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Which Chiral Symmetry is Restored in High Temperature Quantum Chromodynamics?
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Sigma models for the high temperature phase transition in quantum chromodynamics suggest that
at high temperature the SUsNf d 3 SUsNf d chiral symmetry becomes exact, but the anomalous axial
U(1) symmetry need not be restored. In numerical lattice simulations, traditional methods for detecting
symmetry restoration have sought multiplets in the screening mass spectrum. However, these methods
were imprecise and the results, so far, incomplete. With improved statistics and methodology, we are
now able to offer evidence for a restoration of the SUs2d 3 SUs2d chiral symmetry just above the
crossover, but not of the axial U(1) chiral symmetry. [S0031-9007(96)02251-X]

PACS numbers: 12.38.Gc, 11.30.Rd, 12.38.Mh
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A high temperature phase transition from a deconfin
quark plasma to a confined phase is thought to have
curred as the early Universe cooled. This phenomeno
under investigation in high energy heavy-ion collision
Through numerical simulations of quantum chromod
namics (QCD) we hope to gain an understanding of
qualitative and quantitative characteristics of this pha
transition. The phase transition (perhaps only a crosso
at physical quark masses) is associated with the spo
neous breaking of the chiral symmetry and formation
chiral condensates. Sigma models suggest that in the l
of zero up and down quark masses, the SUs2d 3 SUs2d
chiral symmetry is exact in the high temperature pha
[1], and a phase transition separates it from a cold phas
which this symmetry is spontaneously broken. The gau
anomaly, present at low temperature, may persist at h
temperature, however, breaking the U(1) axial symme
at all temperatures.

Early efforts to detect symmetry restoration looked f
chiral multiplets in the screening mass spectrum [2]. F
example, the following channels are related according
the indicated symmetries:

√ SUs2d 3 SUs2d !

"

Us1dA f0 p

# h a0 .

The screening mass spectrum is found from the spa
like hadron propagators. The restoration of the SUs2d 3

SUs2d symmetry requires a degeneracy between the lo
est pion screening mass and that of its chiral partner,
JP ­ 01, I ­ 0 f0 meson (also known as thes). The
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determination of thef0 screening mass through numerica
simulation is complicated by the presence of quark-li
disconnected graphs. Computing them requires an exp
sive determination of the quark propagator from multip
origins. In early simulations, therefore, it was commo
to keep only connected graphs. This practice, applied
the f0, results instead in a determination of the screeni
mass for theJP ­ 01, I ­ 1 a0 meson (also known as
the d) [3]. This meson is the axial U(1) chiral partner o
the pion. Thus a degeneracy in thep and a0 screening
masses would imply a suppression of the gauge anom
and a partial restoration of the axial U(1) symmetry, b
does not test restoration of the SUs2d 3 SUs2d symmetry.

New simulations with large data samples make
possible to revisit the question of which symmetry
restored [4,5]. Further statistical improvement can
obtained by studying the susceptibilities related to t
propagators, rather than just the screening masses:
example, from the pion susceptibility

xp ­
Z

d4r kps0dpsrdl (1)

and the related susceptibilities,xf0 andxa0 , we can define
two order parameters

xSUs2d3SUs2d ­ xp 2 xf0 andxUs1d ­ xp 2 xa0 .

(2)

Restoration of either symmetry requires that the cor
sponding order parameter vanish.

We use the staggered fermion scheme. This sche
breaks all but one generator of chiral SUs4d 3 SUs4d.
© 1997 The American Physical Society
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The full symmetry is expected to be recovered in the c
tinuum limit. The one surviving generator, however, c
be used to explore symmetry restoration at the phase t
sition at nonzero lattice spacing. The staggered ferm
treatment of the axial U(1) symmetry is less satisfacto
That symmetry, formulated in the conventional mann
is broken explicitly on the lattice. It, too, is expected
be recovered in the continuum limit. Since our analy
treats only one lattice spacing, namelya ø 1y6Tc, fur-
ther study will be required to distinguish between effe
of the lattice approximation and continuum effects of t
gauge anomalies.

A preliminary report of our results was presented
Ref. [5]. A number of other groups have also taken up t
question and have also reported preliminary results [6–

We simulate theNf-flavor staggered fermion actio
with the standard partition function at temperatureT on a
hypercubic Euclidean lattice with spacinga, quark matrix
MsU, mqd, quark massmq, and gauge link matricesU [9]:

Z ­ e2VFsT ,amqdyT ­
Z

fdUg

3 expf2SgsUdg fdetMsU, mqdgNf y4. (3)

As is well known, the fermion determinant can b
expressed as detMsU, mqd ­ detfD2 1 s2amqd2g, where
the latter determinant is taken on the even lattice sites o
andD2 is the square of the fermion hopping matrix. Th
the free energy is manifestly even in the quark mass.

