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Physical Regimes and Dimensional Structure of Rotating Turbulence
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(Received 24 June 1996)

Numerical simulations of rotating turbulence have given rise to “unexpected results”: An increasin
V did not lead to the “expected” route to a 2D state. A recent model of turbulence leads to a
new numberN ­ KsnVd21 (K and n are turbulent kinetic energy and viscosity) so that DNS (direct
numerical simulation) and LES (large eddy simulation) correspond toN , 1 and N . 1. In the first
case, the energy cascade is suppressed, while in the second case there exists an inertial spec
which is an equilibrium of quasi–2D-3D modes. With these ingredients, we reproduce DNS and LE
data. [S0031-9007(96)02204-1]

PACS numbers: 47.27.Te, 47.32.–y
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Recent numerical simulations data on rotating tu
bulence are difficult to interpret if one adopts th
Taylor-Proudman theorem; to wit, asV increases, rotating
turbulence should tend to a 2D state withLysverticald ¿

Lhshorizontald. DNS (direct numerical simulation) an
LES (large eddy simulation) results do not confirm su
expectations. First, early DNS [1–3] and experiment
[4] confirmed the trend toward 2D but further DNS wor
[5] with larger V yielded the opposite result:LyyLh first
grows with V but then decreases returning toward a 3
state. Second,using LES, the tendency toward 2D wa
seen, and it was thought that lateralsL11,3d and longitudi-
nal sL33,3d vertical length scales wouldbothbe larger than
Lh. It was, however, found [6,7] thatL11,3 ¿ Lh, but
L33,3 , Lh. It was stated that [7] “the decoupling wa
unexpected especially considering the strong coupl
between vertical and horizontal fluctuations,” and th
[6] “most striking is the large growth rate inL11,3 which
attains values between 5–10 larger thanL33,3.”

We show that both DNS-LES results can be reproduc
and understood on the basis of a new hierarchy of regim
which we construct using a recent model previously tes
on a variety of other data [8,9]. For largeV, we show
that there exist two quite different regimes separated
the new numberN ­ KynV (K is the turbulent kinetic
energy andn is the viscosity). ForN , 1, strong rotation
suppresses the energy cascade altogether. No ine
regime, defined by the constancy of the energy flu
develops. In a freely decaying case, viscosity remains
only operating mechanism, and, in the absence of ene
transfer, an initially isotropic 3D turbulence remains th
and never tends towards a 2D state. This explains
DNS data. ForN . 1, the energy cascade is restored a
the flow consists of mutually interacting 2D and 3D stat
We further show thatL33,3 belongs to a 3D state (wher
all lengths are of the same order), whileL11,3 belongs to
a 2D state and, thus,L11,3 ¿ L33,3 , Lh. This explains
the different behavior vsV found in LES [6,7]. We also
compute the power law exponents for energy and len
scales for freely decaying rotating turbulence and sh
that the results reproduce LES data [7,10]. The nonlin
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interactions, though weakened, are the main cause of 2
state which is not of the Proudman-Taylor type since th
latter requires negligible nonlinearities.

Stationary, homogeneous, rotating turbulence.—Be-
fore applying the model of [8,9] to rotating turbulence, it
is necessary to give a brief sketch of its physical conten
Generally speaking, the interaction of an eddy of wav
numberk is contributed by two processes: the interaction
with all the smaller eddies with wave numbers larger tha
k (the ultraviolet part, UV) and with the larger eddies
with wave numbers smaller thank (infrared part, IR). As
Wyld [11] showed long ago, both parts can be describe
by an infinite set of Feynman diagrams. The UV par
is divergent but renormalizable, and thus the total sum
can be obtained, for example, using RNG (renormalizatio
group) techniques. The result, expressed in terms of
dynamical (turbulent) viscosity, is given by Eq. (4). The
IR presents a major problem since it has been known fo
many years [12] that it diverges and, contrary to the UV
part, the divergence is not renormalizable. One approa
is to truncate the infinite series and retain only the firs
diagram, the so-called one-loop approximation. Wyld [11
showed that this gives rise to the DIA (direct-interaction
approximation) model [and by inference the EDQNM
(eddy-damped quasinormal Markovian) model]. Thus
while DIA contains no adjustable parameters, it neglec
a large set of diagrams. For the problems encounter
in extending DIA to anisotropic, inhomogeneous flows
see [13].

