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Static Quark-Antiquark Potential in QCD to Three Loops
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The static potential between an infinitely heavy quark and antiquark is derived in the framework of
perturbative QCD to three loops by performing a full calculation of the two-loop diagrams and using the
renormalization group. The contribution of massless fermions is included. [S0031-9007(97)02295-3]
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The force law between infinitely heavy quarks hasterm which represents the self-energy of the sources [2].
been investigated for more than 20 years because dfo compare with the non-Abelian theory it is, however,
its importance for a deeper understanding of the strongseful to go through the perturbative analysis as well. The
interactions. The static quark-antiquark potential is a@eynman rules for the source are as follows: a source-
very fundamental concept, constituting the non-Abeliarphoton vertex corresponds to a factarv®, with an
analog to the Coulomb potential of electrodynamics, anédditional minus sign for the “antisource,” and the source
also enters as a vital ingredient in the description of‘propagator” reads
nonrelativistic bound states like quarkonia. It is widel N / )
believed to consist of two parts(:q a Coulombic term gt Sp(x = x) = =i0(x = x)3(x — x) (2)
short distances which can be derived from field theoryin coordinate space or
by using perturbative QCD, and a long-ranged confining 1
term whose derivation from first principles presumably Sp(p) = ———— (3)
requires much more advanced methods. Although an vp tie
analysis based on perturbation theory alone thus canngt momentum space. The four vector is given by
give the complete potential, the result of such an effortv* = (1,0) and has only been introduced for notational
would nevertheless be very useful. It could provide anreasons. The appearance of a propagator for the sources is
improved input for QCD inspired potential models or evena consequence of the time ordering prescription in the path
describe very heavy systems to a reasonable accuracy bytegral, which introduce® functions when expanding
itself. It could be compared with the potential obtainedthe exponential.
from numerical studies using lattice gauge theory, and it Looking at the problem in this way shows the con-
might also give some hints on the nonperturbative regimenection to another approach: the potential beyond

The first investigation of the static perturbative QCDthe infinite mass limit or for nonsinglet sources is
potential has been performed in [1]. Although this workfrequently also derived from the scattering operator;
has been extended by several groups shortly after [2see, for example, [6,7]. The static QED potential
5], and some of these also studied aspects of the twdhus should be derivable from the scattering operator
[2] and even three-loop diagrams [4], there is still noof heavy electron effective theory, the QED analog
full calculation of the two-loop diagrams available. Theto heavy quark effective theory, and the Feynman
purpose of the present paper is to fill this gap andules given above obviously support this point of view.
hence, by exploiting the renormalization group equation, Some care is required because the Feynman dia-
to obtain the three-loop potential. grams do not directly correspond to the potential but to

Before turning to the actual analysis, let us firstexd—iV(R)T]. The consequence is that in the Abelian
recall the calculational procedure employed. It seemsgheory the one-photon exchange amplitude already gives
appropriate to begin with the simplest case, the Abeliarthe final result,
theory without massless fermions.

The static potential in QED can be defined in a —iezfdxodyo v v, D*(x — y) = —ie’T
way which makes its gauge invariance manifest via the
vacuum expectation value of a Wilson loop taken about a x £
rectangle of widthR and lengthl” > R, (—q?)’

1 whereD#” is used to represent the photon propagator and
V(R) = — lim — In<P eXP(i€ jédxﬂA“>>’ (1) x =0,y = R are understood.
At one-loop order, one encounters self-energy and ver-
whereP denotes the path ordering prescription. tex corrections which cancel due to the Ward identity, and

The functional integral can be calculated exactly, andhe ladder diagrams shown in Fig. 1 which are best ana-
one indeed finds the Coulomb potential plus an additionalyzed in coordinate space. Because of the simple structure
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x X ¢ Another way to see this fact would be to keep the kinetic
% T ] energy in the heavy electron propagator. As the real parts
y

M

of the diagrams cancel we thus again find that they are

merely an iteration of the one-photon exchange. A similar

analysis should be possible for the higher order ladder
7 - < g diagrams, of course, but it is obvious that the coordinate

a) b) Y space approach is much easier in this respect.
, o The inclusion ofz, massless (i.em? < g2) fermions,

Etlgi'cls'ou?cnei'_loc’p ladder diagrams. The double lines Inc}l'catealthough it makes an exact solution impossible, presents
no problem in perturbation theory. The fermions appear
as loops in the photon propagator and induce light-by-
,,ight scattering and in this way lead to an effective
unning coupling constant, i.e.,

< BANANANN R

of the source propagator, Eq. (2), only integrations ove
time variables remain. Adding the two diagrams removes
the ® function corresponding to the antisource propaga- 4rrav(q?)

tor, and adding them once more with— x/, the source V(gh) = —— . (8)
propagator can also be removed, and the one-photon ex- q

change squared is obtained, 5 Note that this effective coupling differs from the usual
. I 00/, running coupling in theMS scheme. Light-by-light
2 X (Fig- 1) = ( re T] dxo dyo D™ (x y)> : scattering, in fact, first enters in three-loop graphs and is
thus beyond the scope of this paper.

