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Numerical simulations of rotating turbulence have given rise to “unexpected results”: An increasing
Q) did not lead to the “expected” route to a 2D state. A recent model of turbulence leads to a
new numberN = K(»Q)~! (K and v are turbulent kinetic energy and viscosity) so that DNS (direct
numerical simulation) and LES (large eddy simulation) correspond ta 1 and N > 1. In the first
case, the energy cascade is suppressed, while in the second case there exists an inertial spectrum
which is an equilibrium of quasi—2D-3D modes. With these ingredients, we reproduce DNS and LES
data. [S0031-9007(96)02204-1]

PACS numbers: 47.27.Te, 47.32.-y

Recent numerical simulations data on rotating tur-interactions, though weakened, are the main cause of 2D
bulence are difficult to interpret if one adopts the state which is not of the Proudman-Taylor type since the
Taylor-Proudman theorem; to wit, &sincreases, rotating latter requires negligible nonlinearities.
turbulence should tend to a 2D state with(vertical) > Stationary, homogeneous, rotating turbulerede-
L,(horizonta). DNS (direct numerical simulation) and fore applying the model of [8,9] to rotating turbulence, it
LES (large eddy simulation) results do not confirm suchis necessary to give a brief sketch of its physical content.
expectations. First, early DNS [1-3] and experiments Generally speaking, the interaction of an eddy of wave
[4] confirmed the trend toward 2D but further DNS work numberk is contributed by two processes: the interaction
[5] with larger Q) yielded the opposite resulk., /L, first  with all the smaller eddies with wave numbers larger than
grows with ) but then decreases returning toward a 3Dk (the ultraviolet part, UV) and with the larger eddies
state. Secondusing LES, the tendency toward 2D was with wave numbers smaller th&n(infrared part, IR). As
seen, and it was thought that latetal; ;) and longitudi- Wyld [11] showed long ago, both parts can be described
nal (Ls33) vertical length scales wouldothbe larger than by an infinite set of Feynman diagrams. The UV part
L. It was, however, found [6,7] that,;3 > L;, but is divergent but renormalizable, and thus the total sum
Li33 ~ Ly. It was stated that [7] “the decoupling was can be obtained, for example, using RNG (renormalization
unexpected especially considering the strong couplingroup) techniques. The result, expressed in terms of a
between vertical and horizontal fluctuations,” and thatdynamical (turbulent) viscosity, is given by Eq. (4). The
[6] “most striking is the large growth rate ih;; 3 which IR presents a major problem since it has been known for
attains values between 5-10 larger tlian;.” many years [12] that it diverges and, contrary to the UV

We show that both DNS-LES results can be reproducegart, the divergence is not renormalizable. One approach
and understood on the basis of a new hierarchy of regimds to truncate the infinite series and retain only the first
which we construct using a recent model previously testediagram, the so-called one-loop approximation. Wyld [11]
on a variety of other data [8,9]. For larde, we show showed that this gives rise to the DIA (direct-interaction
that there exist two quite different regimes separated bwapproximation) model [and by inference the EDQNM
the new numbeV = K/vQ (K is the turbulent kinetic (eddy-damped quasinormal Markovian) model]. Thus,
energy and is the viscosity). FolV < 1, strong rotation while DIA contains no adjustable parameters, it neglects
suppresses the energy cascade altogether. No inertiallarge set of diagrams. For the problems encountered
regime, defined by the constancy of the energy fluxjn extending DIA to anisotropic, inhomogeneous flows,
develops. In a freely decaying case, viscosity remains thsee [13].
only operating mechanism, and, in the absence of energy The model presented in [8,9] employs the RNG tech-
transfer, an initially isotropic 3D turbulence remains thusnique to compute the UV part but departs substantially
and never tends towards a 2D state. This explains thifom the one-loop, DIA model. Since the series of IR
DNS data. Fowv > 1, the energy cascade is restored anddiagrams cannot be summed, a physical model was sug-
the flow consists of mutually interacting 2D and 3D statesgested based on the assumption that the nonlinear trans-
We further show thals; 3 belongs to a 3D state (where fer of energy is mostly a local process. This assumption
all lengths are of the same order), whilg, 3 belongs to  alone (made first by Kolmogorov) allows one to derive a
a 2D state and, thud,;;3 > L3353 ~ L,. This explains closed set of equations fa@r(k) and the Reynolds stresses
the different behavior v§) found in LES [6,7]. We also (the contribution of nonlocality, the so-called backscat-
compute the power law exponents for energy and lengtker, was also computed and included in all calculations).
scales for freely decaying rotating turbulence and shov&ince the assumption of locality is an heuristic one, the
that the results reproduce LES data [7,10]. The nonlineareliability of the model results can only be assessed on the
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basis of its performance on a wide variety of flows. The(4), and (5), we obtain