We will be concerned with a variety of susceptibilitie
related to the singlet chiral order parameter,

k f0l ; kccl ­ ≠FsT , mqdy≠mq ­ TNfay2V kTrM21l ,

(4)

where the expectation values are defined on the ense
(3). The associated susceptibility is

xf0 ­ ≠k f0ly≠mq ­
Z

d4x fk f0s0df0sxdl 2 k f0s0dl2g

­ xconn 1 xdisc . (5)

The quark-line connected and disconnected contributi
are

xconn ­ TNfa2yV kTrM22l andxdisc

­ sTyV d fsaNfy2TrM21d2l 2 kaNfy2TrM21l2g .

(6)

It can be seen from this result that the disconnec
contribution to the susceptibility is just proportional
the “configuration variance” ofk f0l, that is, xdisc ­
sVyT d fk f2

0 l 2 k f0l2g.
All of our simulations are carried out with two dynam

cal (sea) quark flavors. However, in measuring susce
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bilities, we can adjust the valence flavor number to suit t
observable. If we stick with only the four flavors force
upon us by fermion doubling in the staggered fermio
scheme, all isospin components of thea0 meson are gen-
erated by a nonlocal fermion bilinear [10]. However, a
the expense of increasing the flavor degeneracy to eig
we can create ana0 analog from a diagonal fermion bi-
linear operator. In any case all sucha0 components are
expected to be degenerate in the continuum limit and a
of them can be used to test symmetry restoration. T
susceptibility of the diagonala0 operator is exactly the
connected part of thef0 susceptibility:

xa0 ­ xconn . (7)

We measure this susceptibility directly from th
connected part of the f0 correlator: xconn ­R

d4x k f0s0df0srdl jconn, while Chandrasekharan and
Christ measure it by taking the derivative ofk f0l with
respect to the valence quark mass [6]. Finally, a we
known Ward identity relates the pion susceptibility to th
chiral order parameter [11]:

xp ­ NfTa2yV kTrsMyMd21l ­ k f0ly2mq . (8)

In practice we measure the order parameters (2) throu

xSUs2d3SUs2d ­ k f0ly2mq 2 xconn 2 xdisc andxUs1d

­ k f0ly2mq 2 xconn . (9)

The simulation consisted of a subset of configuratio
generated in an extensive study of the equation of state
Nt ­ 6 and Nf ­ 2 at 6yg2 ­ 5.45 and quark masses
amq ­ 0.0075, 0.01, 0.0125, 0.015, 0.02, and 0.02
[4,5]. This parameter range lies in the high temperatu
phase slightly above the phase transition, as illustra
in Fig. 1, and was selected to permit an extrapolatio
of the measured quantities to zero quark mass in t
high temperature phase. The simulation sample at e
mass covered a molecular dynamics time span of at le

FIG. 1. Phase diagram for the standard SU(3) Wilson gau
plus two-flavor staggered fermion action showing the approx
mateNt ­ 6 crossover location (crosses and burst) as a fun
tion of gauge coupling6yg2 and quark massamq. Data sample
points are indicated by octagons.
599
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2000 time units with the first 400 omitted. Measureme
were taken at intervals of at most 50 time units. T
chiral order parameterk f0l ; kccl was measured using
the random source method [12] with 33 random sourc
These measurements, with care taken to avoid bia
inherent in the noisy source technique, in turn, provid
an estimate ofxdisc through the configuration variance.

Results are shown in Fig. 2 and Table I. We ha
indicated a linear extrapolation insamqd2. Because they
are closer to the crossover (Fig. 1), where curvature m
be expected, we chose to exclude the two highest m
points from the fit. The zero mass intercepts are

xSUs2d3SUs2d ­ 20.04s31d andxUs1d ­ 0.75s22d ,

(10)

with x2ydf ­ 2.6y2 and 2.5y2, respectively. Fits to
all points gavexSUs2d3SUs2d ­ 0.33s20d with x2ydf ­
5.6y4 andxUs1d ­ 0.81s11d with 2.7y4.