The model presented in [8,9] employs the RNG tech
nique to compute the UV part but departs substantiall
from the one-loop, DIA model. Since the series of IR
diagrams cannot be summed, a physical model was su
gested based on the assumption that the nonlinear tra
fer of energy is mostly a local process. This assumptio
alone (made first by Kolmogorov) allows one to derive a
closed set of equations forEskd and the Reynolds stresses
(the contribution of nonlocality, the so-called backscat
ter, was also computed and included in all calculations
Since the assumption of locality is an heuristic one, th
reliability of the model results can only be assessed on th
© 1997 The American Physical Society
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basis of its performance on a wide variety of flows. Th
model was thus tested against more than fifty turbulen
statistics, including among others, shear, plane, axisy
metric, and high Rayleigh number convection [8,9]. Th
equations relevant to the present case are

≠

≠t
Eskd ­ Tskd 2 2nk2Eskd 1 Asskd , (1)

where the last term represents the work done by t
stirring forces andTskd is the transfer,

T skd ­ 2
≠Pskd

≠k
, (2a)

Pskd ­ Eskdrsssk, Eskdddd . (2b)

In analogy withj ­ ry, (2b) represents the energy flux
Pskd (the analog ofj) in terms of a rapidityr (the analog
of y), and of the energy spectrumEskd (the analog ofr).
The rapidityrsssk, Eskdddd is a highly nonlinear function of
Eskd since

rskd ; 2
Z k

0
p2ntspddp , (3)

ntskd ­ ndskd 2 n,

ndskd ­

√
n2 1

2
5

Z `

k
p22Espddp

!1y2

.
(4)

Here,nt is the turbulent viscosity. How can one includ
rotation? There is ample evidence, DNS-LES simulatio
[1,6,7,10], experimental work [14,15], and closure mode
[16] that the energy fluxPskd is inhibited by rotation.
Using the helical formalism of [17], we derive the
following energy flux

PVsk, td ­ 2
Z

SaCsanjpnd

3 kbp
a1

sp1dbp
a2

sp2dba3 sp3dle2ivtusk 2 p1d

3 Pn­3
n­1dpn 1 c.c.

Here, v ­ V ? sp1yp1 1 p2yp2 2 p3yp3d, u is the
Heaviside function, theb’s and the C’s represent the
velocity field and the structure functions in the helica
representation [17], andan ­ 61. Instead of ensemble
averaging in, we average over the lifetime of cohere
triads, that is,Pskd ! t21

Rt
0 dtPsk, td. Because of the

rapidly oscillating factor exps2ivtd, the main contri-
bution is for t , V21. The only physically acceptable
candidate fort is sk2ntd21 and, thus,

PVskd ­
k2

V
ntskdPskd . (5)

An analogous expression holds forrVskd. Next, we
consider a steady state and assume that the stirring forc
is concentrated in the lowk region. In the case of a
high Reynolds number flowsn ! 0d, there is an extended
inertial region in whichPskd ­ e. Using Eqs. (1), (2b),
e
-

e

s
s

t

ng

(4), and (5), we obtain

Eskd ­

√
45
8

!1y2

seVd1y2k22, (6a)

rVskd ­

√
8

45

!1y2√
e

V

!1y2

k2. (6b)

The spectrumEskd , k22 has been obtained phenomeno
logically in [18] and in [19] via the solution of the mode
[20]. In the presence ofV, the turbulent viscositynVskd
is given by

nVskd ­
1

2k2

≠

≠k
rVskd ­

√
8

45

!1y2√
e

V

!1y2

k21 ­
K2

e
g ,

g ;
8

45
e

KV
.

