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Failure of the Quasimonochromatic Approximation for Ultrashort Pulse Propagation
in a Dispersive, Attenuative Medium
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The dynamical evolution of an ultrashort pulse, whose initial temporal envelope is infinitely smooth
with compact support, is considered as it propagates through a temporally dispersive, attenuative
medium characterized by two resonance lines. As the propagation distance increases, the accuracy
of the popular group velocity description decreases monotonically, whereas the accuracy of the
mathematically well-defined asymptotic description and its derivative energy velocity description
increase. [S0031-9007(96)02229-6]

PACS numbers: 42.65.—k

The popular group velocity description of dispersiveHere w; is the undamped resonance frequenigyjs the
pulse propagation is widely accepted and employeglasma frequency, andl; is the phenomenological damp-
throughout physics [1] with central importance in op-ing constant of thgth resonance lind; = 0,2). This
tics [2], electromagnetics [3], and acoustics [4]. Thiscasual model provides an accurate description of anoma-
description is based on the slowly varying envelope otous dispersion in homogeneous, isotropic optical mate-
quasimonochromatic approximation [5-7], originally rials when the inequalityy; = w. = w, is satisfied, in
defined by Born and Wolf [2] in the context of partial which case the input carrier frequency of the field is con-
coherence. This is a hybrid temporal and frequency dotained in the passband between the two absorption bands
main description [6] in which the temporal field behavior[wy, w;] and [w>, w3], where w; = Vw? + b3 and
is separated into the product of a slowly varying envelopg,; = \/m The propagated field is given by the

and an exponential phase term whose angular frequen@kact Fourier-Laplace integral representation [10]
is centered about some characteristic frequengy The

envelope function is assumed to be slowly varying on the Az, 1) = LS}{{,‘] ilw — w.)
time scaleAr. ~ 1/w., which is equivalent [7] to the 2m c
assumption that its spectral bandwidMw satisfies the x exdi(k(w)z — wt)]dw} (2)

inequality Aw/w. < 1 so that the spectral amplitude is for all z = 0, where ii(w) is the temporal frequency
sharply peaked about the f_requermy. ._spectrum of the initial pulse envelope function at the
Re(_:ent developments in ultrashort pu_lse generatloBIaneZ — 0. Here A(z,1) represents the scalar wave
techniques have resulted in the production of SUb'loﬁeId whose spectral ’amplitudei(z ) satisfies the
femtosecond optical pulses [8,9]. Because these UItra}:leImhoItz equation [V + ]22((”)];‘(’2 w) = 0, where
short optical pulses do not satisfy the slowly varying en-~(w) — B(w) + ia(w) = wn(w)/c |s the ’complex

velope approximation, greater care must be taken in modz . 1 mber of the field with propagation facigfw)

eling their dynamical evolution. The vast majority of ré- 2nd attenuation factor () in the dispersive, lossy

searchers still ignore the serious consequences of this Sifhedium. The integral appearing in Eq. (2) is taken over
plifying assumption with regard to the effects of Iinearthe cont;)urC given by the linew = o' +' ‘0. With a be-

dispersion in nonlinear optics anq related areas. Th.eﬁﬂ a fixed constant greater than the abscissa of absolute
consequences are presented in this paper through a smg:l nvergence [10] for the initial envelope functiorr),

representative gxample from linear optics. ) and wherew’ = N{w} varies from negative to positive
Consider an input pulse envelope modulated sine Wavﬁlfinity
at the planez = 0 that is give by f(r) = u(r) sin(w.1) As a consequence of the quasimonochromatic approxi-

with cor1t§tan_t atr;]plled (_:?rrleé_fre(t:!uen;zﬁyc >g th?t 'S mation, the Taylor series expansion bfw) about the
propagating in the positive direction through a linear . . frequencyo.

dielectric whose frequency dispersion is described by the

oo

double resonance Lorentz model with complex index of Fw) = l;((j)(w Yo — o) 3)
refraction = I ¢ )
b2 where kY (w) = ¢/k(w)/dw!, may be truncated after
n(w) =<1 ) 2 ; only a few terms with some undefined error. Typically,
w? — wy t+ 2idw

