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Static Quark-Antiquark Potential in QCD to Three Loops
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The static potential between an infinitely heavy quark and antiquark is derived in the framework
perturbative QCD to three loops by performing a full calculation of the two-loop diagrams and using
renormalization group. The contribution of massless fermions is included. [S0031-9007(97)02295

PACS numbers: 12.39.Pn, 11.10.Hi, 12.38.Bx
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The force law between infinitely heavy quarks ha
been investigated for more than 20 years because
its importance for a deeper understanding of the stro
interactions. The static quark-antiquark potential is
very fundamental concept, constituting the non-Abelia
analog to the Coulomb potential of electrodynamics, a
also enters as a vital ingredient in the description
nonrelativistic bound states like quarkonia. It is wide
believed to consist of two parts: a Coulombic term
short distances which can be derived from field theo
by using perturbative QCD, and a long-ranged confini
term whose derivation from first principles presumab
requires much more advanced methods. Although
analysis based on perturbation theory alone thus can
give the complete potential, the result of such an effo
would nevertheless be very useful. It could provide a
improved input for QCD inspired potential models or eve
describe very heavy systems to a reasonable accurac
itself. It could be compared with the potential obtaine
from numerical studies using lattice gauge theory, and
might also give some hints on the nonperturbative regim

The first investigation of the static perturbative QC
potential has been performed in [1]. Although this wor
has been extended by several groups shortly after
5], and some of these also studied aspects of the tw
[2] and even three-loop diagrams [4], there is still n
full calculation of the two-loop diagrams available. Th
purpose of the present paper is to fill this gap a
hence, by exploiting the renormalization group equatio
to obtain the three-loop potential.

Before turning to the actual analysis, let us fir
recall the calculational procedure employed. It seem
appropriate to begin with the simplest case, the Abeli
theory without massless fermions.

The static potential in QED can be defined in
way which makes its gauge invariance manifest via t
vacuum expectation value of a Wilson loop taken abou
rectangle of widthR and lengthT ¿ R,

V sRd  2 lim
T!`

1
iT

ln

*
P exp

√
ie

I
dxmAm

!+
, (1)

whereP denotes the path ordering prescription.
The functional integral can be calculated exactly, a

one indeed finds the Coulomb potential plus an addition
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term which represents the self-energy of the sources [2
To compare with the non-Abelian theory it is, however
useful to go through the perturbative analysis as well. Th
Feynman rules for the source are as follows: a sourc
photon vertex corresponds to a factorieym, with an
additional minus sign for the “antisource,” and the sourc
“propagator” reads

SFsx 2 x0d  2iQsx0 2 x0
0ddsx 2 x0d (2)

in coordinate space or

SFspd 
1

yp 1 i´
(3)

in momentum space. The four vectory is given by
ym  s1, 0d and has only been introduced for notationa
reasons. The appearance of a propagator for the source
a consequence of the time ordering prescription in the pa
integral, which introducesQ functions when expanding
the exponential.

Looking at the problem in this way shows the con
nection to another approach: the potential beyon
the infinite mass limit or for nonsinglet sources is
frequently also derived from the scattering operato
see, for example, [6,7]. The static QED potentia
thus should be derivable from the scattering operat
of heavy electron effective theory, the QED analo
to heavy quark effective theory, and the Feynma
rules given above obviously support this point of view.

Some care is required because the Feynman d
grams do not directly correspond to the potential but t
expf2iV sRdTg. The consequence is that in the Abelian
theory the one-photon exchange amplitude already giv
the final result,

2ie2
Z

dx0 dy0 ymynDmnsx 2 yd  2ie2T
Z d3q

s2pd3

3
eiqR

s2q2d
,

whereDmn is used to represent the photon propagator an
x  0, y  R are understood.

At one-loop order, one encounters self-energy and ve
tex corrections which cancel due to the Ward identity, an
the ladder diagrams shown in Fig. 1 which are best an
lyzed in coordinate space. Because of the simple structu
© 1997 The American Physical Society
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FIG. 1. One-loop ladder diagrams. The double lines indic
static sources.

of the source propagator, Eq. (2), only integrations o
time variables remain. Adding the two diagrams remov
the Q function corresponding to the antisource propag
tor, and adding them once more withx $ x0, the source
propagator can also be removed, and the one-photon
change squared is obtained,

2 3 sFig. 1d 

√
2ie2T

Z
dx0 dy0 D00sx 2 yd

!2

.

This behavior of the ladder diagrams persists in high
orders [2]; the exponential thus starts to build up.