This behavior of the ladder diagrams persists in higher \yhan turning to the non-Abelian case, the Wilson loop
orders [2]; the exponential thus starts to build up. must be generalized to

To see the exponentiation in momentum space is
more difficult, and requires that we specify the gauge—
which will be Feynman gauge—and the special kinematic <Tr P exp(ig fdxu AgT“>>,
situation. As the sources are infinitely heavy they may

carry any three-momenta without moving, but the actualyhere the matricesT® denote the group generators.

values of these three-momenta are irrelevant as the ontygnsequently the potential for a quark-antiquark pair in
quantities that enter the calculation are the momentury color-singlet state can be defined as

transferg and the energies of the sources. The latter are

required to vanish by the on-shell condition (implied in 1 ) B

the propagator, for example) and consequently the only ¥ (R) = — im 7 In<Tr Pexp(;g fdxu AGT >>
dimensionful parameter that remains;’s= —q?. Using

dimensional regularization witth = 4 — 2¢ to handle ©)

infrared divergencies, the individual amplitudes for the! Principle there are some problems connected to this
diagrams in Fig. 1 thus read definition, caused by the nontrivial topological structure

of non-Abelian theories, which are, however, absent in

Fig. 1(a) = ie2<i>2i2 I'(e) <47T,U;>E the purely perturbative approach. _
47/ q —-q As there is no way known to solve the QCD functional
X r(v - v'), (4) integral exactly, one has to resort to a perturbative
2y Ao 2\ € treatment, which is, of course, more complicated than in
Fig. 1(b) = i€2<i> il F(e)< H > the Abelian case: additional diagrams appear due to the
4w/ q* —q? trilinear and quartic gluon self-couplings, and the presence
X r(—v - v'), (5) of the generators in the source-gluon vertex influences the
. exponentiation as will be demonstrated.
with We will use Feynman gauge and the kinematics as de-
_ 1 7 scribed above again. Because the individual loop dia-
riw) = w2 =1 In(w T yw 1>’ w=1, () grams contain both infrared and ultraviolet divergencies,
i dimensional regularization will be employed, without,
riw) = —r(—w) + —, w<-—1. (7)  however, explicitly distinguishing between the two kinds
we =1 of divergencies. TheMS scheme will be adopted for
v’ is used to denote the four-velocity of the antisourcerenormalization.
hence we should take the limit — —v, v - v/ — —1. The only difference between the non-Abelian and the

But this results in a badly diverging imaginary part for Abelian theory on tree level is the color factary =
the uncrossed diagram. Keeping a relative motion byr»(N> — 1)/N which multiplies the coupling constant in
settingv’ = (—+/1 + u?,u) we can, however, recognize the potential, wher& is the number of colors anfl» the
this divergence as resulting from the Coulomb phase [8]normalization of the generators, [F*T?] = §T. Itis
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thus convenient to define To be more specific, the following diagrams have to be
4 avy(q?) calculated:
V(g}) = —Cr——>, (10) (i) The two-loop ladder diagrams Fig. 2(d)—2(f).

q’ (i) The corrections to the one-loop ladder diagrams
as this allows for an immediate generalization to sourceshown in Fig. 3. In general there would be more graphs
in the adjoint representation: replacifigg — —if“* and  of this type containing the three-gluon vertex, e.g., analo-
hence Cr — C4 = N, the function ay describes the gous to Fig. 3(c), which, however, vanish in Feynman
potential for static gluinos as well. gauge as already explained. In fact, Fig. 3(f) vanishes as

On the one-loop level the difference between QED andvell, but this is a consequence of considering the color-
QCD is more prominent. An obvious point is that the singlet state of the sources.
trilinear gluon self-coupling leads to a correction to the (iii) Two-loop vertex and gluon self-energy corrections,
gluon propagator even ii; = 0, and in principle to an where the number of diagrams is also reduced by our
additional vertex correction as well. But as a consequencehoice of gauge, and double insertions of the correspond-
of Feynman gauge and the special kinematics, evering one-loop corrections.
diagram containing a three-gluon vertex with all three (iv) The graphs containing the four-gluon vertex with
ends directly attached to the sources vanishes: if wall ends attached to the sources vanish in Feynman gauge
denote the three-momenta flowing into the vertex withas well.
p,q,r, such a diagram involves All other two-loop graphs are already accounted for by

v v the exponentiation.
vavsvpl g™ (p = @) g™ (g = ) & Theprelevant diagrams can be evaluated in momentum

g’ (r — p)’]1=0. space without encountering any special difficulties. Using
The same statement holds for the four-gluon vertextN€ integration by parts method [9], most of the inte-
which, however, first enters at the two-loop level. grals that occur can be reduced to products or convo-