R the cubic and higher-order terms in (3) are neglected
_ b; )1/2 (1) [1-6] so that one obtains a quadratic dispersion relation.
w? — w3 + 2idr0 ) Within this approximation the pulse is found to propagate
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at the classical group velocity,(w.) = [V (0.)] ", 16 —
and the quantityt®(w,) results in the so-called group I
velocity dispersion [6]. L]
It is widely believed that the inclusion of just a few
additional higher-order terms in the Taylor series approx-
imation of the material dispersion will greatly improve o TS
its accuracy [11]. In order to show the fallacy of this z
assumption, consider the Taylor series expansion of thee (10 tame)
complex index of refraction (1) for a double resonance r
Lorentz model of a fluoride glass with an infrarad, =
174.12 THz, by = 121.55 THz, 89 = 49.55 THz) and
a visible (w, = 9144.8 THz, b, = 6719.8 THz, 6, =
1434.1 THz) resonance line, with associated relax- i
ation times 7,9 ~ 27/8y = 126.8f sec and 7,5 ~ 06 o il b fuy "
27 /8, = 4.4f sec, respectively. The frequency disper- 10 o % 0 0
sion of the real and imaginary parts of the full double
resonance Lorentz model for this glass are depicted by s . . :
the solid curves in Figs. 1(a), and 1(b), respectively. The
Taylor series expansion of(w) = n,(w) + in;(w) is
taken about the frequeney. = 1615 THz, which occurs
at the inflection point inn,.(w) where the dispersion is
a minimum. The dashed curves in the figure depict the 5 oal
frequency behavior of the four term Taylor series approx- -
imation, while the dotted curves in the figure depict the
frequency behavior of the ten term Taylor series approxi- o2f
mation. Notice that this large increase in the number of
terms results in only a slight improvement in the local

(a)

@, Oy
H

(b)

(exact)

o

(10 terms)

accuracy of the Taylor series approximation ofw) o @RmyTT T \
about w., while the accuracy outside of the passband i L\ : “1
(w1, wy) containingw, is decreased considerably. The 02 el e 92 0
overall accuracy of this approximation decreasesass " 10" 10* o 10 10"

. . . .. /
moved into either absorption band. Similar results hold © (rad/sec)

for the complex wave numbdi(w). As a consequence: L3 T ¢ AR CORTEIE S ) Mol of the complex
The mcluspn qf higher-order terms in the Taylor. index refraction of a fluoride glass with an infrared and a
series approximation of the complex wave number iRjsiple resonance line (solid curves). The dashed curves depict
a dispersive, attenuative medium beyond the quadratighe four term and the dotted curves the ten term Taylor
approximation is practically meaningless from both theseries approximations about _the minimum disp_ersion peint _
physical and mathematical points of view. between the two resonance lines. For comparison, the relative

. . : : magnitude (drawn to an arbitrary vertical scale) of the spectrum
The inaccuracy of the Taylor series approximation Ofof the input pulse envelope considered in Fig. 2 is illustrated in

k(w) for ultrawideband pulse propagation in a doublepoth parts by the alternating long and short dashed curves.
resonance Lorentz model dielectric is best illustrated

through a specific example. To that end, consider thén the sequence of diagrams in Fig. 2. Each diagram
infinitely smooth, unit amplitude envelope function [12] depicts the temporal field evolution in terms of the
2 dimensionless space-time parameter ct/z at a fixed
u(t) = exp{l + 7} 0=r=r7 (4) propagation distance relative to thee™! absorption
41(t — 7) depth z; = @ '(w.) in the dispersive medium at the
and is zero elsewhere, which has compact temporahput carrier frequencyw.. The solid curve in each
support with an input full pulse widthr > 0. For a diagram depicts the numerically determined propagated
ten cycle pulse atv, = 1615 THz, the input full pulse field at that propagation distance using the full Lorentz
width is 7 = 207 /w,. = 38.905f sec with equal initial model (1) of the frequency dispersion, while the dotted
rise and fall timesrz = 7 = 7/2, where Aw/w. =  curve depicts the numerically determined propagated field
0.25 with (wy — w1)/w,. = 5.6 and 99.999% of the using the cubic dispersion relation obtained from the four
input pulse spectral energy is contained in the passbartérm Taylor series approximation #fw) aboutw.. The
(w1, wy) between the two resonance lines, as seen igpace-time pointdy = n(0) = 1.4238 marks the value
Fig. 1. The dynamical field evolution of this input pulse where the peak in the Brillouin precursor will appear [10]