To see the exponentiation in momentum space
more difficult, and requires that we specify the gauge
which will be Feynman gauge—and the special kinema
situation. As the sources are infinitely heavy they m
carry any three-momenta without moving, but the act
values of these three-momenta are irrelevant as the o
quantities that enter the calculation are the moment
transferq and the energies of the sources. The latter
required to vanish by the on-shell condition (implied
the propagator, for example) and consequently the o
dimensionful parameter that remains isq2  2q2. Using
dimensional regularization withD  4 2 2e to handle
infrared divergencies, the individual amplitudes for t
diagrams in Fig. 1 thus read

Fig. 1sad  ie2

µ
e

4p

∂2 4
q2 Gsed

µ
4pm2

2q2

∂e

3 rsy ? y0d , (4)

Fig. 1sbd  ie2

µ
e

4p

∂2 4
q2

Gsed
µ

4pm2

2q2

∂e

3 rs2y ? y0d , (5)

with

rswd 
1

p
w2 2 1

ln
≥
w 1

p
w2 2 1

¥
, w . 1 , (6)

rswd  2rs2wd 1
ip

p
w2 2 1

, w , 21 . (7)

y0 is used to denote the four-velocity of the antisourc
hence we should take the limity0 ! 2y, y ? y0 ! 21.
But this results in a badly diverging imaginary part fo
the uncrossed diagram. Keeping a relative motion
settingy0  s2

p
1 1 u2, ud we can, however, recogniz

this divergence as resulting from the Coulomb phase
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8].

Another way to see this fact would be to keep the kine
energy in the heavy electron propagator. As the real pa
of the diagrams cancel we thus again find that they a
merely an iteration of the one-photon exchange. A simi
analysis should be possible for the higher order ladd
diagrams, of course, but it is obvious that the coordina
space approach is much easier in this respect.

The inclusion ofnf massless (i.e.,m2 ø q2) fermions,
although it makes an exact solution impossible, prese
no problem in perturbation theory. The fermions appe
as loops in the photon propagator and induce light-b
light scattering and in this way lead to an effectiv
running coupling constant, i.e.,

V sq2d  2
4paV sq2d

q2
. (8)

Note that this effective coupling differs from the usua
running coupling in theMS scheme. Light-by-light
scattering, in fact, first enters in three-loop graphs and
thus beyond the scope of this paper.

When turning to the non-Abelian case, the Wilson loo
must be generalized to*

Tr P exp

√
ig

I
dxm Am

a T a

!+
,

where the matricesTa denote the group generators
Consequently the potential for a quark-antiquark pair
a color-singlet state can be defined as

V sRd  2 lim
T!`

1
iT

ln

*
Tr P exp

√
ig

I
dxm Am

a T a

!+
.

(9)
In principle there are some problems connected to t
definition, caused by the nontrivial topological structu
of non-Abelian theories, which are, however, absent
the purely perturbative approach.

As there is no way known to solve the QCD function
integral exactly, one has to resort to a perturbati
treatment, which is, of course, more complicated than
the Abelian case: additional diagrams appear due to
trilinear and quartic gluon self-couplings, and the presen
of the generators in the source-gluon vertex influences
exponentiation as will be demonstrated.

We will use Feynman gauge and the kinematics as
scribed above again. Because the individual loop d
grams contain both infrared and ultraviolet divergencie
dimensional regularization will be employed, withou
however, explicitly distinguishing between the two kind
of divergencies. TheMS scheme will be adopted for
renormalization.

The only difference between the non-Abelian and t
Abelian theory on tree level is the color factorCF 
TFsN2 2 1dyN which multiplies the coupling constant in
the potential, whereN is the number of colors andTF the
normalization of the generators, TrfT aTbg  dabTF . It is
603
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thus convenient to define

V sq2d  2CF
4paV sq2d

q2
, (10)

as this allows for an immediate generalization to sour
in the adjoint representation: replacingTa

kl ! 2ifakl and
hence CF ! CA  N, the function aV describes the
potential for static gluinos as well.

On the one-loop level the difference between QED a
QCD is more prominent. An obvious point is that th
trilinear gluon self-coupling leads to a correction to th
gluon propagator even ifnf  0, and in principle to an
additional vertex correction as well. But as a conseque
of Feynman gauge and the special kinematics, ev
diagram containing a three-gluon vertex with all thr
ends directly attached to the sources vanishes: if
denote the three-momenta flowing into the vertex w
p, q, r, such a diagram involves

ymynyrf gmnsp 2 qdr 1 gnrsq 2 rdm 1

grmsr 2 pdng  0 .

The same statement holds for the four-gluon vert
which, however, first enters at the two-loop level.

A second and more interesting point is that the co
factors associated with the individual diagrams are not
same. Consider, for example, the ladder diagrams of Fig
again,

Fig. 1sad ~ C2
F , Fig. 1sbd ~ C2

F 2 CF
CA

2
.

We can immediately identify the terms~C2
F as iterations

of the tree-level potential, but there remains a term~CFCA

from the crossed ladder which, together with a correspo
ing term from the vertex correction that renders it infrar
finite, leads to an additional contribution to the one-lo
potential. This, of course, influences the way the exp
nentiation works at the two-loop level.