It is surprising that a fit of the same points to an e
pressionlinear in amq gives a result consistent with
zero intercept forboth order parameters:xSUs2d3SUs2d ­
20.40s56d with x2ydf ­ 2.4y2 and xUs1d ­ 0.15s38d
with x2ydf ­ 1.8y2. So which fit is correct? As we
have emphasized, the free energy is rigorously even
the quark mass. In consequence the order parameter
also even. Thus if the free energy is analytic at ze
quark mass, a quadratic fit is required. Now some ga
field configurations give rise to fermion zero modes
near-zero modes. In a two-flavor simulation, those mo
contribute terms infsamqd2gNf y4 ­ jamqj to the free en-
ergy—terms are linear but nonanalytic. Such behavior
not suppressed by a vanishing probability for encount

FIG. 2. Chiral order parameters extrapolated in quark m
squared.
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TABLE I. Susceptibilities and order parameters in lattice
units.

amq kccl xconn xUs1d xdisc xSUs2d3SUs2d

0.0075 0.0446(12) 5.21(17) 0.74(23) 0.89(21)20.15s31d
0.01 0.0599(16) 4.61(9) 1.38(18) 0.91(12) 0.47(22)

0.0125 0.0724(16) 4.35(9) 1.44(16) 1.25(18) 0.19(22)
0.015 0.0885(15) 4.21(7) 1.69(12) 1.12(20) 0.57(23)
0.02 0.121(5) 3.59(14) 2.5(3) 3.1(1.0)20.7s1.1d
0.025 0.157(3) 3.04(8) 3.23(14) 3.3(5) 20.1s6d

ing zero modes, would imply a phase transition or infrare
singularity at zero quark mass. However, measureme
of screening masses forT . Tc give no indication of in-
frared singularities for smallamq. A phase transition at
zero quark mass forT . Tc is likewise unexpected in
sigma models.

In conclusion, our results are consistent with the sigm
model scenario: a restoration of SUs2d 3 SUs2d but not
of Us1dA (approximately 3s). Whether the apparent
breaking of the axial U(1) symmetry is a lattice artifact o
a consequence of the anomaly remains to be establish
by future measurements at smaller lattice spacing and w
improved actions.

We thank Edward Shuryak, Norman Christ, Shailes
Chandrasekharan, Jac Verbaarschot, and Jean-Fran
Lagae for helpful discussions. This work was supporte
by the U.S. DOE and NSF. Computations were done
the San Diego Supercomputer Center, the Cornell Theo
Center, Indiana University, and the University of Utah
Center for High Performance Computing.

[1] R. D. Pisarski and F. Wilczek, Phys. Rev. D29, 338
(1984); F. Wilczek, J. Mod. Phys. A7, 3911 (1992);
K. Rajagopal and F. Wilczek, Nucl. Phys.B399, 395
(1993); K. Rajagopal, inQuark Gluon Plasma,edited by
R. Hwa (World Scientific, Singapore, 1995), Vol. 2.

[2] For references, see C. DeTar, inQuark Gluon Plasma
(Ref. [1]).

[3] E. Shuryak, Comments Nucl. Part. Phys.21, 235 (1994).
[4] MILC Collaboration, T. Blumet al., Nucl. Phys. B (Proc.

Suppl.)47, 503 (1996).
[5] C. Bernardet al., in Proceedings of Lattic 96: 14th Inter-

national Symposium on Lattice Field Theory, St. Louis
MO, 1996 (Report No. hep-laty9608026 [Nucl. Phys. B
(Proc. Suppl.) (to be published)]; MILC Collaboration (to
be published).

[6] S. Chandrasekharan and N. Christ, Nucl. Phys. B (Pro
Suppl.) 47, 527 (1996); N. Christ, in Proceedings of
Lattice 96: 14th International Symposium on Lattice Field
Theory, St. Louis, MO, 1996 (Ref. [5]).

[7] G. Boyd, F. Karsch, E. Laermann, and M. Oevers
in Proceedings of the 10th International Conference o
Problems of Quantum Field Theory, Alushta, Ukraine
1996 (Report No. hep-laty9607046) (to be published).

[8] J. B. Kogut, J.-F. Lagae, and D. K. Sinclair, in Proceeding
of Lattice 96: 14th International Symposium on Lattice



VOLUME 78, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 27 JANUARY 1997

-
Field Theory, St. Louis, MO, 1996 (Report No. hep
laty9608128) (Ref. [5]).

[9] I. Montvay and G. Münster,Quantum Fields on a Lattice
(Cambridge, New York, 1994).
[10] Maarten Golterman, Nucl. Phys.B273, 663 (1986).
[11] G. Kilcup and S. Sharpe, Nucl. Phys.B283, 493 (1987).
[12] S. Gottliebet al., Phys. Rev. D35, 2531 (1987).
601