model was thus tested against more than fifty turbulence 45 1/2
statistics, including among others, shear, plane, axisym- E(k) = <§> (eQ)'2k 2, (6a)
metric, and high Rayleigh number convection [8,9]. The
equations relevant to the present case are 8 1/2 € 1/2
5 ro(k) = 5 Q k2. (6b)
—E(k) = T(k) — 2vk’E(k) + Ay(k), (1) .
at The spectrunE(k) ~ k2 has been obtained phenomeno-
where the last term represents the work done by théogically in [18] and in [19] via the solution of the model
stirring forces and’(k) is the transfer, [20]. In the presence df, the turbulent viscosity (k)
is given by
all(k
T(k) = — ( ), (2a) 1/2 1/2 5
ok vl = 2 2 (8) (a) PR
alk) = =5 —ralk) =| = =—g,
(k) = E(k)r(k, E(K)). (2b) 2k* ok 45 Q € -
In analogy withj = pv, (2b) represents the energy flux g = 8 £
I1(k) (the analog of) in terms of a rapidityr (the analog 45 KQ

of v), and of the energy spectrufi{k) (the analog ofp).  The last equality corresponds o= ko ~ L. The con-
The rapidity »(k, E(k)) is a highly nonlinear function of dition that the energy flux is inhibited by rotatioh,o <

E(k) since I1, is equivalent, to using Egs. (4)—(6),
€ k < ka, ko =2e 12032 (8)
rik) = 2[0 p vip)dp. (3) Thus, we envisage a spectrum that in the integk

k < kq is given by (6a), while forkqg < k <k, is
12 given by Kolmogorov. Herek, has the usual expression
(4) k; = (ev~3)'/4. However, sincekq increases with(),
it may become larger thaky. In that case, Kolmogorov
no longer attains, and one goes directly from (6a) into

Here, v, is the turbulent viscosity. How can one include 5 gjssipation region which begins at a wave numkier
rotation? There is ample evidence, DNS-LES simulationgjefined by the conditiom = v (k) which gives

[1,6,7,10], experimental work [14,15], and closure models

Vr(k) = Vd(k) -V,

va(k) = <V2 + %]k p E(p)dp

* —1\1/2_ —1
[16] that the energy fluxdI(k) is inhibited by rotation. kg =2(eQ ™) Pyl ()
Using the helical formalism of [17], we derive the The condition for a Kolmogorov spectrum to exikf, <
following energy flux k;, translates into
Q? 1
o) = = [ SoClanlp) < RS (10)

X (b* b b, —iotg(k — where R® = w/2Q) is the Rossby micronumbety =
( a_,(m) a,(P2)ba,(p3))e (k = p1) (e/v)'/2. The condition for the spectrum (6a) to exist is
X M3 Zjdp, + c.c. instead [ is the size of the system)

Here, @ = Q - (pi/pi + p2/p2 — p3/p3), 0 is the ko > ko~ L"', Ro" <1, (11)
Heav!3|d(°T function, they's and the C_s represent th'e where Ré = K'/2/QL and from (6a),K ~ (eQ)"/2L.
velocity field and the structure functions in the helical|, he case of strong rotation, the new dissipation wave

representation [17], and, = *=1. Instead of ensemble numberk’; can become even smaller than~ L~!. This
averaging in, we average over the lifetime of coherent,, happen when

triads, that isI1(k) — 77! [ dtTl(k,¢). Because of the

rapidly oscillating factor exp-iwt), the main contri- N = K <1. (12)
bution is forr ~ Q. The only physically acceptable vQ)
candidate forr is (k*»,)~! and, thus, When this occurs, there is no inertial region where
2 I1(k) = €. The spectrum is no longer universal, and it
g (k) = ﬁyt(k)n(k) i (5) depends on the specific type of external forcing. We sug-

gestN as a new number to characterize rotating turbu-
An analogous expression holds fer (k). Next, we lence. We summarize the results as follows: IfRe 1,
consider a steady state and assume that the stirring forcinvgeak rotation does not affect turbulence. IfRa 1,
is concentrated in the lowk region. In the case of a rotation affects turbulence, and we must distinguish two
high Reynolds number flodw — 0), there is an extended regimes: N > 1, an inertial regime sets in. The spe-
inertial region in whichll(k) = €. Using Egs. (1), (2b), cific form of E(k) depends on whether condition (10) is
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satisfied or not. If it is, we have two inertial branches _ /. 2\—1
E ~ k™2 intheky < k < kq interval and Kolmogorov Laap() = () f<ua(r)ua(r *sephds  (16)
intheko < k < kg4 region. If not, we have only one in- (no summation ovew); ez is the unit vector along the
ertial regime, theE ~ k> spectrum fromkg < k < ks. X axis andr is the radius vector. Since turbulence
In the latter, 2D and 3D modes are in equilibrium (see beis axially symmetric (with respect to the; axis, Q =
low). N < 1, no inertial regime sets in since strong rota-0, 0, ), there are three horizontal,, (¢ = 1,2,3) and
tion inhibits the transfer of energy. An initially isotropic two vertical independent scaleg,;; and L333. In a
flow remains thus and only viscous and external forceD mode, all five length scales are of the same order of
operate. This resolves the paradox in [5] (the conjecturgnagnitudek, '

of a 2D state a$) increases), since &3 increasesN de- . s 17

creases and th’D — 2D gets suppressed. Laa1 ~ L3z ~ kg ~ 1751 (17)

