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Failure of the Quasimonochromatic Approximation for Ultrashort Pulse Propagation
in a Dispersive, Attenuative Medium

Kurt E. Oughstun and Hong Xiao
College of Engineering and Mathematics, University of Vermont, Burlington, Vermont 05405

(Received 21 August 1996)

The dynamical evolution of an ultrashort pulse, whose initial temporal envelope is infinitely smooth
with compact support, is considered as it propagates through a temporally dispersive, attenuative
medium characterized by two resonance lines. As the propagation distance increases, the accuracy
of the popular group velocity description decreases monotonically, whereas the accuracy of the
mathematically well-defined asymptotic description and its derivative energy velocity description
increase. [S0031-9007(96)02229-6]
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The popular group velocity description of dispersiv
pulse propagation is widely accepted and employ
throughout physics [1] with central importance in o
tics [2], electromagnetics [3], and acoustics [4]. Th
description is based on the slowly varying envelope
quasimonochromatic approximation [5–7], original
defined by Born and Wolf [2] in the context of partia
coherence. This is a hybrid temporal and frequency
main description [6] in which the temporal field behavi
is separated into the product of a slowly varying envelo
and an exponential phase term whose angular freque
is centered about some characteristic frequencyvc. The
envelope function is assumed to be slowly varying on
time scaleDtc , 1yvc, which is equivalent [7] to the
assumption that its spectral bandwidthDv satisfies the
inequality Dvyvc ø 1 so that the spectral amplitude i
sharply peaked about the frequencyvc.

Recent developments in ultrashort pulse generat
techniques have resulted in the production of sub-
femtosecond optical pulses [8,9]. Because these ul
short optical pulses do not satisfy the slowly varying e
velope approximation, greater care must be taken in m
eling their dynamical evolution. The vast majority of re
searchers still ignore the serious consequences of this
plifying assumption with regard to the effects of line
dispersion in nonlinear optics and related areas. Th
consequences are presented in this paper through a s
representative example from linear optics.

Consider an input pulse envelope modulated sine w
at the planez  0 that is give byfstd  ustd sinsvctd
with constant applied carrier frequencyvc . 0 that is
propagating in the positivez direction through a linear
dielectric whose frequency dispersion is described by
double resonance Lorentz model with complex index
refraction
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Here vj is the undamped resonance frequency,bj is the
plasma frequency, anddj is the phenomenological damp
ing constant of thej th resonance linesj  0, 2d. This
casual model provides an accurate description of ano
lous dispersion in homogeneous, isotropic optical ma
rials when the inequalityv1 # vc # v2 is satisfied, in
which case the input carrier frequency of the field is co
tained in the passband between the two absorption ba
fv0, v1g and fv2, v3g, where v1 

p
v

2
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0 and
v3 

p
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2 . The propagated field is given by th
exact Fourier-Laplace integral representation [10]

Asz, td 
1

2p
R

Ω
i
Z
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ũsv 2 vcd

3 expfisk̃svdz 2 vtdgdv

æ
(2)

for all z $ 0, where ũsvd is the temporal frequency
spectrum of the initial pulse envelope function at th
plane z  0. Here Asz, td represents the scalar wav
field whose spectral amplitudẽAsz, vd satisfies the
Helmholtz equation f=2 1 k̃2svdgÃsz, vd  0, where
k̃svd  bsvd 1 iasvd  vnsvdyc is the complex
wave number of the field with propagation factorbsvd
and attenuation factorasvd in the dispersive, lossy
medium. The integral appearing in Eq. (2) is taken ov
the contourC given by the linev  v0 1 ia, with a be-
ing a fixed constant greater than the abscissa of abso
convergence [10] for the initial envelope functionustd,
and wherev0  Rhvj varies from negative to positive
infinity.

As a consequence of the quasimonochromatic appro
mation, the Taylor series expansion ofk̃svd about the
carrier frequencyvc

k̃svd 
X̀
j0

1
j!

k̃sjdsvcd sv 2 vcdj, (3)

where k̃sjdsvd ; ≠j k̃svdy≠vj , may be truncated after
only a few terms with some undefined error. Typicall
the cubic and higher-order terms in (3) are neglec
[1–6] so that one obtains a quadratic dispersion relati
Within this approximation the pulse is found to propaga
© 1997 The American Physical Society
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at the classical group velocityngsvcd  fbs1dsvcdg21,
and the quantityk̃s2dsvcd results in the so-called grou
velocity dispersion [6].

