) = A{(n). Finally, we determine the ook
transformation forp > 7 by requiring the condition for Tt
omnigeneity, I

0.0 [111/4 7 /

0.2 0.4 0.6 038

{2n

{=2m —mn+ g — Al(n)/qn,2m — 1) 00
+ Al(n) form > a. (11)

This equation is interpreted as follows. To firdto
the right of the minimum, one applies the transformation
equation to the corresponding poifie — Al(n)/q,, ~ Order to haveg(6, ) nonzero while having vanishing
¢ — A¢(n)] and the corresponding valu@w — n) of  g(6,0). The fact thai is not periodic does not matter, as
the new angle. Equation (11) gives the transformatiorthe magnetic field does not dependofor n > 7.
explicitly everywhere on the torus. It is straightforward The contours of the magnetic field strength are shown
to Verify that this transformation has= 2= at n = 2. in Flg 1. That this field is not quasihelical is evidenced
Thus, the solution is periodic. Finally, the transformationby the fact that the contours are not lines of constant
is one to one for Sufﬁcienﬂy Smagp’ as are all near- g As noted, this magnetic field Strength is not analytic.
identity transformations. Indeed, its second derivative is not continuous. This can
Unfortunately, the above construction leads to nonanabe seen in the fact that the contours ngar 0 and
lytic transformations ifg has nontrivial dependence n ¢ = 2 are not symmetric about that line. Examination
We define the functioiG (6, ) to give the transformation Of this figure with a ruler shows that the contours have

(=1

o0

ES

[

1.0

FIG. 1. Contours of the omnigenous magnetic field strength.

for all values ofyn by the formula constant separation, as per Eq. (8), which implies &t
is also constant.
{=n+GO,n). (12) To obtain an analytic magnetic field strength that is

Thus, G =g for 0<n <, and G follows from close to that shown in_ Fig. 2 we carried out thg f(_)IIowing

Eq. (11) form < n < 2. One can show from differ- Operations. Wg Fourier analyz_ed the magnetic field, kept

entiation of Eq. (12) thaG and all of its derivatives are ©ONly up to the first two harmonics [up to dgs* 20 =

constant on the contour of maxima. From this and analy2¢)]. and transformed back. As the Fourier series is finite,

ticity it follows that G is independent of. Thus, ana- this magnetic strength is analytic. In Fig. 2 we show

lytic, omnigenous magnetic fields are quasihelical. the contours for this magnetic field. Some differences
These results appear pessimistic. We expect the mag-

netic field strength to be an analytic function. Yet, if it s,

the magnetic field must be quasihelical. This would seem

to eliminate the possibility of having systems with good

transport that are far from quasihelical. However, analy- 08

ticity is a fragile concept. Two functions, one analytic and

one not analytic, can be arbitrarily close in value every- 4

where. Hence, one must ask the different question: Can g
we find functions that are analytic, yet close everywhere @
to a nonanalytic function that is far from quasihelical? If 04
so, then it is possible to have magnetic fields that are very i
far from quasihelical, yet very nearly omnigenous. 02
To test this idea, we used the above construction to I
obtain an omnigenous. We choseg, = 0.25, g, = 00 )
8.809, and the transformation 0.0 0.2 0.4 0.6 0.8 1.0

g(0.1) = [ao + a,sin(0) + a, cod0)]sin(n/2). v
(13) FIG. 2. Contours of the nearly omnigenous, analytic magnetic
. . field, the magnetic field obtained by truncating the Fourier
with parametergg = 0.1, a; = 0.8, anda, = 0.05. This  series of the omnigenous field through the first two harmonics
transformation is not periodic. We chose this form inin each angle.
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are notable. For example, the curve of maxima is ngroposed in Ref. [1] is that of constant magnetic minima,
longer straight, and the fact that there is a contour with theo that the deeply trapped particles are omnigenous. As
topology of a circle indicates that the minima no longer allnoted above, the conditions of constant magnetic maxima
have the same value, although they do not vary by muchnd constant separatrix action of a surface ensure both
(about 2%). omnigeneity of the marginally trapped particles and elimi-
To test the omnigeneity of these configurations, wenation of the chaotic transition particles. With all three
integrated several trajectories in the analytic, nearly omeonditions, the two extremes of locally trapped particles
nigenous magnetic field found above. The poloidal crossre omnigenous, and there are no chaotic trajectories. (As
section of the trajectory of a typical locally trapped par-shown in Ref. [1], having only constant magnetic maxima
ticle is shown in Fig. 3. [The coordinates are= may do little to reduce transport.) We suggest these as
rcodd) and y = rsin(@), where r = \/i/peqee, and starting design criteria, though naturally one will have to
By is the value of the magnetic field on axis. We havecheck such systems to ensure that the trajectories of the
takene, = §,r with §, = 0.25.] We have set the di- intermediately trapped particles do not make excessive
mensionless parameters toBgmQ3a2 = 2 X 107> and  drift excursions.
wBo/mQ3a? = 1.81 X 1073, whereE is the energy{, We have noted that such systems should have much
is the gyrofrequency on axis, andis the minor radius. better neoclassical confinement properties than the usual
(These are the numbers for a 17 keV proton in a machinbelical confinement systems. Moreover, these systems
with 1 T magnetic field and minor radius of 30 cm.) This should have better confinement than toroidal systems with
figure shows that the trajectory has remained, on average@ual magnetic field variation; the variation of the flux
close to its initial flux surface. (In the typical stellarator surface label is smaller than that in a tokamak by the ratio,
fields such a trajectory would intersect the wall.) One canV/¢ — 1, of connection lengths. Indeed, this leads to
see that this system is not quasihelical by the fact that ththe interesting speculation that transport due to ballooning
oscillation width varies with poloidal angle. mode turbulence, which increases with connection length,
These results show that it is possible to have a magnetiwill also be small in omnigenous helical systems.
field strength that is analytic, nearly omnigenous, but far It remains a significant area of research to find systems
from quasihelical. For such fields the wells are distortedsatisfying the criteria we have laid out. Such an under-
but the particles stay near a particular flux surface. Thudaking will require the use of the large vacuum and equi-
the large neoclassical losses associated with trajectorididrium computer applications in use at major labs around
that directly drift out of the plasma will not be present. the world. We suggest that if such studies are successful,
Because our requirements for the magnetic strength a@e may end up with very good toroidal plasma confine-
less restrictive than those for quasihelicity, there is hopénent systems.
of finding systems with good confinement properties at This work was supported by the U.S. Department of
smaller aspect ratios. Energy under Grant No. DE-FG003-95ER54297.
Ultimately one would like to set certain limited criteria
for the design of a stellarator, as one does not expect
to obtain perfectly omnigenous systems. The condition
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