(7)

The last equality corresponds tok ­ k0 , L. The con-
dition that the energy flux is inhibited by rotation,PV ,

P, is equivalent, to using Eqs. (4)–(6),

k , kV , kV ; 2e21y2V3y2. (8)

Thus, we envisage a spectrum that in the intervalk0 ,

k , kV is given by (6a), while forkV , k , kd is
given by Kolmogorov. Here,kd has the usual expression
kd ; sen23d1y4. However, sincekV increases withV,
it may become larger thankd . In that case, Kolmogorov
no longer attains, and one goes directly from (6a) in
a dissipation region which begins at a wave numberkp

d
defined by the conditionn ­ nVskp

dd which gives

kp
d ; 2seV21d1y2n21. (9)

The condition for a Kolmogorov spectrum to exist,kV ,

kp
d , translates into

V2n

e
,

1
4

, Rov . 1 , (10)

where Rov ; vy2V is the Rossby micronumber,v ;
seynd1y2. The condition for the spectrum (6a) to exist i
instead (L is the size of the system)

kV . k0 , L21, RoL , 1 , (11)

where RoL ; K1y2yVL and from (6a),K , seVd1y2L.
In the case of strong rotation, the new dissipation wa
numberkp

d can become even smaller thank0 , L21. This
will happen when

N ;
K

nV
, 1 . (12)

When this occurs, there is no inertial region whe
Pskd ­ e. The spectrum is no longer universal, and
depends on the specific type of external forcing. We su
gest N as a new number to characterize rotating turb
lence. We summarize the results as follows: If RoL . 1,
weak rotation does not affect turbulence. If RoL , 1,
rotation affects turbulence, and we must distinguish tw
regimes: N . 1, an inertial regime sets in. The spe
cific form of Eskd depends on whether condition (10) i
667
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satisfied or not. If it is, we have two inertial branch
E , k22 in the k0 , k , kV interval and Kolmogorov
in thekV , k , kd region. If not, we have only one in
ertial regime, theE , k22 spectrum fromk0 , k , kp

d .
In the latter, 2D and 3D modes are in equilibrium (see
low). N , 1, no inertial regime sets in since strong rot
tion inhibits the transfer of energy. An initially isotropi
flow remains thus and only viscous and external for
operate. This resolves the paradox in [5] (the conject
of a 2D state asV increases), since asV increases,N de-
creases and the3D ! 2D gets suppressed.

N . 1: quasi-2D, 3D equilibrium.—The Coriolis force,
2Vk 3 uskd, Vk ­ k22sV ? kdk, affecting an eddyuskd,
vanishes ifk'V. This implies that eddies withkh ¿ kz

form a quasi-2 mode which is weakly affected by rotatio
Since in 3D the energy cascade is mostly forward, wh
it is mostly backward in 2D, the energy flux from3D !
2D occurs mostly at largek’s, whereas the2D ! 3D
transition occurs mostly at lowk’s where the inhibition of
energy transfer is the largest. Thus, if the initial ener
densities es2Dd ­ es3Dd, fluxs3D ! 2Dd . fluxs2D !

3Dd, which leads to a flow of energy from 3D to 2D unt
equilibrium is reached in whiches2Dd ¿ es3Dd. As V

increases, so doese(2D), while there is a correspondin
decrease of the volume of the mode whose boundar
defined by the conditionVk , k2nVskd. The use ofVk
and the second equality (7) yields the boundary valuekp

z
that separates 2D and 3D modes,

kp
z , V21seV21d1y2k2. (13)

As a result of the two opposing tendencies, the to
2D energy can either increase, decrease withV, or tend
to a fixed asymptotic value. LES data [7,10] exhibit
symmetry of the Reynolds stress tensor for quite a lo
decay time during which the Rossby number decrea
quite significantly . We can thus assume that the ratio
the energies in the 2D-3D modes tends to a finite va
asV ! `. In addition, local interactions among eddies
either mode limit the value of the ratioEs2DdyEs3Dd at
eachk so as to prevent an infinite energy flux from o
mode to the other. This, in turn, can be viewed as
indication that the two energy spectra must have sim
shapes.