It is widely believed that the inclusion of just a fe
additional higher-order terms in the Taylor series appr
imation of the material dispersion will greatly improv
its accuracy [11]. In order to show the fallacy of th
assumption, consider the Taylor series expansion of
complex index of refraction (1) for a double resonan
Lorentz model of a fluoride glass with an infraredsv0 
174.12 THz, b0  121.55 THz, d0  49.55 THzd and
a visible sv2  9144.8 THz, b2  6719.8 THz, d2 
1434.1 THzd resonance line, with associated rela
ation times tr0 , 2pyd0  126.8f sec and tr2 ,
2pyd2  4.4f sec, respectively. The frequency dispe
sion of the real and imaginary parts of the full doub
resonance Lorentz model for this glass are depicted
the solid curves in Figs. 1(a), and 1(b), respectively. T
Taylor series expansion ofnsvd  nr svd 1 inisvd is
taken about the frequencyvc  1615 THz, which occurs
at the inflection point innr svd where the dispersion is
a minimum. The dashed curves in the figure depict
frequency behavior of the four term Taylor series appr
imation, while the dotted curves in the figure depict t
frequency behavior of the ten term Taylor series appro
mation. Notice that this large increase in the number
terms results in only a slight improvement in the loc
accuracy of the Taylor series approximation ofnsvd
about vc, while the accuracy outside of the passba
sv1, v2d containingvc is decreased considerably. Th
overall accuracy of this approximation decreases asvc is
moved into either absorption band. Similar results h
for the complex wave number̃ksvd. As a consequence:

The inclusion of higher-order terms in the Taylo
series approximation of the complex wave number
a dispersive, attenuative medium beyond the quadr
approximation is practically meaningless from both t
physical and mathematical points of view.

The inaccuracy of the Taylor series approximation
k̃svd for ultrawideband pulse propagation in a doub
resonance Lorentz model dielectric is best illustra
through a specific example. To that end, consider
infinitely smooth, unit amplitude envelope function [12]

ustd  exp

Ω
1 1

t2

4tst 2 td

æ
, 0 # t # t (4)

and is zero elsewhere, which has compact temp
support with an input full pulse widtht . 0. For a
ten cycle pulse atvc  1615 THz, the input full pulse
width is t  20pyvc  38.905f sec with equal initial
rise and fall timestR  tF  ty2, where Dvyvc ø
0.25 with sv2 2 v1dyvc ø 5.6 and 99.999% of the
input pulse spectral energy is contained in the passb
sv1, v2d between the two resonance lines, as seen
Fig. 1. The dynamical field evolution of this input puls
in the double resonance Lorentz model dielectric, wh
frequency dispersion is depicted in Fig. 1, is illustrat
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FIG. 1. Frequency dispersion of the (a) real and (b) imagina
parts of the double resonance Lorentz model of the comple
index refraction of a fluoride glass with an infrared and a
visible resonance line (solid curves). The dashed curves dep
the four term and the dotted curves the ten term Taylo
series approximations about the minimum dispersion pointvc
between the two resonance lines. For comparison, the relat
magnitude (drawn to an arbitrary vertical scale) of the spectru
of the input pulse envelope considered in Fig. 2 is illustrated i
both parts by the alternating long and short dashed curves.

in the sequence of diagrams in Fig. 2. Each diagra
depicts the temporal field evolution in terms of the
dimensionless space-time parameteru  ctyz at a fixed
propagation distancez relative to the e21 absorption
depth zd  a21svcd in the dispersive medium at the
input carrier frequencyvc. The solid curve in each
diagram depicts the numerically determined propagate
field at that propagation distance using the full Lorent
model (1) of the frequency dispersion, while the dotte
curve depicts the numerically determined propagated fie
using the cubic dispersion relation obtained from the fou
term Taylor series approximation ofk̃svd aboutvc. The
space-time pointu0  ns0d > 1.4238 marks the value
where the peak in the Brillouin precursor will appear [10
in the full dispersion model, while the valueu0

0 > 1.2579
marks the corresponding space-time value of the cub
643



VOLUME 78, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 27 JANUARY 1997

n
n
o
t

e
n

)
ra

p
s

(b
s
a

cy
a
t

s

ve
r

-
y

e
ld
e

al
dispersion relation. In addition, the space-time poi
uSM > 1.0153 marks the value when there is a transitio
from the Sommerfeld precursor to the middle precurs
that is characteristic of this double resonance Loren
model dielectric, and the space-time pointuMB > 1.2949
marks the transition from this middle precursor to th
Brillouin precursor, as is fully described in the moder
asymptotic theory [10,13].

The dynamical field evolution depicted in Fig. 2(a
shows that the exact and approximate descriptions are p
tically identical at three absorption depthsszyzd  3d into
the dispersive medium, the only observable deviation a
pearing at both the leading and trailing edges of the pul
At five absorption depths into the mediumszyzd  5d,
this observed deviation at the leading and trailing edges
the pulse has increased significantly, as seen in Fig. 2
while the slowly varying envelope approximation remain
accurate in its description of the main body of the pulse th
is oscillating at (or very near to) the input carrier frequen
vc. This observed behavior continues as the prop
gation distance is increased to seven absorption dep
persion
FIG. 2. Numerically determined propagated field evolution using the exact dispersion model (solid curves) and the cubic dis
approximation (dotted curves) as a function of the dimensionless time parameteru  ctyz at several fixed propagation distancesz
into the dispersive, lossy medium.
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szyzd  7d in Fig. 2(c) and then to ten absorption depth
szyzd  10d in Fig. 2(d), at which point the accuracy of
the quasimonochromatic approximation is seen to ha
completely broken down. Similar results are obtained fo
other input ultrashort pulse widths.