; : Lot tions of the standard one-loop two-point function, its
A second and more interesting point is that the colot! . ) ) .
factors associated with the individual diagrams are not th QET equwa_lent as given in [10], the HQET three-po[nt
same. Consider, for example, the ladder diagrams of Fig. finction as given in [11] and the mixed-type three-point

again, unction
i 2 i 2 _ o, G cp?) = . ( = )( o >m
Flg. l(a) & CF’ Flg. l(b) x CF - CFT. p (277.,“)—25 12 + je (l + p)z + ie
We can immediately identify the termsC# as iterations X <_—1> ,
of the tree-level potential, but there remains a ter@):C, lv +ie

from the crossed ladder which, together with a correspondyhich can be computed by standard methods/fer= 0.

ing term from the vertex correction that renders it infraredThe diagrams 2(d)—-2(f), 3(e), and the vertex correction

finite, leads to an additional contribution to the One-|00pcontaining two three-gluon vertices, however, require

potential. This, of course, influences the way the expothe computation of some true two-loop integrals. As a

nentiation works at the two-loop level. detailed description of the calculation must be postponed
As has been demonstrated in [2], the consequence is theg a future publication, we only mention that the computer

in order to compute the actual two-loop contribution to theprogramrorm [12] has been used for the evaluation of

potential, only those diagrams have to be considered whichhost of the diagrams and immediately present the results.

involve color factors different front? andCC, and thus Combining the two-loop result with the tree-level and

cannot result from iterations of the lower order diagramsone-loop expressions, the effective coupling constant

This means that, for example, the first three of the laddeintroduced above can be written as

diagrams in Fig. 2 and all graphs which are merely source

self-energy insertions in one-loop graphs are irrelevant.

c G@Gm 600 o‘a‘g@\m « gGGGG G001 a‘@ﬂ%’% , ng 6“%
= = 2 S/ ) 54
3 E N §§ 2\ @3
g g g g 2. & 2. g g & &
e S 2 3 2 X E B g 2 %
= Q = = S 2 a S & $
" N N B S & 5 = Y% BN
g g S B S SN E @ (®) ©
(@) (b) (©) Ci @57 = B P
QA = =
S Q = 1=
S A 2 Do I sy QLI 00
§ s 2 % o, S 2 g P,
S S 2 o § @ © ®
@ © ® . . .
FIG. 3. Caorrections to one-loop ladder diagrams required for
FIG. 2. Two-loop ladder diagrams. the potential calculation.
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~is(q?) 31C4 — 20T —<(q?)\?
av(@) = ays(a) {1+ DB T T (awsla))

47 9 4
4343 2472 — 7t 22 1798 56
X | C3 + =45 - — + =
[CA< 162 4 3 §3> CATF”«"( s1 3 53)
55 400
— CFTan<? - 16{3) + (Tan)zg:”’. (11)
By inserting the three-loop running coupling in tMS ! Equation (11) can be used to determine the scheme-

scheme (the formula can be found, for example, in [13])dependent coefficienB, of the B function for the V
we thus obtain the three-loop potential, in the sense thatcheme, as defined by

the expression is correct up to a constant multiplying 1 da o v\

as=(q?). The terms proportional t€s7# and T7 in - dlnv2 --> Bff”(ﬁ) , (12)
(11) could have been obtained from the one- and two-loop v K n=0
gluon propagator, but the other two terms really requiredvith the result (the first two coefficients, of course,

computing. | coincide with those of th#1S scheme)
V) 618 + 2424 11(247?* — 774)> 3 <445 + 7044, 24w? — 774> )
- + cl - + C3T
? < 9 12 A 9 3 ATFRY
2 + 224 686 — 528 184 — 192
+ TQ CA(TFflf)2 - Tﬁ CACFTan + 2C[2:Tan + T{z CF(TFI’lf)Z. (13)

The relation between the two couplings can, of course, be inverted easily, yielding
av(q®) 31Cs — 20Tpn; <av(c12)>2

axis(q?) = av<q2>{1 -

4qr 9 4qr
499 247 — 7% 22 > <682 56 )
X | C3 + + =4 + CaTpng|l — — =
[CA< 162 4 3 8) T Calen{gr — 3 6
55 400
- CFTan<? - 16§3> - (Tan)zg}}. (14)
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