N > 1: quasi-2D, 3D equilibrium-—The Coriolis force, depending on = 2,4. The results are in agreement with
20y X u(k), Q =k 2(Q - k)k, affecting an eddyi(k), LES data [7]. In a 2D mode, there is an horizontal
vanishes ifk LQ. This implies that eddies with, > k. L, ~ k' and a vertical length scalé, 3, defined by
form a quasi-2 mode which is weakly affected by rotation.the 20/3D boundary value (13) of! atk = ko
Since in 3D the energy cascade is mostly forward, while o e _ _
it is mostly backward in 2D, the energy flux frodb — Lz ~ (k)™ = ko (@ H!2 (18)
2D occurs mostly at largek’s, whereas the2D— 3D  Using Eqgs. (15), we obtain (for = 2, 4)
transition occurs mostly at lows where the inhibition of 4.671/5 6.8\1/7
energy transfer is the largest. Thus, if the initial energy Lins = (BoQ*)'S, Ly ~ (8,97, (29)
densities e(2D) = ¢(3D), flux(3D — 2D) > flux(2D —  which grow much faster thahs; 3. The results agree with
3D), which leads to a flow of energy from 3D to 2D until LES data [7] and explain the decoupling of the vertical
equilibrium is reached in whick(2D) > ¢(3D). As () length scalesl;;3 and Ly, 3 that surprised the authors
increases, so doex2D), while there is a corresponding of [6,7].
decrease of the volume of the mode whose boundary is In conclusion, the main feature of rotating turbulence
defined by the conditio)y, ~ k%>vq (k). The use of}, s the inhibition of the energy transfer [1]. The authors
and the second equality (7) yields the boundary vafue of [7,10] suggested that this causes the dominant time
that separates 2D and 3D modes, scale of triple correlations to be ~Q~!. Substitution

K~ Q7 (eQ ™22, (13)  in the relatione ~ 7[k?E(k)]* suggested in [23] yields
As a result of the two opposing tendencies, the totaIE(’?)~61/ZQI/2_k ? [18]. The turbulence model [8'.9]2
2D energy can either increase, decrease \thor tend which was previously tested on several turbulent statistics,

to a fixed asymptotic value. LES data [7,10] exhibit aShows that such a spectrum exists only in the- 1 case.
ihe numbeN differentiates two very different regimes: a

symmetry of the Reynolds stress tensor for quite a lon . ' : 4
decay time during which the Rossby number decreas tal suppression of the energy transfer (with a viscosity

quite significantly . We can thus assume that the ratio offominated decay) and a weakened energy cascade. The
the energies in the 2D-3D modes tends to a finite valud'Stregime hag/ <1;the secondi%/ > 1. DNS data cor-

asQ — . In addition, local interactions among eddies of "'€SPond toN <1, while LES data correspond @ > 1.
either mode limit the value of the ratiB(2D)/E(3D) at This allows us to explain 'Fhe seemingly paradoxwal_D_NS
eachk so as to prevent an infinite energy flux from one'esults [5], whereby as) increases, turbulence exhibits
mode to the other. This, in turn, can be viewed as arpD, rather than 2D, features. Since DNS corresponds to

indication that the two energy spectra must have similaf_< 1, the energy transfer is strongly suppressed as is the
shapes. 3D — 2D transition. WithE(k) and similarity analysis, we

Decaying turbulence—The LES results [6,7,10,21] show that the time dependence of both kinetic energy and
correspond to the strong rotation limity > 1. We length scales reproduce the power law exponents obtained

consider an initial smalk behavior ofE(k) of the form by LES. , i i
E(k,t = 0) = B,_,k*, where s = 2,4 [22]. Carrying A major new feature is that in thev > 1 case,
out a similarity analysis similar to the one in [22], but there exists an equilibrium between 3D and quasi-2D
with Eq. (6a), we obtain states separated by, Eq. (13). The existence of the
_ p2/5013/5,-3/5 _ p2/710y5/7,-5/7 latter, though arrived at heuristically, explains a further
K(r) = By Q™% K(1) = By 77>, (14) “unexpected” LES result, the very different time behavior

for s = 2,4 respectively. The results agree with LES datant the two vertical length scales: one belongs to 2D, the
[7,10]. Furthermorek,, the value at which the initial jiher to 3D.

spectrum and (6a) coincide, is When this work was completed, we received a manu-
ko(t) = (BotQ ™)', ko(r) = (BarQ™")™"7, (15)  script [24] in which a similar (but not identical),

for s = 2,4; these functions are used in evaluating thehierarchy of rapidly rotating turbulent states was consid-

length scales ered for the freely decaying case. The work is based on
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