As has been demonstrated in [2], the consequence is
in order to compute the actual two-loop contribution to t
potential, only those diagrams have to be considered wh
involve color factors different fromC3

F andC2
FCA and thus

cannot result from iterations of the lower order diagram
This means that, for example, the first three of the lad
diagrams in Fig. 2 and all graphs which are merely sou
self-energy insertions in one-loop graphs are irrelevant

FIG. 2. Two-loop ladder diagrams.
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To be more specific, the following diagrams have to be
calculated:

(i) The two-loop ladder diagrams Fig. 2(d)–2(f).
(ii) The corrections to the one-loop ladder diagrams

shown in Fig. 3. In general there would be more graphs
of this type containing the three-gluon vertex, e.g., analo-
gous to Fig. 3(c), which, however, vanish in Feynman
gauge as already explained. In fact, Fig. 3(f) vanishes a
well, but this is a consequence of considering the color-
singlet state of the sources.

(iii) Two-loop vertex and gluon self-energy corrections,
where the number of diagrams is also reduced by ou
choice of gauge, and double insertions of the correspond
ing one-loop corrections.

(iv) The graphs containing the four-gluon vertex with
all ends attached to the sources vanish in Feynman gaug
as well.

All other two-loop graphs are already accounted for by
the exponentiation.

The relevant diagrams can be evaluated in momentum
space without encountering any special difficulties. Using
the integration by parts method [9], most of the inte-
grals that occur can be reduced to products or convo
lutions of the standard one-loop two-point function, its
HQET equivalent as given in [10], the HQET three-point
function as given in [11] and the mixed-type three-point
function

Csp2d 
Z dDl

s2pmd22e

µ
21

l2 1 ie

∂nµ
21

sl 1 pd2 1 i´

∂m

3

µ
21

ly 1 i´

∂a

,

which can be computed by standard methods foryp  0.
The diagrams 2(d)–2(f), 3(e), and the vertex correction
containing two three-gluon vertices, however, require
the computation of some true two-loop integrals. As a
detailed description of the calculation must be postponed
to a future publication, we only mention that the computer
programFORM [12] has been used for the evaluation of
most of the diagrams and immediately present the results

Combining the two-loop result with the tree-level and
one-loop expressions, the effective coupling constan
introduced above can be written as

FIG. 3. Corrections to one-loop ladder diagrams required for
the potential calculation.
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aV sq2d  aMSsq2d
Ω
1 1

aMSsq2d
4p

31CA 2 20TFnf

9
1

µ
aMSsq2d

4p

∂2

3

∑
C2

A

µ
4343
162

1
24p2 2 p4

4
1

22
3

z3

∂
2 CATFnf

µ
1798

81
1

56
3

z3

∂
2 CFTFnf

µ
55
3

2 16z3

∂
1 sTFnfd2 400

81

∏æ
. (11)
]
h

o
e

e-

,

By inserting the three-loop running coupling in theMS
scheme (the formula can be found, for example, in [13
we thus obtain the three-loop potential, in the sense t
the expression is correct up to a constant multiplyin
a

3
MSsq2d. The terms proportional toCFTF and T 2

F in
(11) could have been obtained from the one- and two-lo
gluon propagator, but the other two terms really requir
computing.
e
n

e

-
g

n
le

t

),
at
g

p
d

Equation (11) can be used to determine the schem
dependent coefficientb2 of the b function for the V
scheme, as defined by

1
aV

daV

d ln m2  2
X̀
n0

bsVd
n

µ
aV

4p

∂n11

, (12)

with the result (the first two coefficients, of course
coincide with those of theMS scheme)
b
sVd
2 

µ
618 1 242z3

9
1

11s24p2 2 p4d
12

∂
C3

A 2

µ
445 1 704z3

9
1

24p2 2 p4

3

∂
C2

ATFnf

1
2 1 224z3

9
CAsTFnfd2 2

686 2 528z3

9
CACFTFnf 1 2C2

FTFnf 1
184 2 192z3

9
CFsTFnf d2. (13)

The relation between the two couplings can, of course, be inverted easily, yielding

aMSsq2d  aV sq2d
Ω
1 2

aV sq2d
4p

31CA 2 20TFnf

9
2

µ
aV sq2d

4p

∂2

3

∑
C2

A

µ
499
162

1
24p2 2 p4

4
1

22
3

z3

∂
1 CATFnf

µ
682
81

2
56
3

z3

∂
2 CFTFnf

µ
55
3

2 16z3

∂
2 sTFnfd2 400

81

∏æ
. (14)
n

-

l.
This formula could be used to improve the precision wh
extracting aMSsM2

Zd from measurements of the Wilso
loop on the lattice [14].

For N  3 the results in actual numbers read

aV sq2d  aMSsq2d
Ω
1 1

aMSsq2d
p

s2.583 2 0.278nfd

1

µ
aMSsq2d

p

∂2

s39.650 2 4.147nf 1 0.077n2
fd

)
, (15)

aMSsq2d  aV sq2d
Ω
1 2

aV sq2d
p

s2.583 2 0.278nfd

2

µ
aV sq2d

p

∂2

s26.303 2 1.277nf 2 0.077n2
fd

)
, (16)

which shows that the coefficients of the second ord
terms are not small even fornf  5.
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