The exact dynamical field evolution depicted by the
solid curves in Fig. 2 is accurately provided by the uni
form asymptotic description [10] and its derivative energ
velocity description [10,14,15] for allzyzd $ 1, the
accuracy increasing asz increases abovezd in the sense
of Poincaré [16]. The impulse response of this doubl
resonance Lorentz medium is comprised of a Sommerfe
precursor that dominates the initial field evolution over th
space-time domain1 # u # uSM, whose instantaneous
oscillation frequencyvSsud > RhvSP1

D
sudj chirps down

from infinity at u  1 and approachesv3 from above as
u ! `. This is followed by the middle precursor, which
dominates the field evolution over the space-time interv
uSM # u # uMB, whose instantaneous oscillation fre-
quencyvMsud > RhvSP1

M
sudj varies over the frequency

domain f0, v2g below the upper absorption band. The
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Brillouin precursor then dominates the field evolutio
for all u . uMB, during which its instantaneous oscil
lation frequencyvBsud > RhvSP1

M
sudj chirps up from

its initially quasistatic value and approachesv0 from
below as u ! `. Here vSP1

D
sud denotes the distant,

vSP1
M

sud, denotes the middle, andvSP1
N
sud denotes the

near saddle point location of the complex phase functi
fsv, ud  iscyzdfk̃svdz 2 vtg  ivfnsvd 2 ug in the
right half of the complexv plane [10,13]. It then follows
that:

As a pulse propagates away from its input plane, its d
namical evolution is initially characterized by the group
velocity description, but as the propagation distance i
creases and the pulse dispersion becomes mature[10,14],
its dynamical evolution becomes characterized by t
asymptotic description and its resultant energy veloci
description.

BecausetR,F . tr2 in the example considered here, s
that the visible resonance relaxation time is dominated
the initial pulse rise/fall time, and since the initial puls
spectrum contains negligible spectral energy abovev3,
the Sommerfeld precursor is absent from the dynamic
field evolution depicted in Fig. 2. On the other hand
sincetR,F , tr0, so that the infrared resonance relaxatio
time dominates the initial pulse rise/fall time, the Brillouin
precursor will be present in the dynamical field evolutio
[10]. The front of the pulse is then dominated b
the middle precursor and the signal contribution at th
input carrier frequencyvc [ fv1, v2g, which arrives
during the evolution of the middle precursor associat
with the leading edge of the pulse. As the propagati
distance increases above seven absorption depths
the signal contribution atvc becomes negligible in
comparison to the precursor fields, as in Fig. 2(d), th
dynamical field evolution is seen to be comprised
two interfering sets of precursors, one set associated w
the leading edge and the other with the trailing edg
of the pulse, as described by the uniform asympto
theory [10]. The propagated pulse then arrives with t
evolution of the leading edge middle precursor, followe
by the signal contribution oscillating at (or very nea
to) vc and then the trailing edge middle precurso
which is then followed by the interfering leading an
trailing edge Brilloiun precursors, as is clearly evident
Fig. 2(d) at zyzd  10. The peak in the leading edge
Brilloiun precursor, which decays only asz21y2, occurs
at u  u  ns0d, as properly described by both the
asymptotic theory [10] and the energy velocity descriptio
[14,15]. Notice, however, that the quasimonochroma
approximation predicts erroneous leading and trailin
edge Brillouin-like precursors in place of the middl
precursors, the peak in the leading edge Brillouin-lik
precursor occurring atu  u

0
0, as seen in Figs. 2(b)–

2(d). At ten absorption depths the quasimonochroma
approximation predicts a peak field amplitude that
approximately twice the actual peak amplitude, and
15 absorption depths it is approximately 4 times th
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actual peak amplitude. The implication of this error in
the modeling of nonlinear effects in dispersive media ma
have far-reaching consequences. As a consequence:

The slowly varying envelope or quasimonochromati
approximation of linear dispersive pulse propagation
in a double resonance Lorentz model dielectric with
v1 , vc , v2 is valid provided that each of the
inequalities (in decreasing order of their importance)
tR,F . maxh2pyd0, 2pyd2j, Dv ø sv2 2 v1d, and
Dvyvc ø 1, are strictly satisfied, whereDv is the
spectral width of the input pulse andtR,F is taken as
the smaller of the initial pulse rise and fall times. For
either an ultrashort or an ultrawideband pulse with either
an initial rise or fall time tR,F satisfying the inequality
tR,F & maxh2pyd0, 2pyd2j,the accuracy of the quasi-
monochromatic approximation decreases monotonical
as the propagation distance exceeds one absorption dep
zd  a21svcd at the input carrier frequencyvc, while
the accuracy of the asymptotic description increase
monotonically.
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