Decaying turbulence.—The LES results [6,7,10,21
correspond to the strong rotation limit,N . 1. We
consider an initial smallk behavior ofE(k) of the form
Esk, t ­ 0d ­ Bs!2ks, where s ­ 2, 4 [22]. Carrying
out a similarity analysis similar to the one in [22], b
with Eq. (6a), we obtain

Kstd ­ B
2y5
0 V3y5t23y5, Kstd ­ B

2y7
2 V5y7t25y7, (14)

for s ­ 2, 4 respectively. The results agree with LES da
[7,10]. Furthermore,k0, the value at which the initia
spectrum and (6a) coincide, is

k0std ­ sB0tV21d21y5, k0std ­ sB2tV21d21y7, (15)
for s ­ 2, 4; these functions are used in evaluating t
length scales
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Laa,bstd ­ ku2
al21

Z
kuasrduasr 1 sebdlds (16)

(no summation overa); eb is the unit vector along the
Xb axis and r is the radius vector. Since turbulenc
is axially symmetric (with respect to thex3 axis, V ­
0, 0, V), there are three horizontalLaa,1sa ­ 1, 2, 3d and
two vertical independent scales,L11,3 and L33,3. In a
3D mode, all five length scales are of the same order
magnitudek21

0

Laa,1 , L33,3 , k21
0 , t1y5, t1y7 (17)

depending ons ­ 2, 4. The results are in agreement wit
LES data [7]. In a 2D mode, there is an horizont
L11,1 , k21

0 and a vertical length scale,L11,3, defined by
the 2Dy3D boundary value (13) ofkp

z at k ­ k0

L11,3 , skp
0zd21 ­ k22

0 sV3e21d1y2. (18)

Using Eqs. (15), we obtain (fors ­ 2, 4)

L11,3 , sB0V4t6d1y5, L11,3 , sB2V6t8d1y7, (19)

which grow much faster thanL33,3. The results agree with
LES data [7] and explain the decoupling of the vertic
length scalesL33,3 and L11,3 that surprised the author
of [6,7].

In conclusion, the main feature of rotating turbulen
is the inhibition of the energy transfer [1]. The autho
of [7,10] suggested that this causes the dominant t
scale of triple correlationst to be ,V21. Substitution
in the relatione , tfk2Eskdg2 suggested in [23] yields
Eskd , e1y2V1y2k22 [18]. The turbulence model [8,9]
which was previously tested on several turbulent statist
shows that such a spectrum exists only in theN . 1 case.
The numberN differentiates two very different regimes:
total suppression of the energy transfer (with a viscos
dominated decay) and a weakened energy cascade.
first regime hasN , 1; the second isN . 1. DNS data cor-
respond toN , 1, while LES data correspond toN . 1.
This allows us to explain the seemingly paradoxical DN
results [5], whereby asV increases, turbulence exhibit
3D, rather than 2D, features. Since DNS correspond
N , 1, the energy transfer is strongly suppressed as is
3D ! 2D transition. WithE(k) and similarity analysis, we
show that the time dependence of both kinetic energy
length scales reproduce the power law exponents obta
by LES.

A major new feature is that in theN . 1 case,
there exists an equilibrium between 3D and quasi-
states separated bykp

z , Eq. (13). The existence of th
latter, though arrived at heuristically, explains a furth
“unexpected” LES result, the very different time behavi
of the two vertical length scales: one belongs to 2D,
other to 3D.

When this work was completed, we received a man
script [24] in which a similar (but not identical)
hierarchy of rapidly rotating turbulent states was cons
ered for the freely decaying case. The work is based
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the numerical solution of the EDQNM-2 model [25]. In
[24], the condition for a 2D state, Rov . 1 was proposed
which differs from our conditionN . 1. In fact, for the
spectrum (6a),N , sRovyRoLd2 so thatN . 1 implies
Rov . RoL, which is much weaker than the Rov . 1
condition of [24].
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