in the double resonance Lorentz model dielectric, whosén the full dispersion model, while the val#g = 1.2579
frequency dispersion is depicted in Fig. 1, is illustratedmarks the corresponding space-time value of the cubic
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dispersion relation. In addition, the space-time point(z/z, = 7) in Fig. 2(c) and then to ten absorption depths
6sm = 1.0153 marks the value when there is a transition(z/z; = 10) in Fig. 2(d), at which point the accuracy of
from the Sommerfeld precursor to the middle precursothe quasimonochromatic approximation is seen to have
that is characteristic of this double resonance Lorentzompletely broken down. Similar results are obtained for
model dielectric, and the space-time poftg = 1.2949  other input ultrashort pulse widths.
marks the transition from this middle precursor to the The exact dynamical field evolution depicted by the
Brillouin precursor, as is fully described in the modernsolid curves in Fig. 2 is accurately provided by the uni-
asymptotic theory [10,13]. form asymptotic description [10] and its derivative energy
The dynamical field evolution depicted in Fig. 2(a) velocity description [10,14,15] for alk/z;, = 1, the
shows that the exact and approximate descriptions are pragecuracy increasing asincreases above; in the sense
tically identical at three absorption depthgz, = 3) into  of Poincaré [16]. The impulse response of this double
the dispersive medium, the only observable deviation apresonance Lorentz medium is comprised of a Sommerfeld
pearing at both the leading and trailing edges of the pulsgrecursor that dominates the initial field evolution over the
At five absorption depths into the mediu(m/z; = 5), space-time domain = 6 = fgy, whose instantaneous
this observed deviation at the leading and trailing edges afscillation frequencyws(0) = R{wsp;(6)} chirps down
the pulse has increased significantly, as seen in Fig. 2(bfsom infinity at § = 1 and approaches; from above as
while the slowly varying envelope approximation remainsé — . This is followed by the middle precursor, which
accurate in its description of the main body of the pulse thatlominates the field evolution over the space-time interval
is oscillating at (or very near to) the input carrier frequencyfsy = 6 < 6y, Whose instantaneous oscillation fre-
w.. This observed behavior continues as the propaguencywy(0) = R{wsp: ()} varies over the frequency
gation distance is increased to seven absorption deptlidomain[0, w,] below the upper absorption band. The
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FIG. 2. Numerically determined propagated field evolution using the exact dispersion model (solid curves) and the cubic dispersion
approximation (dotted curves) as a function of the dimensionless time parafnetert/z at several fixed propagation distanaes
into the dispersive, lossy medium.
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Brillouin precursor then dominates the field evolutionactual peak amplitude. The implication of this error in
for all & > Oyg, during which its instantaneous oscil- the modeling of nonlinear effects in dispersive media may
lation frequencywp(6) = R{wsp: (0)} chirps up from  have far-reaching consequences. As a consequence:
its initially quasistatic value and approacheg from The slowly varying envelope or quasimonochromatic
below as# — «. Here wgp;(#) denotes the distant, approximation of linear dispersive pulse propagation
wsp;, (0), denotes the middle, andsp; (#) denotes the in a double resonance Lorentz model dielectric with
near saddle point location of the complex phase functionn; < w. < w, is valid provided that each of the
¢ (w,0) = i(c/2)[k(w)z — wt] = io[n(w) — 6] inthe inequalities (in decreasing order of their importance)
right half of the complexw plane [10,13]. Itthen follows 7z fr > maxX2w /o, 27/82}, Aw <K (w; — wy), and
that: Aw/w. < 1, are strictly satisfied, wherdAw is the
As a pulse propagates away from its input plane, its dyspectral width of the input pulse antk r is taken as
namical evolution is initially characterized by the group the smaller of the initial pulse rise and fall times. For
velocity description, but as the propagation distance in-either an ultrashort or an ultrawideband pulse with either
creases and the pulse dispersion becomes m@t@&4], an initial rise or fall time 7 r satisfying the inequality
its dynamical evolution becomes characterized by ther r < max2w/dy,27/5,},the accuracy of the quasi-
asymptotic description and its resultant energy velocitymonochromatic approximation decreases monotonically
description. as the propagation distance exceeds one absorption depth
Becauserz r > 7,, in the example considered here, soz;, = @~ !(w.) at the input carrier frequencyo.., while
that the visible resonance relaxation time is dominated byhe accuracy of the asymptotic description increases
the initial pulse rise/fall time, and since the initial pulse monotonically.
spectrum contains negligible spectral energy abade This research has been supported by the United
the Sommerfeld precursor is absent from the dynamicabtates Air Force Office of Scientific Research Grant
field evolution depicted in Fig. 2. On the other hand,No. F49620-94-1-0430.
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